首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acute and subchronic effects of a variety of doses of a prototype typical (haloperidol) or one of several atypical antipsychotic drugs (clozapine, olanzapine, risperidone, quetiapine, or sertindole) on regional brain neurotensin (NT) tissue concentrations, and NT receptor binding were examined. Acute administration of haloperidol, clozapine, olanzapine, and risperidone dose-dependently increased NT tissue concentrations in the nucleus accumbens. Haloperidol, olanzapine, risperidone, and sertindole also increased NT tissue concentrations in the caudate nucleus. NT tissue concentrations in the nucleus accumbens and caudate remained elevated after 14-day administration of haloperidol, olanzapine, sertindole, and risperidone. In contrast, at the doses studied, quetiapine decreased NT tissue concentrations in the nucleus accumbens; clozapine had no effect. Haloperidol significantly increased NT receptor binding in the substantia nigra after 14-day administration. All of the atypical antipsychotic drugs decreased NT receptor binding in the nucleus accumbens and in the substantia nigra. Although these studies do not conclusively support the hypothesis that increased NT neurotransmission is involved in the clinically relevant effects of all antipsychotic drugs, the extant evidence clearly suggests that further study is warranted. Inconsistencies in the data suggest that differential effects of antipsychotic drug administration on subpopulations of NT neurons must be scrutinized further.  相似文献   

2.
Acute and chronic treatment with antipsychotic drugs, such as haloperidol, selectively increases the concentrations of neurotensin (NT) in the nucleus accumbens and caudate of the rat. These increases in NT concentration in the nucleus accumbens and caudate have been hypothesized to underlie the therapeutic and extrapyramidal effects of antipsychotic drugs, respectively. The present study evaluates the effects of the putative antipsychotic and selective sigma receptor "antagonist" BMY 14802 on regional brain NT concentrations. NT concentrations in discrete brain regions of adult, male, Sprague-Dawley rats were measured by a sensitive and specific radioimmunoassay. Like haloperidol (1 mg/kg i.p.), acute and chronic treatment with BMY 14802 (35 mg/kg/day i.p.) produced significant increases in the concentrations of NT in the nucleus accumbens and anterior and posterior caudate. This effect was dose-dependent. Maximal increases in NT concentration were observed 18 hr after a single dose of BMY 14802. Neither acute nor chronic treatment with the sigma "agonist" (+)-SKF 10,047 (20 mg/kg i.p.), the N-methyl-D-aspartate-phencyclidine binding site antagonist MK-801 (0.25 mg/kg i.p.) or the selective D2 antagonist sulpiride (100 mg/kg i.p.), produced the pattern of NT alterations observed after the administration of BMY 14802. These findings suggest that the blockade of sigma receptors modulates NT concentrations in these brain regions.  相似文献   

3.
Acute and chronic treatment with the antipsychotic drug haloperidol or the potential antipsychotic BMY 14802 produce increases in regional neurotensin concentrations which are similar with respect to regional specificity (nucleus accumbens and caudate), time course, magnitude of increase and precedence by an increase in proneurotensin mRNA. The present study characterizes further the effects of haloperidol and BMY 14802 on regional brain neurotensin concentrations and compares certain of their effects to those of sulpiride. Neurotensin concentrations in discrete brain regions of adult, male, Sprague-Dawley rats were determined by radioimmunoassay. Both acute and chronic treatment with BMY 14802 produced significant decreases in the concentration of neurotensin in the frontal cortex. When administered concomitantly, low doses of haloperidol and BMY 14802 produced additive increases in neurotensin content in the nucleus accumbens and caudate. Increases in neurotensin content resulting from concomitant treatment, or with doses which produce maximal effects individually, were not greater than those produced by either drug alone. Concomitant administration of SCH 23390 and sulpiride attenuated the neurotensin increases observed after treatment with sulpiride. Increases in neurotensin concentrations produced by haloperidol and BMY 14802 were not antagonized by SCH 23390. These findings support the hypothesis that haloperidol and BMY 14802 modulate regional neurotensin concentrations through a common or similar mechanism which is distinct from that of sulpiride.  相似文献   

4.
Neuromedin N (NN) is a hexapeptide recently isolated from porcine spinal cord that shares a four-amino acid homology with the C-terminus of the biologically active tridecapeptide neurotensin (NT). Microinjection with NT into the ventral tegmental area or nucleus accumbens of rats has been shown to increase locomotor activity and dopamine (DA) metabolism in some limbic areas or to inhibit the motor stimulant effect of intra-accumbens administration of DA, respectively. In this study the effects of microinjected NN were compared with those of NT. After injection into the ventral tegmental area, NN was shown to be more potent than NT at increasing spontaneous motor activity and to produce an increase in DA metabolism in the nucleus accumbens, prefrontal cortex, diagonal band of Broca and septum. However, when injected into the nucleus accumbens, NN was markedly less potent than NT at inhibiting DA-induced behavioral hyperactivity. In addition to DA-related effects, i.c.v. injection with NT causes hypothermia, and i.c.v. administration with NN was without effect on colonic temperature. These data demonstrate that NN has a behavioral profile distinct from that of NT.  相似文献   

5.
Effects of chronic administration (18 days) with SCH 23390 (0.1 or 0.5 mg/kg/day s.c.) and haloperidol (1 mg/kg/day s.c.) on dopamine and serotonin synthesis and metabolism in discrete dopaminergic and serotonergic nuclei of rat brain were studied. Additionally, the effects of these treatments on dopamine D-1 and D-2 receptor characteristics in rat caudate-putamen were investigated. Chronic administration with both dose regimens of SCH 23390 decreased DA metabolism significantly (basal homovanillic acid concentrations) in nucleus caudatus. In another set of experiments dopamine synthesis (rate of accumulation of 3,4-dihydroxyphenylalanine after 3,4-dihydroxyphenylalanine-decarboxylase inhibition) was reduced significantly only in nucleus accumbens after the higher SCH 23390 dose regimen. In turn, chronic administration with haloperidol decreased basal dopamine metabolism and synthesis in nucleus caudatus and nucleus accumbens. Chronic haloperidol, but not SCH 23390, treatment induced a clear-cut increase in [3H]spiperone binding in caudate-putamen. Interestingly, neither SCH 23390 nor haloperidol treatments affected [3H]SCH 23390 binding in caudate-putamen. SCH 23390 and haloperidol had no significant effects on serotonin synthesis and metabolism in serotonergic and dopaminergic areas. In conclusion, the classical antipsychotic drug, haloperidol, clearly decreases dopamine turnover in nigrostriatal and mesolimbic dopaminergic systems. The D-1 antagonist, SCH 23390, also decreases dopaminergic activity in nigrostriatal and mesolimbic systems although DA synthesis and metabolism are affected to different degrees in nucleus caudatus and nucleus accumbens. Therefore, we suggest that if D-1 antagonists such as SCH 23390 show antipsychotic activity in clinical studies, they may not be free of extrapyramidal side-effects.  相似文献   

6.
The content and nature of the preprotachykinin (PPT; i.e., substance P/neurokinin A-encoding) messenger RNAs (mRNAs) present in rat brain striatum and limbic tissues were determined by RNA protection experiments. The rank order of PPT mRNA concentration was striatum greater than nucleus accumbens much greater than bed nucleus of the stria terminalis greater than hypothalamus, amygdala and septum. The proportion of beta-(full length) to gamma-(minus exon 4) PPT mRNA was invariant (40/60) among the tissues tested. Because these brain regions receive prominent dopaminergic innervations, the effects of repeated treatment with dopamine antagonists (antipsychotic drugs) on PPT gene expression were assessed. The prototypical dopamine antagonists haloperidol and chlorpromazine decreased striatal PPT mRNA, had no effect on PPT mRNA in the nucleus accumbens or bed nucleus of the stria terminalis, and increased septal PPT mRNA levels. In contrast, the atypical antipsychotic drugs clozapine and l-sulpiride did not alter striatal or septal PPT mRNA, but increased PPT mRNA content in the nucleus accumbens and bed nucleus. The correlation between the effects of typical and atypical antipsychotic drugs on rat striatal and limbic PPT gene expression and their clinical side effects and therapeutic efficacy is discussed.  相似文献   

7.
Intracisternal (i.c.) injection of neurotensin (NT) to rats or mice attenuated the locomotor hyperactivity induced by d-amphetamine, methylphenidate or cocaine, but not the increased activity induced by apomorphine or lergotrile. The reduction of methylphenidate-induced locomotor activity by i.c. NT was not due to an increased drug metabolism because i.c. NT did not change plasma methylphenidate concentrations. These actions of NT are distinct from those of the dopamine receptor antagonist haloperidol, which blocked the locomotor hyperactivity induced by all five stimulant drugs in rats. A further difference between NT and neuroleptics was demonstrated by the observation that i.c. NT did not block apomorphine-induced stereotypic behavior. In vitro, NT did not displace [3H]spiperone from its binding sites in homogenates of either the striatum or nucleus accumbens from rat brain. Moreover, i.c. injection of NT did not alter the subsequent in vitro binding of [3H]spiperone to membranes of the nucleus accumbens or striatum. In addition, NT did not alter basal or dopamine-stimulated adenylate cyclase activity in homogenates of the nucleus accumbens or striatum. However, i.c. injection of NT produced a significant increase in the concentrations of homovanillic acid, a major dopamine metabolite, in the nucleus accumbens, olfactory tubercles and striatum. In addition, the concentration of dihydroxyphenylacetic acid was increased in the nucleus accumbens and olfactory tubercles after i.c. NT. Peripheral injection of haloperidol produced qualitatively similar effects on dopamine metabolism, but the effects of haloperidol, unlike those of i.c. NT, were attenuated by apomorphine injection. Taken together, these data indicate that centrally administered NT affects certain brain dopamine systems without interacting directly with those dopamine receptors labeled by [3H]spiperone, coupled to adenylate cyclase or mediating the pharmacological effects of apomorphine.  相似文献   

8.
The fact that chronic administration of typical and atypical antipsychotic drugs is required for optimal therapeutic response suggests that drug-induced adaptive neurochemical changes contribute to their mechanism of action. In the present study, the effects of chronic and acute haloperidol and olanzapine were compared on ketamine-induced activation of select brain regions, as reflected by altered regional 14C-2-deoxyglucose (2-DG) uptake. Rats were injected once daily with haloperidol (1 mg/kg) or olanzapine (10 mg/kg) for 21 days, and 20 to 24 h after the final injection was challenged with saline or ketamine (25 mg/kg). The washout period was used to test the effects of chronic drug treatment without the influence of acute drug administration. In vehicle-treated rats, ketamine increased 2-DG uptake in select brain regions, including medial prefrontal cortex, nucleus accumbens, caudate putamen, stratum lacunosum-moleculare of hippocampus, and basolateral nucleus of the amygdala. This selective activation was attenuated by prior chronic treatment with both haloperidol and olanzapine. After acute treatment, olanzapine, but not haloperidol, blocked the ketamine-induced activation of 2-DG uptake. These data suggest that both haloperidol and olanzapine can induce adaptive responses that counteract effects of ketamine. However, the differences observed in the acute effects of the two drugs in the ketamine challenge model suggest that different mechanisms could be responsible for their common chronic action of attenuating ketamine-induced brain metabolic activation.  相似文献   

9.
Evidence indicates that sensitivity to ethanol is a good predictor of the development of alcoholism. Thus, identification of neuronal processes that regulate ethanol sensitivity has been the subject of much recent research. The present studies were designed to further test the hypothesis that neurotensinergic processes mediate, in part, hypnotic sensitivity to ethanol. Single doses of haloperidol were administered to lines of rats [selectively bred for high and low sensitivity (HAS and LAS, respectively) to hypnotic effects of ethanol] to produce increases in neurotensin (NT) levels in brain regions. At 20 h after administration, haloperidol produced dose-dependent increases in NT immunoreactivity levels in nucleus accumbens (NA) and caudate putamen (CP) in both HAS and LAS lines. Levels of NT in NA and CP returned to control values at 48 h after 4 mg/kg haloperidol. These studies used two measures of hypnotic sensitivity to ethanol: duration of loss of righting reflex (sleep time) and blood ethanol concentration at regain of righting reflex (BECRR). At 20 h, but not 48 h, after haloperidol treatment, both HAS and LAS rats displayed increases in ethanol-induced sleep time with concomitant decreases in BECRR. Pentobarbital-induced sleep time was not increased 20 h after administration of 4 mg/kg haloperidol; however, hypnotic sensitivity to both pentobarbital and ethanol was increased by acute (30-min) pretreatment with 1 mg/kg. These results suggest that NT levels in NA, acting via NT receptors, enhance hypnotic sensitivity to ethanol, but not pentobarbital.  相似文献   

10.
11.
The effects of chronic gestational exposure to nicotine on the nucleus accumbens dopamine response to acute nicotine were determined during adolescence (postnatal day 29-36) in cross-fostered and noncross-fostered Lewis rats. In both males and females, gestational nicotine exposure diminished the adolescent nucleus accumbens dopamine response to 0.07 mg/kg nicotine i.v. (p < 0.05). However, dopamine responses to 0.105 mg/kg nicotine were unaffected by gestational nicotine treatment and were similar in both genders. Furthermore, in both female and male gestational nicotine and control groups, the dopamine response to nicotine (0.105) was the same as that observed to the lower dose of nicotine in gestational controls. Thus, in adolescent male and female Lewis rats, gestational nicotine exposure attenuated nucleus accumbens dopamine release to a maximally stimulative dose of nicotine. Unexpectedly, in female gestational controls cross-fostering per se reduced nucleus accumbens dopamine secretion to 0.07 mg/kg nicotine (p < 0.05). These investigations suggest that gestational nicotine exposure could modify the acute reinforcing effects of nicotine in adolescent rats, whereas early postnatal stressors, (e.g., cross-fostering) may affect nicotine-induced reinforcement in female but not male adolescents.  相似文献   

12.
Acute blockade of dopamine D(2) receptors by the typical antipsychotic drug haloperidol leads to alterations in neuronal gene expression and behavior. In the dorsolateral striatum, the levels of mRNA for the immediate-early gene c-fos and the neuropeptide gene neurotensin/neuromedin N (NT/N) are significantly increased by haloperidol. An acute behavioral response to haloperidol is catalepsy, considered to be a rodent correlate of some of the immediate extrapyramidal motor side effects seen in humans. Several lines of evidence suggest a link between neurotensin induction in the dorsolateral striatum and catalepsy. We hypothesize that both striatal gene induction and catalepsy elicited by haloperidol arise from the combined effect of excitatory adenosinergic and glutamatergic inputs acting at adenosine A(2A) and N-methyl-D-aspartate (NMDA) receptors, respectively. In agreement with our previous reports, adenosine antagonists reduced haloperidol-induced c-fos and neurotensin gene expression as well as catalepsy. In agreement with other reports, the noncompetitive NMDA receptor antagonist MK-801 also reduced gene expression and catalepsy in response to haloperidol. The competitive NMDA receptor antagonist LY235959 decreased haloperidol-induced catalepsy. We show here that blocking both A(2A) and NMDA receptors simultaneously in conjunction with haloperidol resulted in a combined effect on gene expression and behavior that was greater than that for block of either receptor alone. Both c-fos and NT/N mRNA levels were reduced, and catalepsy was completely abolished. These results indicate that the haloperidol-induced increases in c-fos and NT gene expression in the dorsolateral striatum and catalepsy are driven largely by adenosine and glutamatergic inputs acting at A(2A) and NMDA receptors.  相似文献   

13.
Bradshaw H  Miller J  Ling Q  Malsnee K  Ruda MA 《Pain》2000,85(1-2):93-99
The neuromodulatory interactions of sex steroids with the opioid system may result in sex differences in pain and analgesia. Dynorphin is an endogenous kappa-opioid peptide that is upregulated in an animal model of peripheral inflammation and hyperalgesia and is possibly regulated by circulating levels of sex steroids. The present study compared behavioral responses of male, cycling female, and gonadectomized Sprague-Dawley rats in a model of persistent pain. Cycling female rats were behaviorally tested over a 14-day period, and their estrous cycles were monitored by daily vaginal smears. Thermal hyperalgesia was measured by paw withdrawal latencies taken prior to and 24-72 h after rats received a unilateral hindpaw injection of complete Freund's adjuvant (CFA). Prior to CFA administration, there was no significant difference in paw withdrawal latencies between male rats, cycling female rats, and ovariectomized female rats. Following CFA administration, female rats in proestrus exhibited significantly increased hyperalgesia compared with male rats, ovariectomized female rats, and female rats in other estrous stages (P相似文献   

14.
The purpose of this investigation was to determine if striatal or nucleus accumbens dopamine (DA) release, ACh release or DA receptor function were altered by acute and chronic haloperidol or clozapine treatment in a manner consistent with the reported pharmacological effects of each drug on A9 and A10 DA cell bodies and projection areas, when experiments were performed without a drug-free, or washout, period after drug treatment. The release of neurotransmitters reported here was evaluated using a slice-superfusion assay system. Transmitter release was induced either by an electrical field (for DA and ACh) or by application of either amphetamine or amfonelic acid (DA only). Dopaminergic receptor function was assessed by inhibiting electrically stimulated ACh release with in vitro TL-99 (a dopaminergic agonist) and by reversing that inhibition with in vitro neuroleptics or with ex vivo experimental paradigms (the in vitro analysis of transmitter release subsequent to in vivo drug administration). These data suggest that although there are differences between haloperidol and clozapine, there is no difference between the degree of postsynaptic DA receptor blockade produced that can be attributed to the duration of neuroleptic treatment. Chronic clozapine (20 mg/kg x 21 days) reversed TL-99-induced inhibition of ACh release in the nucleus accumbens only, whereas chronic haloperidol (0.5 mg/kg x 21 days) produced a similar reversal in both brain areas. One possible explanation for the lack of effect of chronic clozapine treatment in the striatum is that carrier-mediated (amphetamine-stimulated) DA release is enhanced in the striatum but not in the nucleus accumbens, suggesting that the potential DA receptor block in the striatum may be compromised by enhanced striatal DA levels. Acute haloperidol (0.5 mg/kg) was found to increase electrically stimulated ACh release in the striatum and DA release in the nucleus accumbens. Tolerance developed in the striatum, but not the nucleus accumbens, with repeated administration. However, acute clozapine had no effect on ACh release in either area, but it was found to enhance DA release in the striatum, an effect to which tolerance developed with chronic administration. Further, comparison of these data with data obtained using haloperidol and clozapine in vitro suggests that it is unlikely that these effects are due to residual drug still present in these tissues at the time of experimentation. These data are discussed with regard to electrophysiological and pharmacological differences observed between clozapine and haloperidol on the activity of A9 and A10 DA cells after chronic neuroleptic treatment.  相似文献   

15.
Previous studies have shown that female rats exhibit enhanced cocaine seeking during multiple phases of cocaine addiction compared with males. The orexin/hypocretin system recently has been implicated in drug addiction in male rats. Based on the known sex differences in cocaine addiction, in the current study we examined orexin-mediated cocaine seeking during self-administration, extinction, and reinstatement in age-matched male (initial weight 250-300 g) and female (initial weight 175-225 g) Sprague-Dawley rats by using the orexin-1 receptor (OX1R) antagonist 1-(2-methylbenzoxazol-6-yl)-3-[1,5]naphthyridin-4-yl urea (SB-334867) (10-30 mg/kg). OX1R blockade had no effect on established cocaine self-administration, but attenuated cocaine seeking during extinction in both male and female rats. It is noteworthy that OX1R blockade potently attenuated cue-induced reinstatement in males but had no effect on females. SB-334867 also reduced cocaine seeking during pharmacological stress-induced (yohimbine, 2.5 mg/kg) and yohimbine + cue-induced reinstatement in both sexes. SB-334867 failed to affect reinstatement induced by cocaine (10 mg/kg) in either male or female rats, but selectively reduced cocaine + cue-induced reinstatement only in males. In separate experiments examining basal and cocaine-induced locomotion, SB-334867 attenuated locomotion in both male and female rats. Finally, assessment of plasma and brain levels of SB-334867 showed that estrus females had slightly higher plasma levels than diestrus females, but no overall sex differences or estrous cycle differences were observed in plasma or brain SB-334867 concentrations. These results show that OX1R signaling plays a role in mediating cocaine seeking, but differs between the sexes for cue-induced reinstatement.  相似文献   

16.
The ability of subanesthetic doses of N-methyl-D-aspartate (NMDA) antagonists to induce positive, negative, and cognitive schizophrenia-like symptoms suggests that reduced NMDA receptor function may contribute to the pathophysiology of schizophrenia. An increasing body of evidence indicates that antipsychotic drugs, especially those with "atypical" properties, can antagonize the effects of NMDA antagonists in a variety of experimental paradigms. We demonstrated previously that clozapine, the prototype of atypical antipsychotics, but not haloperidol, the typical antipsychotic, blocked ketamine-induced alterations in brain metabolism. In this study, effects of clozapine were compared with two of the newer atypical antipsychotic drugs, risperidone and olanzapine, on ketamine-induced alterations in regional [(14)C]2-deoxyglucose (2-DG) uptake. A subanesthetic dose of ketamine (25 mg/kg) induced robust increases in 2-DG uptake in limbic cortical regions, hippocampal formation, nucleus accumbens, and basolateral amygdala. Pretreatment of rats with risperidone (0.3 mg/kg) before ketamine administration did not alter the effects of ketamine. These data suggest that novel pharmacological properties may contribute to the effects of clozapine in this model, in addition to the well characterized actions at D(2) and 5HT(2A) receptors. In contrast to the results with risperidone, olanzapine blocked ketamine-induced increases in 2-DG uptake. However, a higher dose of olanzapine (10 mg/kg) was required to completely block the effects of ketamine than would be expected if D(2) and 5HT(2) receptor blocking properties of the drug were solely responsible for its action. The results suggest that the ketamine challenge 2-DG paradigm may be a useful model to identify antipsychotic drugs with atypical characteristics and to explore mechanisms of atypical antipsychotic action.  相似文献   

17.
The differential effects of haloperidol (HAL) and clozapine (CLOZ) on dopamine (DA) release and metabolism (dihydroxyphenylacetic acid levels) in striatum and nucleus accumbens (accumbens) of freely moving rats were investigated using microdialysis. Chronic HAL (2 mg/kg/day x 21 days in drinking water) decreased basal DA release and metabolism in both regions, and produced tolerance to HAL-induced increase in DA metabolism in striatum. No modification of HAL-induced increases in DA release and metabolism were observed in accumbens. Together with D2 receptor blockade, this may produce decreased dopaminergic neurotransmission in both regions during chronic treatment. Chronic HAL (0.5 mg/kg/day x 21 days in drinking water) also decreased basal DA release and metabolism in both regions which were not reversed by 25 micrograms/kg of (-)-apomorphine, s.c. In marked contrast, chronic CLOZ (20 mg/kg/day x 21 days in drinking water) had no effect on basal DA release and metabolism in either region, whereas it produced tolerance to CLOZ-induced increase in DA release and metabolism in accumbens. Together with weak D2 receptor blockade, this may lead to slightly decreased dopaminergic neurotransmission in accumbens and slightly increased dopaminergic neurotransmission in striatum during chronic CLOZ treatment. These differences may contribute to the clinical differences between the two agents.  相似文献   

18.
Quinelorane (LY163502) has the endocrine, neurochemical and behavioral profile of a potent and highly selective D2-dopaminergic agonist. The administration of quinelorane produced dose-related decreases in serum prolactin concentration of reserpinized, male rats and increases in serum corticosterone concentration of male rats. The minimum effective doses (MED) for these effects were 10 and 30 micrograms/kg i.p., respectively. Quinelorane induced increases in 3-methoxy-4-hydroxyphenylglycol-sulfate levels in the brain stem (MED, 30 micrograms/kg i.p.) and decreases in hypothalamic epinephrine levels (MED, 100 micrograms/kg i.p.) in male rats as determined by high-pressure liquid chromatography with electrochemical detection methods. Quinelorane induced increases in extracellular ascorbic acid as determined by in vivo voltammetry in the nucleus accumbens and striatum of male rats. Quinelorane produced concentration-dependent suppression of K+-evoked release of acetylcholine from superfused caudate slices, with an IC50 of approximately 10(-8)M. Quinelorane administration produced dose-related increases in compulsive, contralateral turning in male rats with unilateral nigrostriatal lesions and increases in locomotor activity and stereotypic behavior in male rats. In dogs, quinelorane administration produced dose-related increases in emetic response with an ED50 of 7 micrograms/kg i.v. Quinelorane administration also produced dose-related decreases in the striatal concentrations of the dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic (MED, 1 microgram/kg i.p. for both metabolites) as determined by high-pressure liquid chromatography with electrochemical detection methods and decreases in extracellular concentrations of homovanillic acid in the nucleus accumbens and striatum as determined by in vivo voltammetry., Quinelorane produced concentration-dependent decreases in K+-evoked dopamine release from superfused striatal slices (IC50 = 3 X 10(-9) M).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effects of reserpine on dopamine (DA) and neurotensin (NT) levels were studied in four different brain regions of the rat. Reserpine (0.5-5.0 mg/kg i.p., 6, 18, 48 and 72 hr) produced a dose- and time-dependent decrease in both DA and NT levels in the prefrontal cortex, a brain region innervated by a mixed DA/NT projection. The effect of reserpine was not mimicked by alpha-methylparatyrosine (200 mg/kg i.p.) pretreatment. Furthermore, the reserpine-induced decline in prefrontal cortex DA and NT levels occurred after gamma-butyrolactone (GBL)-induced inhibition of impulse flow (750 mg/kg i.p.). In contrast, in the nucleus accumbens and striatum, regions which contain colocalized (nucleus accumbens) and intrinsic (striatum and nucleus accumbens) neurotensin perikarya, reserpine produced declines in DA and increases in NT levels. alpha-Methylparatyrosine decreased striatal and nucleus accumbens DA levels without altering NT levels in these structures. GBL produced an increase in DA levels in the nucleus accumbens and striatum while decreasing nucleus accumbens and striatal NT levels. Reserpine attenuated the decline in nucleus accumbens and striatal NT levels produced by GBL. In the periaqueductal grey, a brain region densely innervated by NT which has a small population of DA perikarya, reserpine had no effect on NT levels. Because there is no known colocalization of DA and NT in the striatum, the increases in striatal NT levels after depletion of DA may indicate that striatal DA afferents control the release and/or synthesis of NT within NT cells in the striatum, thus leading to alterations in striatal tissue levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The potential antipsychotic drug, MJ-13859, was tested for its acute and subchronic effects on rat brain dopaminergic neurotransmission and function. This drug exhibited an IC50 for displacement of [3H]spiperone binding of 6.35 nM which was similar to trifluoperazine, a potent classical antipsychotic drug. In female rats, MJ-13859 was slightly less potent than trifluoperazine for induction of catalepsy, inhibition of stimulant-induced hyperactivity and for increasing striatal, frontal cortical and olfactory tubercule dopamine metabolism. Both drugs also blocked dopamine autoreceptors on striatal dopamine nerve endings. When administered i.p., rather than s.c., the effect of MJ-13859 on dopamine metabolism was reduced significantly. When administered to male rats, the response of dopamine metabolism to drug was reduced, but a similar inhibition of stimulated activity occurred as in female rats. These results suggest a rapid first pass metabolism of MJ-13859 in the rat and that the antistimulant effect may be partly independent of the antidopaminergic effects. Osmotic minipumps were implanted s.c. for 2 week continuous infusion of MJ-13859 at doses of 1.0 or 3.0 mg/kg/day. Unlike classical antipsychotic drugs, MJ-13859 did not cause a subsensitivity to the ability of acute haloperidol challenge (0.1 mg/kg s.c.) to increase dopamine metabolism. After allowing a 4-day drug washout period before [3H]spiperone binding assay for D2 receptors, neither the maximum binding nor Kd were altered in rats treated for 2 weeks with 3.0 mg/kg/day of MJ-13859. Haloperidol at 1.0 mg/kg/day for 2 weeks caused a 57% increase in D2 receptor maximum binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号