共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms underlying axonal pathfinding have been investigated for decades, and numerous molecules have been shown to play roles in this process, including members of the cadherin family of cell adhesion molecules. We showed in the companion paper that a member of the cadherin family (zebrafish R-cadherin) is expressed in retinal ganglion cells, and in presumptive visual structures in zebrafish brain, during periods when the axons were actively extending toward their targets. The present study extends the earlier work by using 1,1'-dioctadecyl-3,3,3',3', tetramethylindocarbocyanine perchlorate (DiI) anterograde tracing techniques to label retinal ganglion cell axons combined with R-cadherin in situ hybridization to explicitly examine the association ofretinal axons and brain regions expressing R-cadherin message. We found that in zebrafish embryos at 46-54 hours postfertilization, DiI-labeled retinal axons were closely associated with cells expressing R-cadherin message in the hypothalamus, the pretectum, and the anterolateral optic tectum. These results demonstrate that R-cadherin is appropriately distributed to play a role in regulating development of the zebrafish visual system, and in particular, pathfinding and synaptogenesis of retinal ganglion cell axons. 相似文献
2.
Q Liu K L Sanborn N Cobb P A Raymond J A Marrs 《The Journal of comparative neurology》1999,410(2):303-319
Cell adhesion molecules in the cadherin family have been implicated in histogenesis and maintenance of cellular structure and function in several organs. Zebrafish have emerged as an important new developmental model, but only three zebrafish cadherin molecules have been identified to date (N-cadherin, paraxial protocadherin, and VN-cadherin). We began a systematic study to identify other zebrafish cadherins by screening zebrafish cDNA libraries using an antibody raised to the cytoplasmic domain of mouse E-cadherin. Here, we report a partial cDNA with extensive sequence homology to R-cadherin. Spatial and temporal expression of this putative zebrafish R-cadherin was examined in embryos and adults by Northern analysis, RNase protection, and in situ hybridization. R-cadherin message increased during embryogenesis up to 80 hours postfertilization (hpf) and persisted in adults. In the embryonic brain, R-cadherin was first expressed in groups of cells in the diencephalon and pretectum. In adult zebrafish brain, R-cadherin continued to be expressed in several specific regions including primary visual targets. In the retina, R-cadherin was first detected at about 33 hours postfertilization in the retinal ganglion cell layer and the inner part of the inner nuclear layer. Expression levels were highest during periods of axon outgrowth and synaptogenesis. Retrograde labeling of the optic nerve with 1,1'-dioctadecyl-3,3,3',3', tetramethylindocarbocyanine perchlorate (DiI) followed by in situ hybridization confirmed that a subset of retinal ganglion cells in the embryo expressed R-cadherin message. In the adult, R-cadherin expression continued in a subpopulation of retinal ganglion cells. These results suggest that R-cadherin-mediated adhesion plays a role in development and maintenance of neuronal connections in zebrafish visual system. 相似文献
3.
Treloar HB Gabeau D Yoshihara Y Mori K Greer CA 《The Journal of comparative neurology》2003,458(4):389-403
The projection of olfactory sensory neuron (OSN) axons from the olfactory epithelium (OE) to the olfactory bulb (OB) is highly organized but topographically complex. Evidence suggests that odorant receptor expression zones in the OE map to the OB about orthogonal axes. One candidate molecule for the formation of zone-specific targeting of OSN axon synapses onto the OB is the olfactory cell adhesion molecule (OCAM). OCAM(+) OSNs are restricted to three of the four zones in the OE and project their axons to the ventral OB where they form synapses with mitral/tufted (M/T) cells. To determine when this zonal connection is established, we have examined OCAM expression in rat olfactory system, during seminal periods of glomerular formation. OCAM(+) axons sort out in the ventral olfactory nerve layer of the OB before glomerular formation. Surprisingly, OCAM was also expressed transiently by subsets of M/T cell dendrites located in the dorsal OB. The expression of OCAM by OSN axons and M/T dendrites was asymmetrical; in the dorsal OB, OCAM(-) OSN axons synapsed on OCAM(+) M/T dendrites, whereas in the ventral OB, OCAM(+) OSN axons synapsed on OCAM(-) M/T dendrites. The restricted spatial map of OCAM(+) M/T cells appeared earlier in development than the zonal segregation of OCAM(+) OSN axons. Thus, OCAM on M/T cell dendrites may act in a spatiotemporal window to specify regions of the developing rat OB, thereby establishing a foundation for mapping of the OE zonal organization onto the OB. 相似文献
4.
Liu Q Londraville RL Azodi E Babb SG Chiappini-Williamson C Marrs JA Raymond PA 《Experimental neurology》2002,177(2):396-406
Cadherins are homophilic cell adhesion molecules that control development of a variety of tissues and maintenance of adult structures. In this study, we examined expression of zebrafish cadherin-2 (Cdh2, N-cadherin) and cadherin-4 (Cdh4, R-cadherin) in the visual system of adult zebrafish after eye or optic nerve lesions using immunocytochemistry and immunoblotting. Both Cdh2 and Cdh4 immunoreactivities were specifically up-regulated in regenerating retina and/or the optic pathway. Furthermore, temporal expression patterns of these two cadherins were distinct during the regeneration of the injured tissues. Cadherins have been shown to regulate axonal outgrowth in the developing nervous system, but this is the first report, to our knowledge, of increased cadherin expression associated with axonal regeneration in the vertebrate central nervous system. Our results suggest that both Cdh2 and Cdh4 may be important for regeneration of injured retinal ganglion cell axons. 相似文献
5.
6.
Inaki K Nishimura S Nakashiba T Itohara S Yoshihara Y 《The Journal of comparative neurology》2004,479(3):243-256
The projection neurons in the olfactory bulb (mitral and tufted cells) send axons through the lateral olfactory tract (LOT) onto several structures of the olfactory cortex. However, little is known of the molecular and cellular mechanisms underlying establishment of functional connectivity from the bulb to the cortex. Here, we investigated the developmental process of LOT formation by observing expression patterns of cell recognition molecules in embryonic mice. We immunohistochemically identified a dozen molecules expressed in the developing LOT and some of them were localized to subsets of mitral cell axons. Combinatorial immunostaining for these molecules revealed that the developing LOT consists of three laminas: superficial, middle, and deep. Detailed immunohistochemical, in situ hybridization, and 5-bromodeoxyuridine labeling analyses suggested that the laminar organization reflects: 1) the segregated pathways from the accessory and main olfactory bulbs, and 2) the different maturity of mitral cell axons. Mitral cell axons of the accessory olfactory bulb were localized to the deep lamina, segregated from those of the main olfactory bulb. In the main olfactory pathway, axons of mature mitral cells, whose somata is located in the apical sublayer of the mitral cell layer, were localized to the middle lamina within LOT, while those of immature mitral cells that located in the basal sublayer were complementarily localized to the superficial lamina. These results suggest that newly generated immature axons are added to the most superficial lamina of LOT successively, leading to the formation of piled laminas with different maturational stages of the mitral cell axons. 相似文献
7.
Although odor receptors have been implicated in establishing the topography of olfactory sensory neurons (OSNs) in the olfactory bulb (OB), it is likely other molecules are also involved. The cadherins (CDHs) are a large family of cell adhesion molecules that mediate cell:cell interactions elsewhere in the central nervous system. However, their distribution and role in the olfactory system have remained largely unexplored. We previously demonstrated that intracellular binding partners of cadherins, the catenins, have unique spatiotemporal patterns of expression in the developing olfactory system. To further our understanding of cadherin function within the developing olfactory system, we now report on the localization of 11 classical cadherins-CDH1, 2, 3, 4, 5, 6, 8, 10, 11, 13, and 15. We demonstrate the expression of all but CDH5 and CDH15 in neuronal and/or glial cells in primary olfactory structures. CDH1 and CDH2 are expressed by OSNs; CDH2 expression closely parallels that seen for gamma-catenin in OSN axons. CDH3 and CDH11 are expressed by olfactory ensheathing glia, which surround OSN axons in the outer OB. CDH2, CDH4, and CDH6 are expressed within neuropil. CDH2, CDH4, CDH6, CDH8, CDH10, CDH11, and CDH13 are expressed by projection neurons within the main and accessory OBs. We conclude that cadherin proteins in the developing olfactory system are positioned to underlie the formation of the odorant map and local circuits within the OB. 相似文献
8.
The axons of the primary sensory olfactory neurons project from the olfactory neuroepithelium lining the nasal cavity, onto glomeruli covering the surface of the olfactory bulb. Neuroanatomical studies have shown previously that individual olfactory glomeruli are innervated by neurons that are dispersed widely within the nasal cavity. The aim of the present study was to test the hypothesis that phenotypically unique subsets of primary sensory olfactory neurons, scattered throughout the nasal cavity, project to a subset of glomeruli in specific olfactory bulb loci. Immunochemical and histochemical analyses in neonatal mice revealed that the plant lectin, Dolichos biflorus agglutinin, bound to a subset of mature primary sensory olfactory neurons which express the olfactory marker protein. This subset of neurons was principally located in the rostromedial and dorsal portions of the nasal cavity and projected specifically to a subset of glomeruli in the rostromedial and caudodorsal portions of the olfactory bulb. Analysis of Dolichos biflorus-reactive axons revealed that these axons coursed randomly, with no evidence of their selective fasciculation, within the olfactory nerve. It was only at the level of the rostral olfactory bulb that a significant reorganisation of their trajectory was observed. Within the outer fibre layer of the bulb, discrete bundles of lectin-reactive axons began to coalesce selectively into fascicles which preferentially oriented toward the medial side of the olfactory bulb. These data demonstrated that a phenotypically distinct subset of primary sensory olfactory neurons exhibits a topographical projection from the olfactory epithelium to the olfactory bulb, and suggests that these, and other subsets, may form the basis of the mosaic nature of this pathway. Moreover, it appears that the outer nerve fibre layer in the rostral olfactory bulb plays an important instructive role in the guidance and fasciculation of olfactory sensory axons. © 1993 Wiley-Liss, Inc. 相似文献
9.
Developing olfactory sensory neurons are guided to the glomeruli of the olfactory bulb by an increasingly stringent process that is influenced by expression of odorant receptors, cell adhesion molecules (CAMs), and other kinds of signaling cascades. A fundamental feature of the projection is the connecting of broad zones in the epithelium to broad zones in the bulb, also termed rhinotopy. One molecule that parallels and may aid neurons in establishing rhinotopy is the mammalian homologue of fasciclin II (OCAM/mamFas II; also known as RNCAM and NCAM-2), an immunoglobulin superfamily CAM that is differentially expressed in the developing and mature olfactory epithelium (OE): Axons elaborated by ventral and lateral epithelium express the protein at high levels, whereas dorsomedial axons express little or no OCAM/mamFas II. Our investigation has demonstrated that OCAM/mamFas II is detectable early in the development of the rat OE. mRNA is evident on RT-PCR and in situ hybridization by E12.5, and protein is apparent by immunohistochemistry by E13.5. By using a tissue culture system that separates ventral septal epithelium (OCAM/mamFas II-positive) from dorsal (OCAM/mamFas II-negative), we find that explants maintain protein expression levels in vitro that are characteristic of the phenotype at the original location in vivo. At least some neurons are born in culture, suggesting that any cues that direct differential expression are also maintained in vitro. Finally, high OCAM/mamFas II expression correlates with increased growth and fasciculation of olfactory axons in vitro. These data and the similarity between OCAM/mamFas II, on the one hand, and fasciclin II and NCAM, on the other, suggest that OCAM/mamFas II might play a role in growth and fasciculation of primary olfactory axons during development of the projection. 相似文献
10.
A unique feature of the olfactory epithelium is its ability to give rise to new sensory neurons throughout life and also following injury. Cells at the basal side of the epithelium serve as neurogenic progenitor cells. The enzyme ecto-5′-nucleotidase is expressed at the surface of developing nerve cells and is regarded as a marker of neural development. To study the expression pattern of the enzyme, we analyzed its distribution in the adult and developing rat olfactory organ. Labeling is restricted to specific cell types and varies between the epithelia investigated. At the basal side of the olfactory epithelium, activity of 5′-nucleotidase is associated specifically with the dark/horizontal basal cells. Neither the light/globose basal cells, which are the immediate precursors of the sensory receptor cells, nor subsets of potentially immature olfactory receptor cells are labeled. On the other hand, microvillar cells dispersed at the lumenal side of the epithelium contain 5′-nucleotidase activity. The enzyme is also present at the inner lining of the ducts of Bowman's glands as they traverse the epithelium. Within the respiratory epithelium, activity of 5′-nucleotidase is associated with basal cells as well as with the epithelial surface. During development, 5′-nucleotidase is initially limited to the respiratory epithelium, including its basal cells. Dark/horizontal basal cells of the olfactory epithelium, which are positive for 5′-nucleotidase, first appear at the border of the respiratory epithelium, suggesting that they might originate from immigrating basal cells of the respiratory epithelium. Within the vomeronasal organ, labeling is largely restricted to the receptor-free epithelium. Although the functional role of 5′-nucleotidase in the olfactory system needs to be further defined, the distribution of the enzyme can be used successfully as a marker for defined cell types. J. Comp. Neurol. 393:528–537, 1998. © 1998 Wiley-Liss, Inc. 相似文献
11.
F Miragall T K Hwang O Traub E L Hertzberg R Dermietzel 《The Journal of comparative neurology》1992,325(3):359-378
To gain insight into the function of gap junctions' connexin43, connexin32 and connexin26 in a neural structure that retains neuronal turnover capacities throughout adulthood, the expression of these molecules has been investigated in the developing and adult olfactory system by immunocytochemical and biochemical methods. Connexin43 was detectable from the olfactory placode stage. During early embryonic development, the levels of connexin43 expression remained low. An increase in the expression of this connexin occurred perinatally. Expression of connexin43 became very high during the postnatal stages and adulthood. Electron microscopy (EM) immunocytochemistry of the olfactory system showed connexin43 expression in non-neuronal cells. Strong regional differences in the expression of connexin43 in the olfactory epithelium were observed. No apparent relationship between connexin43 expression and turnover activity of olfactory neurons was detected. Western blots of olfactory tissues revealed the presence of three different isoforms of connexin43. Connexin32 was detected in the olfactory bulb at late postnatal stages including adulthood. Connexin32 was observed on some cells tentatively identified as oligodendrocytes. Connexin26 was localized onto leptomeninges. Some immunofluorescence was also obtained in the periglomerular region and in the subependymal layer of the bulb. Northern blot analysis revealed the presence of mRNA of connexin32 and connexin26 in the adult olfactory system. Our results substantiate the cell specific expression of these three types of connexins and they document the primary of connexin43 in olfactory tissues. Moreover, our findings indicate that although expression of connexin43 in the olfactory system is developmentally regulated, it is not directly associated with the neuronal cell turnover of the olfactory epithelium. 相似文献
12.
We report a study on the characterization of voltage-activated calcium currents (I(Ca)) in retinal ganglion cells (RGCs) and the topographic distribution of RGCs that express different types of I(Ca) in zebrafish retinas. In acutely isolated zebrafish RGCs, both high-voltage-activated (HVA; peak activation potential +7.4 +/- 1.1 mV) and low-voltage-activated (LVA; peak activation potential -33.0 +/- 1.2 mV) I(Ca) were recorded. HVA I(Ca) were recorded in all of the tested RGCs, whereas LVA I(Ca) were recorded in approximately one-third of the tested cells. In RGCs that expressed both HVA and LVA I(Ca), the two currents were readily separated by depolarizing the cell membrane to different voltages from different holding potentials. Among RGCs that expressed LVA I(Ca), some cells expressed large LVA I(Ca) (up to 130 pA), whereas others expressed small LVA I(Ca) (approximately 20 pA). RGCs that expressed large and small LVA I(Ca) were designated as class I and class II cells, respectively, and RGCs that expressed only HVA I(Ca) were designated as class III cells. The topographic distribution of cell classes was similar in various areas of the retina. In the nasal-ventral retina, for example, class III cells outnumbered class I and class II cells by 10.8- and 2.6-fold, respectively. In the temporal and dorsal retinas, the density of class III cells slightly decreased, whereas the density of class I and class II cells increased. The differential expression of I(Ca) in RGCs may correlate with the development and function of the retina. 相似文献
13.
Bovetti S De Marchis S Gambarotta G Fasolo A Perroteau I Puche AC Bovolin P 《Brain research》2006,1077(1):37-47
Neuregulins (NRGs), and their cognate receptors (ErbBs), play essential roles in numerous aspects of neural development and adult synaptic plasticity. The goal of this study was to investigate the developmental expression profiles of these molecules during the olfactory bulb (OB) maturation. The OB is a highly organized structure with cell types and synaptic connections segregated into discrete anatomical layers. We employed a novel approach by combining single-layer microdissection at different development ages, with isoform-specific semi-quantitative RT-PCR and Western blotting to monitor layer-specific developmental profiles of these molecules and alternate splice variants. Layer and age specific regulation was observed for the ErbB4 splice variants JMa/JMb and NRG-1-beta1/beta2 forms. With the exception of the outermost (nerve) layer, ErbB4-JMb and NRG-1-beta1 are expressed throughout the OB and their expressions decrease in the adult age in most layers. In contrast both ErbB4-JMa and NRG-1-beta2 are highly expressed in the granule cell layer in the early postnatal OB. This early postnatal expression correlates with the dramatic change from radial glia to astrocytes and appearance of the bulk of granule cells occurring at this developmental stage. 相似文献
14.
15.
During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies indicating that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs, with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. 相似文献
16.
Shunmoogum Aroonassala Patten Rena K. Sihra Kamaldeep S. Dhami Christopher A. Coutts Declan W. Ali 《International journal of developmental neuroscience》2007,25(3):155-164
Protein kinase C isozymes are a biologically diverse group of enzymes known to be involved in a wide variety of cellular processes. They fall into three families (conventional, novel and atypical) depending upon their mode of activation. Several classes of zebrafish neurons have been shown to express PKCalpha during development, but the expression of other isoforms remains unknown. In this study we performed immunohistochemistry to determine if zebrafish express various isoforms of PKC. We used antibodies to test for the presence of enzymes that are thought to be preferentially expressed in the nervous system (PKCgamma, betaII, delta, epsilon, theta and zeta). Here, we show that PKCgamma, epsilon, theta and zeta are expressed in the zebrafish CNS. Anti-PKCgamma labels Rohon-Beard sensory neurons and Mauthner cells. PKCepsilon and zeta staining is widespread in the CNS, and PKCtheta and betaII are expressed in skeletal muscle, especially at intersegmental boundaries. Immunoblot experiments confirm the specificity of the antibodies in zebrafish and indicate that the fish isoforms of PKCgamma, betaII, epsilon and zeta are similar to the mammalian isoforms. Interestingly, PKCtheta appears to be similar to PKCthetaII, which, to date, has been found exclusively in mouse testis, but not in the mammalian CNS. Overall, our findings indicate that several different PKC isoforms are expressed in zebrafish, and that Rohon-Beard, Mauthner cells and muscle fibers preferentially express some isoforms over others. 相似文献
17.
Transmembrane signaling events at the dendrites and axons of olfactory receptor neurons mediate distinct functions. Whereas odorant recognition and chemosensory transduction occur at the dendritic membranes of olfactory neurons, signal propagation, axon sorting and target innervation are functions of their axons. The roles of G proteins in transmembrane signaling at the dendrites have been studied extensively, but axonal G proteins have not been investigated in detail. We used immunohistochemistry to visualize expression of alpha subunits of G(o) and G(i2) in the mouse olfactory system. G(o) is expressed ubiquitously on axons of olfactory receptor neurons throughout the olfactory neuroepithelium and in virtually all glomeruli in the main olfactory bulb. In contrast, expression of G(i2) is restricted to a sub-population of olfactory neurons, along the dorsal septum and the dorsal recess of the nasal cavity, which projects primarily to medial regions of the olfactory bulb, with the exception of glomeruli adjacent to the pathway of the vomeronasal nerve. In contrast to the overlapping expression patterns of G(o) and G(i2) in the main olfactory system, neurons expressing G(o) and those expressing G(i2) in the accessory olfactory bulb are more clearly separated, in agreement with previous studies. Vomeronasal axons terminating in glomeruli in the rostral region of the accessory olfactory bulb express G(i2), whereas those projecting to the caudal region express G(o). Characterization of the expression patterns of G(i2) and G(o) in the olfactory projection is essential for future studies aimed at relating transmembrane signaling events to signal propagation, axon sorting and target innervation. 相似文献
18.
Peretto P Cummings D Modena C Behrens M Venkatraman G Fasolo A Margolis FL 《The Journal of comparative neurology》2002,451(3):267-278
The bone morphogenetic proteins (BMPs) play fundamental roles during the organization of the central nervous system. The presence of these proteins has also been demonstrated in regions of the adult brain that are characterized by neural plasticity. In this study, we examined the expression of BMP4, 6, and 7 mRNAs and proteins in the murine olfactory system. The olfactory system is a useful model for studying cell proliferation and neural differentiation because both of these processes persist throughout life in the olfactory epithelium (OE) and olfactory bulb (OB). Our results demonstrate a differential expression of BMP4, 6, and 7 in the embryonic, postnatal, and adult olfactory system. In particular, BMP4 and BMP7 showed similar immunostaining patterns, being expressed in the olfactory region from the earliest stages studied (embryonic day 15.5) to adulthood. During development BMPs were expressed in the OE, olfactory bulb nerve layer, glomerular layer (GL), mitral cell layer (MCL), and subventricular zone. During the first postnatal week of life, BMP4 and 7 immunoreactivity (-ir) was particularly evident in the GL, MCL, and in the subependymal layer (SEL), which originates postnatally from the subventricular zone. In adults, BMP4 and 7 immunostaining was present in the GL and SEL. Within the SEL, BMP4 and 7 proteins were expressed primarily in association with the astrocytic glial compartment. BMP6-ir was always found in mature olfactory receptor neurons and their axonal projections to the OB. In summary, these data support the hypothesis that BMPs play a role in the morphogenesis of the olfactory system during development and in its plasticity during adulthood. 相似文献
19.
Brusés JL 《The Journal of comparative neurology》2011,519(9):1797-1815
N-cadherin is a classical type I cadherin that contributes to the formation of neural circuits by regulating growth cone migration and the formation of synaptic contacts. This study analyzed the role of N-cadherin in primary motor axons growth during development of the zebrafish (Danio rerio) embryo. After exiting the spinal cord, primary motor axons migrate ventrally through a common pathway and form the first neuromuscular junction with the muscle pioneer cells located at the horizontal myoseptum, which serves as a choice point for cell-type-specific pathway selection. Analysis of N-cadherin mutants (cdh2(hi3644Tg) ) and embryos injected with N-cadherin antisense morpholinos showed primary motor axons extending aberrant axonal branches at the choice point in ~40% of the somitic hemisegments and an ~150% increase in the number of branches per axon length within the ventral myotome. Analysis of individual axons trajectories showed that the caudal (CaP) and rostral (RoP) motor neurons axons formed aberrant branches at the choice point that abnormally extended in the rostrocaudal axis and ventrally to the horizontal myoseptum. Expression of a dominant-interfering N-cadherin cytoplasmic domain in primary motor neurons caused some axons to stall abnormally at the horizontal myoseptum and to impair their migration into the ventral myotome. However, in N-cadherin-depleted embryos, the majority of primary motor axons innervated their appropriate myotomal territories, indicating that N-cadherin regulates motor axon growth and branching without severely affecting the mechanisms that control axonal target selection. 相似文献
20.
Differential expression of mRNAs for the NGF family of neurotrophic factors in the adult rat central olfactory system. 总被引:7,自引:0,他引:7
The cellular localization of mRNAs for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT3), in the rat central olfactory system was evaluated with in situ hybridization of 35S-labeled cRNA probes. In the main olfactory bulb, low levels of NGF and BDNF mRNA expression were detected. NGF mRNA was restricted to the glomerular region while BDNF mRNA was predominantly localized to the granule cell layer. No cellular hybridization to NT3 cRNA was seen. The accessory olfactory bulb did not express detectable levels of mRNA for any of the three related neurotrophic factors. Areas which receive olfactory bulb afferents expressed comparatively high levels of both NGF and BDNF mRNA. Cell labeling with cRNAs for NGF and BDNF occurred throughout the cellular layers of the anterior olfactory nucleus and in layers 2 and 3 of rostral piriform cortex. BDNF mRNA expression in these areas appeared more robust than that of NGF mRNA, while NT3 mRNA was not detectable. In contrast, tenia tecta exhibited dense labeling with the cRNAs for all three neurotrophic factors. The localization of NGF mRNA to primary target neurons of the olfactory nerve in the periglomerular region of the main olfactory bulb suggests that bulb cells may influence the ingrowth and continual turnover of olfactory sensory afferents. However, as there is a strong correlation between the distribution of neurotrophic factor mRNAs within rostral olfactory structures and the distribution of centrifugal cholinergic afferents, it is more likely that bulb-derived NGF, and possibly BDNF, act on the cholinergic neurons of the basal forebrain. 相似文献