首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The critical cell signals that trigger cardiac hypertrophy and regulate the transition to heart failure are not known. To determine the role of Gαq-mediated signaling pathways in these events, transgenic mice were constructed that overexpressed wild-type Gαq in the heart using the α-myosin heavy chain promoter. Two-fold overexpression of Gαq showed no detectable effects, whereas 4-fold overexpression resulted in increased heart weight and myocyte size along with marked increases in atrial naturietic factor (≈55-fold), β-myosin heavy chain (≈8-fold), and α-skeletal actin (≈8-fold) expression, and decreased (≈3-fold) β-adrenergic receptor-stimulated adenylyl cyclase activity. All of these signals have been considered markers of hypertrophy or failure in other experimental systems or human heart failure. Echocardiography and in vivo cardiac hemodynamic studies indeed revealed impaired intrinsic contractility manifested as decreased fractional shortening (19 ± 2% vs. 41 ± 3%), dP/dt max, a negative force–frequency response, an altered Starling relationship, and blunted contractile responses to the β-adrenergic agonist dobutamine. At higher levels of Gαq overexpression, frank cardiac decompensation occurred in 3 of 6 animals with development of biventricular failure, pulmonary congestion, and death. The element within the pathway that appeared to be critical for these events was activation of protein kinase C. Interestingly, mitogen-activated protein kinase, which is postulated by some to be important in the hypertrophy program, was not activated. The Gαq overexpressor exhibits a biochemical and physiologic phenotype resembling both the compensated and decompensated phases of human cardiac hypertrophy and suggests a common mechanism for their pathogenesis.  相似文献   

2.
Pathological cardiac hypertrophy caused by diverse etiologies eventually leads to cardiac dilation and functional decompensation. We have recently reported that genetic deletion of Rho-associated coiled-coil containing protein kinase 1 (ROCK1) inhibited several pathological events including cardiomyocyte apoptosis in compensated hypertrophic hearts. The present study investigated whether ROCK1 deficiency can prevent the transition from hypertrophy to heart failure. Transgenic mice with cardiac-restricted overexpression of Gαq develop compensated cardiac hypertrophy at young ages, but progress into lethal cardiomyopathy accompanied by increased apoptosis after pregnancy or at old ages. The studies were first carried out using age- and pregnancy-matched wild-type, Gαq, ROCK1−/−, and Gαq/ROCK1−/− mice. The potent beneficial effect of ROCK1 deletion is demonstrated by abolishment of peripartum mortality, and significant attenuation of left ventricular (LV) dilation, wall thinning, and contractile dysfunction in the peripartum Gαq transgenic mice. Increase in cardiomyocyte apoptosis was suppressed by ROCK1 deletion, associated with increased extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) activation and inhibition of mitochondrial translocation of Bax. In addition, ROCK1 deficiency also improved survival, inhibited cardiomyocyte apoptosis, and preserved LV dimension and function in old Gαq mice at 12 months. Furthermore, transgenic overexpression of ROCK1 increased cardiomyocyte apoptosis and accelerated hypertrophic decompensation in Gαq hearts in the absence of pregnancy stress. The present study provides for the first time in vivo evidence for the long-term beneficial effects of ROCK1 deficiency in hypertrophic decompensation and suggests that ROCK1 may be an attractive therapeutic target to limit heart failure progression.  相似文献   

3.
Pim-1 kinase exerts potent cardioprotective effects in the myocardium downstream of AKT, but the participation of Pim-1 in cardiac hypertrophy requires investigation. Cardiac-specific expression of Pim-1 (Pim-WT) or the dominant-negative mutant of Pim-1 (Pim-DN) in transgenic mice together with adenoviral-mediated overexpression of these Pim-1 constructs was used to delineate the role of Pim-1 in hypertrophy. Transgenic overexpression of Pim-1 protects mice from pressure-overload-induced hypertrophy relative to wild-type controls as evidenced by improved hemodynamic function, decreased apoptosis, increases in antihypertrophic proteins, smaller myocyte size, and inhibition of hypertrophic signaling after challenge. Similarly, Pim-1 overexpression in neonatal rat cardiomyocyte cultures inhibits hypertrophy induced by endothelin-1. On the cellular level, hearts of Pim-WT mice show enhanced incorporation of BrdU into myocytes and a hypercellular phenotype compared to wild-type controls after hypertrophic challenge. In comparison, transgenic overexpression of Pim-DN leads to dilated cardiomyopathy characterized by increased apoptosis, fibrosis, and severely depressed cardiac function. Furthermore, overexpression of Pim-DN leads to reduced contractility as evidenced by reduced Ca2+ transient amplitude and decreased percentage of cell shortening in isolated myocytes. These data support a pivotal role for Pim-1 in modulation of hypertrophy by impacting responses on molecular, cellular, and organ levels.  相似文献   

4.

Background

Activated interleukin (IL)-1β signaling pathway is closely associated with pathological cardiac hypertrophy. This study investigated whether asiatic acid (AA) could inhibit IL-1β-related hypertrophic signaling, and thus suppressing the development of cardiac hypertrophy.

Methods

Transverse aortic constriction (TAC) induced cardiac hypertrophy in C57BL/6 mice and cultured neonatal cardiac myocytes stimulated with IL-1β were used to evaluate the role of AA in cardiac hypertrophy. The expression of atrial natriuretic peptide (ANP) was evaluated by quantitative polymerase chain reaction (qPCR) and the nuclear factor (NF)-κB binding activity was measured by electrophoretic mobility shift assays (EMSA).

Results

AA pretreatment significantly attenuated the IL-1β-induced hypertrophic response of cardiomyocytes as reflected by reduction in the cardiomyocyte surface area and the inhibition of ANP mRNA expression. The protective effect of AA on IL-1β-stimulated cardiomyocytes was associated with the reduction of NF-κB binding activity. In addition, AA prevented TAC-induced cardiac hypertrophy in vivo. It was found that AA markedly reduced the excessive expression of IL-1β and ANP, and inhibited the activation of NF-κB in the hypertrophic myocardium.

Conclusions

Our data suggest that AA may be a novel therapeutic agent for cardiac hypertrophy. The inhibition of IL-1β-activated NF-κB signaling may be the mechanism through which AA prevents cardiac hypertrophy.  相似文献   

5.
The development of cardiac hypertrophy in response to increased hemodynamic load and neurohormonal stress is initially a compensatory response that may eventually lead to ventricular dilation and heart failure. Regulator of G protein signaling 5 (Rgs5) is a negative regulator of G protein-mediated signaling by inactivating Gα(q) and Gα(i), which mediate actions of most known vasoconstrictors. Previous studies have demonstrated that Rgs5 expresses among various cell types within mature heart and showed high levels of Rgs5 mRNA in monkey and human heart tissue by Northern blot analysis. However, the critical role of Rgs5 on cardiac remodeling remains unclear. To specifically determine the role of Rgs5 in pathological cardiac remodeling, we used transgenic mice with cardiac-specific overexpression of human Rgs5 gene and Rgs5−/− mice. Our results demonstrated that the transgenic mice were resistant to cardiac hypertrophy and fibrosis through inhibition of MEK-ERK1/2 signaling, whereas the Rgs5−/− mice displayed the opposite phenotype in response to pressure overload. These studies indicate that Rgs5 protein is a crucial component of the signaling pathway involved in cardiac remodeling and heart failure.  相似文献   

6.
To identify new mediators of cardiac hypertrophy, we performed a genome-wide mRNA screen of stretched neonatal rat cardiomyocytes (NRCMs). In addition to known members of the hypertrophic gene program, we found the novel sarcomeric Z-disc LIM protein Lmcd1/Dyxin markedly upregulated. Consistently, Lmcd1 was also induced in several mouse models of myocardial hypertrophy suggesting a causal role in cardiac hypertrophy. We overexpressed Lmcd1 in NRCM, which led to cardiomyocyte hypertrophy and induction of the hypertrophic gene program. Likewise, the calcineurin-responsive gene RCAN1-4 was found significantly upregulated. Conversely, knockdown of Lmcd1 blunted the response to hypertrophic stimuli such as stretch and phenylephrine (PE), suggesting that Lmcd1 is required for the hypertrophic response. Furthermore, PE-mediated activation of calcineurin was completely blocked by knockdown of Lmcd1. To confirm these results in vivo, we generated transgenic mice with cardiac-restricted overexpression of Lmcd1. Despite normal cardiac function, adult transgenic mice displayed significant cardiac hypertrophy, again accompanied by induction of hypertrophic marker genes such as ANF and α-skeletal actin. Likewise, Rcan1-4 was found upregulated. Moreover, when crossed with transgenic mice overexpressing constitutionally active calcineurin, Lmcd1 transgenic mice revealed an exacerbated cardiomyopathic phenotype with depressed contractile function and further increased cardiomyocyte hypertrophy. We show that the novel z-disc protein Lmcd1/Dyxin is significantly upregulated in several models of cardiac hypertrophy. Lmcd1/Dyxin potently induces cardiomyocyte hypertrophy both in vitro and in vivo, while knockdown of this molecule prevents hypertrophy. Mechanistically, Lmcd1/Dyxin appears to signal through the calcineurin pathway. Lmcd1/Dyxin may thus represent an attractive target for novel antihypertrophic strategies.  相似文献   

7.
Elevation of intracellular free Ca2+ concentrations is a common early cellular action of a variety of agents that induce cardiac myocyte hypertrophy. This observation, plus the large body of evidence that implicates Ca2+-calmodulin (CaM) in cell-cycle control in other cells, prompted us to evaluate the role of the CaM signal-transducing pathway in cardiomyocyte growth regulation. Toward that end, several lines of transgenic mice were generated to express elevated levels of CaM in cardiac myocytes during development. Constitutive overexpression of CaM in the hearts of transgenic mice induced both hyperplastic and hypertrophic growth of cardiac myocytes; some characteristics and potential mechanisms of this growth response are the subjects of the present review.  相似文献   

8.
The α subunit of the stimulatory heterotrimeric G protein (G) is critical for the β-adrenergic receptor activation of the cAMP messenger system. The role of G in regulating cardiac Ca2+ channel activity, however, remains controversial. Cultured neonatal cardiac myocytes from transgenic mice overexpressing cardiac G were used to assess the role of G on the whole-cell Ca2+ currents (ICa). Cardiac myocytes from transgenic mice had a 490% higher peak ICa compared with those of either wild-type controls or G-nonexpressing littermates. The effect of G overexpression was mimicked by intracellular dialysis of wild-type cardiac myocytes with GTPγS-activated G. This effect was not mediated by protein kinase A activation as intracellular perfusion with a protein kinase A inhibitor rendered the same degree of activation in either transgenic or wild-type myocytes also dialyzed with activated G. The data indicate that G overexpression is associated with a constitutive enhancement of ICa which is independent of the cAMP pathway and activation of endogenous adenylyl cyclase.  相似文献   

9.
The development of left ventricular cardiomyocyte hypertrophy in response to increased hemodynamic load and neurohormonal stress is initially a compensatory response. However, persistent stress eventually leads to dilated heart failure, which is a common cause of heart failure in human hypertensive and valvular heart disease. We have recently reported that Rho-associated coiled-coil containing protein kinase 1 (ROCK1) homozygous knockout mice exhibited reduced cardiac fibrosis and cardiomyocyte apoptosis, while displaying a preserved compensatory hypertrophic response to pressure overload. In this study, we have tested the effects of ROCK1 deficiency on cardiac hypertrophy, dilation, and dysfunction. We have shown that ROCK1 deletion attenuated left ventricular dilation and contractile dysfunction, but not hypertrophy, in a transgenic model of Gαq overexpression-induced hypertrophy which represents a well-characterized and highly relevant genetic mouse model of pathological hypertrophy. Although the development of cardiomyocyte hypertrophy was not affected, ROCK1 deletion in Gαq mice resulted in a concentric hypertrophic phenotype associated with reduced induction of hypertrophic markers indicating that ROCK1 deletion could favorably modify hypertrophy without inhibiting it. Furthermore, ROCK1 deletion also improved contractile response to β-adrenergic stimulation in Gαq transgenic mice. Consistent with this observation, ROCK1 deletion prevented down-regulation of type V/VI adenylyl cyclase expression, which is associated with the impaired β-adrenergic signaling in Gαq mice. The present study establishes for the first time a role for ROCK1 in cardiac dilation and contractile dysfunction.  相似文献   

10.
The heart responds to sustained overload by hypertrophic growth in which the myocytes distinctly thicken or elongate on increases in systolic or diastolic stress. Though potentially adaptive, hypertrophy itself may predispose to cardiac dysfunction in pathological settings. The mechanisms underlying the diverse morphology and outcomes of hypertrophy are uncertain. Here we used a focal adhesion kinase (FAK) cardiac-specific transgenic mice model (FAK-Tg) to explore the function of this non-receptor tyrosine kinase on the regulation of myocyte growth. FAK-Tg mice displayed a phenocopy of concentric cardiac hypertrophy, reflecting the relative thickening of the individual myocytes. Moreover, FAK-Tg mice showed structural, functional and molecular features of a compensated hypertrophic growth, and preserved responses to chronic pressure overload. Mechanistically, FAK overexpression resulted in enhanced myocardial FAK activity, which was proven by treatment with a selective FAK inhibitor to be required for the cardiac hypertrophy in this model. Our results indicate that upregulation of FAK does not affect the activity of Src/ERK1/2 pathway, but stimulated signaling by a cascade that encompasses PI3K, AKT, mTOR, S6K and rpS6. Moreover, inhibition of the mTOR complex by rapamycin extinguished the cardiac hypertrophy of the transgenic FAK mice. These findings uncover a unique role for FAK in regulating the signaling mechanisms that governs the selective myocyte growth in width, likely controlling the activity of PI3K/AKT/mTOR pathway, and suggest that FAK activation could be important for the adaptive response to increases in cardiac afterload. This article is part of a Special Issue entitled "Local Signaling in Myocytes".  相似文献   

11.
The Gq-coupled receptor-signaling pathway has been implicated in the cardiac hypertrophic response to stress, but little is actually known about the contributions of Gq signaling in either the heart or the vasculature. Therefore, we developed a line of transgenic mice that express a peptide inhibitor of Gq (GqI) in vascular smooth muscle to determine if vascular Gq signaling was important in the cardiac hypertrophic response. After chronic administration of the Gq agonists phenylephrine, serotonin, and angiotensin II, we observed an attenuation of mean arterial blood pressure and an inhibition of cardiac hypertrophy in the transgenic mice with vascular-specific GqI expression. In contrast, cardiac GqI peptide expression did not attenuate the hypertension or the cardiac hypertrophy. Importantly, all mice were capable of cardiac hypertrophy, because direct beta-adrenergic receptor stimulation induced a similar level of hypertrophy in both lines of transgenic mice. This clearly suggests that after chronic Gq-coupled receptor agonist administration, it is the hypertensive state induced by vascular Gq activation that mediates remodeling of the heart, rather than direct stimulation of cardiac Gq-coupled receptors. Thus, the contribution of vascular Gq-coupled signaling to the development of cardiac hypertrophy is significant and suggests that expression of the GqI peptide is a novel therapeutic strategy to lower Gq-mediated hypertension and cardiac hypertrophy.  相似文献   

12.
The 3-phosphoinositide-dependent kinase-1 (PDK1) plays an important role in the regulation of cellular responses in multiple organs by mediating the phosphoinositide 3-kinase (PI3-K) signaling pathway through activating AGC kinases. Here we defined the role of PDK1 in controlling cardiac homeostasis. Cardiac expression of PDK1 was significantly decreased in murine models of heart failure. Tamoxifen-inducible and heart-specific disruption of Pdk1 in adult mice caused severe and lethal heart failure, which was associated with apoptotic death of cardiomyocytes and β1-adrenergic receptor (AR) down-regulation. Overexpression of Bcl-2 protein prevented cardiomyocyte apoptosis and improved cardiac function. In addition, PDK1-deficient hearts showed enhanced activity of PI3-Kγ, leading to robust β1-AR internalization by forming complex with β-AR kinase 1 (βARK1). Interference of βARK1/PI3-Kγ complex formation by transgenic overexpression of phosphoinositide kinase domain normalized β1-AR trafficking and improved cardiac function. Taken together, these results suggest that PDK1 plays a critical role in cardiac homeostasis in vivo by serving as a dual effector for cell survival and β-adrenergic response.  相似文献   

13.
Previous attempts to delineate the consequences of Galpha (q) activation in cardiomyocytes relied largely on molecular strategies in cultures or transgenic mice. Modest levels of wild-type Galpha(q) overexpression induce stable cardiac hypertrophy, whereas intense Galpha(q) stimulation induces cardiomyocyte apoptosis. The precise mechanism(s) whereby traditional targets of Galpha (q) subunits that induce hypertrophy also trigger cardiomyocyte apoptosis is not obvious and is explored with recombinant Pasteurella multocida toxin (rPMT, a Galpha(q) agonist). Cells cultured with rPMT display cardiomyocyte enlargement, sarcomeric organization, and increased atrial natriuretic factor expression in association with activation of phospholipase C, novel protein kinase C (PKC) isoforms, extracellular signal-regulated protein kinase (ERK), and (to a lesser extent) JNK/p38-MAPK. rPMT stimulates the ERK cascade via epidermal growth factor (EGF) receptor transactivation in cardiac fibroblasts, but EGF receptor transactivation plays no role in ERK activation in cardiomyocytes. Surprisingly, rPMT (or novel PKC isoform activation by PMA) decreases basal Akt phosphorylation; rPMT prevents Akt phosphorylation by EGF or IGF-1 and functionally augments cardiomyocyte apoptosis in response to H2O2. These results identify a Galpha(q)-PKC pathway that represses basal Akt phosphorylation and impairs Akt stimulation by survival factors. Because inhibition of Akt enhances cardiomyocyte susceptibility to apoptosis, this pathway is predicted to contribute to the transition from hypertrophy to cardiac decompensation and could be targeted for therapy in heart failure.  相似文献   

14.
15.
Gq signaling in cardiac adaptation and maladaptation   总被引:7,自引:0,他引:7  
Accumulating evidence suggests that cardiac responses to a number of circulating or locally released humoral factors contribute to adaptive responses after hemodynamic stress or myocardial injury. In particular, hormones such as angiotensin II, endothelin 1, norepinephrine and prostaglandin F2 alpha which bind to and activate cardiomyocyte membrane receptors coupled to the Gq class of GTP binding proteins have been implicated in the development and ultimate decompensation of cardiac hypertrophy. Herein we summarize recent developments in cultured cardiomyocyte and transgenic mouse systems which are defining the phenotypes resulting from Gq signaling events in cardiomyocytes, and which are elucidating the critical downstream mediators. Postulated roles for protein kinase C, p38 MAP kinase and jun-N terminal kinase are discussed in relation to Gq-mediated cardiomyocyte hypertrophy and apoptotic signaling. The evidence to date suggests that molecular targeting of Gq or its effectors has the potential to modify cardiac adaptive and maladaptive responses to stress or injury.  相似文献   

16.
Diverse forms of injury and stress evoke a hypertrophic growth response in adult cardiac myocytes, which is characterized by an increase in cell size, enhanced protein synthesis, assembly of sarcomeres, and reactivation of fetal genes, often culminating in heart failure and sudden death. Given the emerging roles of microRNAs (miRNAs) in modulation of cellular phenotypes, we searched for miRNAs that were regulated during cardiac hypertrophy and heart failure. We describe >12 miRNAs that are up- or down-regulated in cardiac tissue from mice in response to transverse aortic constriction or expression of activated calcineurin, stimuli that induce pathological cardiac remodeling. Many of these miRNAs were similarly regulated in failing human hearts. Forced overexpression of stress-inducible miRNAs was sufficient to induce hypertrophy in cultured cardiomyocytes. Similarly, cardiac overexpression of miR-195, which was up-regulated during cardiac hypertrophy, resulted in pathological cardiac growth and heart failure in transgenic mice. These findings reveal an important role for specific miRNAs in the control of hypertrophic growth and chamber remodeling of the heart in response to pathological signaling and point to miRNAs as potential therapeutic targets in heart disease.  相似文献   

17.
Glycogen synthase kinase-3 (GSK-3) is a master regulator of growth and death in cardiac myocytes. GSK-3 is inactivated by hypertrophic stimuli through phosphorylation-dependent and -independent mechanisms. Inactivation of GSK-3 removes the negative constraint of GSK-3 on hypertrophy, thereby stimulating cardiac hypertrophy. N-terminal phosphorylation of the GSK-3 isoforms GSK-3α and GSK-3β by upstream kinases (e.g., Akt) is a major mechanism of GSK-3 inhibition. Nonetheless, its role in mediating cardiac hypertrophy and failure remains to be established. Here we evaluated the role of Serine(S)21 and S9 phosphorylation of GSK-3α and GSK-3β in the regulation of cardiac hypertrophy and function during pressure overload (PO), using GSK-3α S21A knock-in (αKI) and GSK-3β S9A knock-in (βKI) mice. Although inhibition of S9 phosphorylation during PO in the βKI mice attenuated hypertrophy and heart failure (HF), inhibition of S21 phosphorylation in the αKI mice unexpectedly promoted hypertrophy and HF. Inhibition of S21 phosphorylation in GSK-3α, but not of S9 phosphorylation in GSK-3β, caused phosphorylation and down-regulation of G1-cyclins, due to preferential localization of GSK-3α in the nucleus, and suppressed E2F and markers of cell proliferation, including phosphorylated histone H3, under PO, thereby contributing to decreases in the total number of myocytes in the heart. Restoration of the E2F activity by injection of adenovirus harboring cyclin D1 with a nuclear localization signal attenuated HF under PO in the αKI mice. Collectively, our results reveal that whereas S9 phosphorylation of GSK-3β mediates pathological hypertrophy, S21 phosphorylation of GSK-3α plays a compensatory role during PO, in part by alleviating the negative constraint on the cell cycle machinery in cardiac myocytes.  相似文献   

18.
We have previously shown that genetic ablation of melusin, a muscle specific beta 1 integrin interacting protein, accelerates left ventricle (LV) dilation and heart failure in response to pressure overload. Here we show that melusin expression was increased during compensated cardiac hypertrophy in mice subjected to 1 week pressure overload, but returned to basal levels in LV that have undergone dilation after 12 weeks of pressure overload. To better understand the role of melusin in cardiac remodeling, we overexpressed melusin in heart of transgenic mice. Echocardiography analysis indicated that melusin over-expression induced a mild cardiac hypertrophy in basal conditions (30% increase in interventricular septum thickness) with no obvious structural and functional alterations. After prolonged pressure overload (12 weeks), melusin overexpressing hearts underwent further hypertrophy retaining concentric LV remodeling and full contractile function, whereas wild-type LV showed pronounced chamber dilation with an impaired contractility. Analysis of signaling pathways indicated that melusin overexpression induced increased basal phosphorylation of GSK3beta and ERK1/2. Moreover, AKT, GSK3beta and ERK1/2 were hyper-phosphorylated on pressure overload in melusin overexpressing compared with wild-type mice. In addition, after 12 weeks of pressure overload LV of melusin overexpressing mice showed a very low level of cardiomyocyte apoptosis and stromal tissue deposition, as well as increased capillary density compared with wild-type. These results demonstrate that melusin overexpression allows prolonged concentric compensatory hypertrophy and protects against the transition toward cardiac dilation and failure in response to long-standing pressure overload.  相似文献   

19.
Cyclooxygenase-2 (COX-2) is an important mediator of inflammation in stress and disease states. Recent attention has focused on the role of COX-2 in human heart failure and diseases owing to the finding that highly specific COX-2 inhibitors (i.e., Vioxx) increased the risk of myocardial infarction and stroke in chronic users. However, the specific impact of COX-2 expression in the intact heart remains to be determined. We report here the development of a transgenic mouse model, using a loxP-Cre approach, which displays robust COX-2 overexpression and subsequent prostaglandin synthesis specifically in ventricular myocytes. Histological, functional, and molecular analyses showed that ventricular myocyte specific COX-2 overexpression led to cardiac hypertrophy and fetal gene marker activation, but with preserved cardiac function. Therefore, specific induction of COX-2 and prostaglandin in vivo is sufficient to induce compensated hypertrophy and molecular remodeling.  相似文献   

20.
OBJECTIVE: Activation of Fas signaling has been associated with the development of cardiomyocyte hypertrophy. In the present study, we investigated the effects of increased expression of c-Flip, a natural modulator of Fas receptor signaling, in a mouse model of cardiac growth response to pressure overload. METHODS: A transgenic mouse overexpressing c-Flip in the heart was generated in FVB/N strain. Echocardiographic, hemodynamic, histological and molecular analyses were carried out under basal conditions and after transverse aortic constriction (TAC)-induced pressure overload. RESULTS: Overexpression of c-Flip in ventricular heart tissue was functionally silent under basal conditions affecting neither cardiac morphology nor basal cardiac function. Transgenic mice were then subjected to pressure overload by TAC procedure. Under such conditions, c-Flip transgenic mice showed normal left ventricular function with a significantly reduced left ventricular hypertrophy compared with wild-type mice and reduced induction of the cardiac "fetal" gene programme. Further, analysis of intracellular signaling pathways indicated that c-Flip overexpression reduced phosphorylation of both the glycogen synthase kinase 3beta (GSK3 beta) and Akt as compared with controls. Finally, the reduction of the TAC-induced hypertrophy was not accompanied by significant apoptosis increase. CONCLUSION: Altogether, these findings indicate c-Flip as a key regulator of the cardiac response to ventricular pressure overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号