首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In The Netherlands, risk assessment of air pollutants goes back to 1980. From 1985 onwards the risk assessment of chemicals has crystallized in a systematic multi-media approach taking into account air, water, soil, and food. Criteria Documents support the formulation of environmental quality standards. Until now, 23 documents were prepared. Some toxicological aspects of the risk assessment for man in these documents are discussed with emphasis on carcinogenicity. As examples the main aspects of the risk assessments of benzene and trichloroethylene are described. A list of proposed health based standards for air pollutants is added.  相似文献   

2.
Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration monitoring or modeling data. In this paper, we examine the limitations of using outdoor concentration predictions instead of modeled personal exposures for over 30 gaseous and particulate hazardous air pollutants (HAPs) in the US. The analysis uses the results from an air quality dispersion model (the ASPEN or Assessment System for Population Exposure Nationwide model) and an inhalation exposure model (the HAPEM or Hazardous Air Pollutant Exposure Model, Version 5), applied by the US. Environmental protection Agency during the 1999 National Air Toxic Assessment (NATA) in the US. Our results show that the total predicted chronic exposure concentrations of outdoor HAPs from all sources are lower than the modeled ambient concentrations by about 20% on average for most gaseous HAPs and by about 60% on average for most particulate HAPs (mainly, due to the exclusion of indoor sources from our modeling analysis and lower infiltration of particles indoors). On the other hand, the HAPEM/ASPEN concentration ratio averages for onroad mobile source exposures were found to be greater than 1 (around 1.20) for most mobile-source related HAPs (e.g. 1, 3-butadiene, acetaldehyde, benzene, formaldehyde) reflecting the importance of near-roadway and commuting environments on personal exposures to HAPs. The distribution of the ratios of personal to ambient concentrations was found to be skewed for a number of the VOCs and reactive HAPs associated with major source emissions, indicating the importance of personal mobility factors. We conclude that the increase in personal exposures from the corresponding predicted ambient levels tends to occur near locations where there are either major emission sources of HAPs or when individuals are exposed to either on- or nonroad sources of HAPs during their daily activities. These findings underscore the importance of applying exposure-modeling methods, which incorporate information on time-activity, commuting, and exposure factors data, for the purposes of assigning exposures in air pollution health studies.  相似文献   

3.
The Clean Air Act Amendments of 1990 represent a major shift in regulatory emphasis for toxic air pollutants. Recognizing the immediate public health benefits that can be gained from the application of currently available and affordable control technologies, Congress has abandoned its insistence that health risks should be the only consideration in establishing emissions standards. Previously excluded concerns about economic costs and technological feasibility will now determine the initial level of pollution control required of toxic air pollution sources. In exchange for reducing the stringency of emissions limits, the newly amended act extends the scope of regulation by listing 189 toxic substances that must be controlled over the next decade. This exchange of regulatory depth for breadth occurs against a history of reluctance by the Environmental Protection Agency to implement the original health-protective language of the Clean Air Act. It mirrors earlier compromises under the Clean Water Act and the Occupational Safety and Health Act.  相似文献   

4.
BACKGROUND: In this study we compared cancer risks from organic hazardous air pollutants (HAPs) based on total personal exposure summed across different microenvironments and exposure pathways. METHODS: We developed distributions of personal exposure concentrations using field monitoring and modeling data for inhalation and, where relevant, ingestion pathways. We calculated risks for a nonoccupationally exposed and nonsmoking population using U.S. Environmental Protection Agency (EPA) and California Office of Environmental Health and Hazard Assessment (OEHHA) unit risks. We determined the contribution to risk from indoor versus outdoor sources using indoor/outdoor ratios for gaseous compounds and the infiltration factor for particle-bound compounds. RESULTS: With OEHHA's unit risks, the highest ranking compounds based on the population median are 1,3-butadiene, formaldehyde, benzene, and dioxin, with risks on the order of 10(-4)-10(-5). The highest risk compounds with the U.S. EPA unit risks were dioxin, benzene, formaldehyde, and chloroform, with risks on a similar order of magnitude. Although indoor exposures are responsible for nearly 70% of risk using OEHHA's unit risks, when infiltration is accounted for, inhalation of outdoor sources contributed 50% to total risk, on average. Additionally, 15% of risk resulted from exposures through food, mainly due to dioxin. CONCLUSIONS: Most of the polycyclic aromatic hydrocarbon, benzene, acetaldehyde, and 1,3-butadiene risk came from outdoor sources, whereas indoor sources were primarily responsible for chloroform, formaldehyde, and naphthalene risks. The infiltration of outdoor pollution into buildings, emissions from indoor sources, and uptake through food are all important to consider in reducing overall personal risk to HAPs.  相似文献   

5.
A public health concern regarding hazardous air pollutants (HAPs) is their potential to cause cancer. It has been difficult to assess potential cancer risks from HAPs, due primarily to lack of ambient concentration data for the general population. The Environmental Protection Agency's Cumulative Exposure Project modeled 1990 outdoor concentrations of HAPs across the United States, which were combined with inhalation unit risk estimates to estimate the potential increase in excess cancer risk for individual carcinogenic HAPs. These were summed to provide an estimate of cancer risk from multiple HAPs. The analysis estimates a median excess cancer risk of 18 lifetime cancer cases per 100,000 people for all HAP concentrations. About 75% of estimated cancer risk was attributable to exposure to polycyclic organic matter, 1,3-butadiene, formaldehyde, benzene, and chromium. Consideration of some specific uncertainties, including underestimation of ambient concentrations, combining upper 95% confidence bound potency estimates, and changes to potency estimates, found that cancer risk may be underestimated by 15% or overestimated by 40-50%. Other unanalyzed uncertainties could make these under- or overestimates larger. This analysis used 1990 estimates of concentrations and can be used to track progress toward reducing cancer risk to the general population.  相似文献   

6.
In the United States, 48 million adults smoke 3.5-5 x 10(11) cigarettes/year. Many cigarettes are smoked in private residences, causing regular environmental tobacco smoke (ETS) exposure to roughly 31 million nonsmokers (11% of the US population), including 16 million juveniles. (Upper bound estimates are 53 million exposed nonsmokers including 28 million juveniles.) ETS contains many chemical species whose industrial emissions are regulated by the US federal government as hazardous air pollutants (HAPs). In this paper, average daily residential exposures to and intakes of 16 HAPs in ETS are estimated for US nonsmokers who live with smokers. The evaluation is based on material-balance modeling; utilizes published data on smoking habits, demographics, and housing; and incorporates newly reported exposure-relevant emission factors. The ratio of estimated average exposure concentrations to reference concentrations is close to or greater than one for acrolein, acetaldehyde, 1,3-butadiene, and formaldehyde, indicating potential for concern regarding noncancer health effects from chronic exposures. In addition, lifetime cancer risks from residential ETS exposure are estimated to be substantial ( approximately 2-500 per million) for each of five known or probable human carcinogens: acetaldehyde, formaldehyde, benzene, acrylonitrile, and 1,3-butadiene. Cumulative population intakes from residential ETS are compared for six key compounds against ambient sources of exposure. ETS is found to be a dominant source of environmental inhalation intake for acrylonitrile and 1,3-butadiene. It is an important cause of intake for acetaldehyde, acrolein, and formaldehyde, and a significant contributor to intake for benzene.  相似文献   

7.
OBJECTIVES: The principal objective of this study was to determine the relationship between maternal exposure to air pollution and low birth weight and to propose a possible environmental health surveillance system for low birth weight. METHODS: We acquired air monitoring data for Seoul from the Ministry of Environment, the meteorological data from the Korean Meteorological Administration, the exposure assessments from the National Institute of Environmental Research, and the birth data from the Korean National Statistical Office between January 1, 2002 and December 31, 2003. The final birth data were limited to singletons within 37-44 weeks of gestational age. We defined the Low Birth Weight (LBW) group as infants with birth weights of less than 2500g and calculated the annual LBW rate by district. The air monitoring data were measured for CO, SO(2), NO(2), and PM(10) concentrations at 27 monitoring stations in Seoul. We utilized two models to evaluate the effects of air pollution on low birth weight: the first was the relationship between the annual concentration of air pollution and low birth weight (LBW) by individual and district, and the second involved a GIS exposure model constructed by Arc View 3.1. RESULTS: LBW risk (by Gu, or district) was significantly increased to 1.113(95% CI=1.111-1.116) for CO, 1.004 (95% CI=1.003-1.005) for NO(2), 1.202(95% CI=1.199-1.206) for SO(2), and 1.077(95% CI=1.075-1.078) for PM(10) with each interquartile range change. Personal LBW risk was significantly increased to 1.081(95% CI=1.002-1.166) for CO, 1.145(95% CI=1.036-1.267) for SO(2), and 1.053(95% CI=1.002-1.108) for PM(10) with each interquartile range change. Personal LBW risk was increased to 1.003(95% CI=0.954-1.055) for NO(2), but this was not statistically significant. The air pollution concentrations predicted by GIS positively correlated with the numbers of low birth weights, particularly in highly polluted regions. CONCLUSIONS: Environmental health surveillance is a systemic, ongoing collection effort including the analysis of data correlated with environmentally-associated diseases and exposures. In addition, environmental health surveillance allows for a timely dissemination of information to those who require that information in order to take effective action. GIS modeling is crucially important for this purpose, and thus we attempted to develop a GIS-based environmental surveillance system for low birth weight.  相似文献   

8.
Elevated breast cancer incidence rates in urban areas have led to speculation regarding the potential role of air pollution. In order to inform the exposure assessment for a subsequent breast cancer study, we evaluated agreement between modeled and monitored hazardous air pollutants (HAPs). Modeled annual ambient concentrations of HAPs in California came from the US Environmental Protection Agency’s National Air Toxics Assessment database for 1996, 1999, 2002, and 2005 and corresponding monitored data from the California Air Resources Board’s air quality monitoring program. We selected 12 compounds of interest for our study and focused on evaluating agreement between modeled and monitored data, and of temporal trends. Modeled data generally underestimated the monitored data, especially in 1996. For most compounds agreement between modeled and monitored concentrations improved over time. We concluded that 2002 and 2005 modeled data agree best with monitored data and are the most appropriate years for direct use in our subsequent epidemiologic analysis.  相似文献   

9.
Volatile organic compounds (VOCs), carbon monoxide (CO), and PM10 were studied by field sampling in six underground car parks beneath multi-level buildings in Guangzhou, China. CO and PM10 in the car parks range from 3.0 to 69.0 ppm and 0.087 to 0.698 mg m?3, with mean concentrations of 10.8 ppm and 0.228 mg m?3, respectively. Overall mean concentrations of methyl tertiary-butyl ether (MTBE), benzene, toluene, ethyl-benzene, and xylene (BTEX) are 90.5, 54.8, 239.9, 47.7, and 189.3 μg m?3, respectively. Indoor air pollutants in the car parks show an obvious seasonal variation and are higher in winter than in summer. The total estimated cancer risks of occupational exposure for car park staff and casual exposure for parking users are 3.73 × 10?4 and 5.60 × 10?6, indicating definite and possible risks, respectively. The hazard quotient of target VOCs is 4.33, implying a definite risk for people using underground car parks. Indoor/outdoor (I/O) ratios for MTBE and BTEX are significantly higher than one, reflecting strong emission sources in underground car parks. The BTEX to MTBE ratios in the car parks are almost the same as those in tunnel air, indicating that indoor aromatic hydrocarbons were mainly from engine emissions and gasoline evaporation. With increasing urbanization in China, more attention should be paid to the exposure of staff and users to hazardous air pollutants in underground car parks.  相似文献   

10.
室内空气主要污染物及其健康效应   总被引:18,自引:0,他引:18  
许真  金银龙 《卫生研究》2003,32(3):279-283
室内空气质量与人体健康紧密相关。室内空气污染物的种类众多、来源广泛 ,对人体健康造成的危害十分复杂 ,可累及呼吸、免疫和血液等多个系统。目前 ,室内空气中存在的污染物以燃料燃烧产物、建筑装饰材料产生的挥发性有机化合物和生物性污染物等为主。本文就这几类主要污染物的来源及其健康效应进行综述  相似文献   

11.
The presence of airborne pollutants in indoor environments has been associated with occupants' discomfort and/or adverse health effects. This study investigates occupational exposure in relation to indoor air mixing and source location relative to a human body. Experimental and computational methods were used to provide information about the pollutant distribution in the vicinity of the human body for different levels of room air mixing. Study results show that the often used assumption of uniform pollutant distribution in an occupied space is not always appropriate for estimation of inhalation exposure. Results also indicate that an occupant may experience very high acute exposure to airborne pollutants when little air mixing exists in a space and the pollutant source is in the vicinity of the occupant. The buoyancy-driven flow induced by the convective heat transfer from an occupant's body can transport pollutants in the occupant's vicinity to the breathing zone. Specific study results reveal that a source located in the occupant's front chest region makes a relatively large contribution to the breathing zone concentration compared with the other sources in the vicinity of the human body. With the source position in this region, exposure can be nine times greater than that calculated with the uniform mixing assumption. The buoyancy-driven convective plume around a body seems to have a significant influence on pollutant transport and human exposure, especially in the absence of room air mixing.  相似文献   

12.
Indoor air pollutants and health in the United Arab Emirates   总被引:1,自引:0,他引:1  
Background: Comprehensive global data on the health effects of indoor air pollutants are lacking. There are few large population-based multi-air pollutant health assessments. Further, little is known about indoor air health risks in the Middle East, especially in countries undergoing rapid economic development.Objectives: To provide multifactorial indoor air exposure and health data, we conducted a population-based study of indoor air pollution and health in the United Arab Emirates (UAE).Methods: We conducted a cross-sectional study in a population-based sample of 628 households in the UAE. Indoor air pollutants [sulfur dioxide (SO2), nitrogen dioxide (NO2), hydrogen sulfide (H2S), formaldehyde (HCHO), carbon monoxide (CO), and particulate matter] were measured using passive samplers over a 7-day period. Health information was collected from 1,590 household members via in-person interviews.Results: Participants in households with quantified SO2, NO2, and H2S (i.e., with measured concentrations above the limit of quantification) were twice as likely to report doctor-diagnosed asthma. Participants in homes with quantified SO2 were more likely to report wheezing symptoms {ever wheezing, prevalence odds ratio [POR] 1.79 [95% confidence interval (CI) 1.05, 3.05]; speech-limiting wheeze, POR 3.53 (95% CI: 1.06, 11.74)}. NO2 and H2S were similarly associated with wheezing symptoms. Quantified HCHO was associated with neurologic symptoms (difficulty concentrating POR 1.47; 95% CI: 1.02, 2.13). Burning incense daily was associated with increased headaches (POR 1.87; 95% CI: 1.09, 3.21), difficulty concentrating (POR 3.08; 95% CI: 1.70, 5.58), and forgetfulness (POR 2.68: 95% CI: 1.47, 4.89).Conclusions: This study provides new information regarding potential health risks from pollutants commonly found in indoor environments in the UAE and other countries. Multipollutant exposure and health assessments in cohort studies are needed to better characterize health effects of indoor air pollutants.  相似文献   

13.
Hazardous air pollutants (HAPs) are compounds shown to cause cancer or other adverse health effects. We analyzed population-based childhood cancer incidence rates in California (USA) from 1988 to 1994, by HAP exposure scores, for all California census tracts. For each census tract, we calculated exposure scores by combining cancer potency factors with outdoor HAP concentrations modeled by the U.S. Environmental Protection Agency. We evaluated the relationship between childhood cancer rates and exposure scores for 25 potentially carcinogenic HAPs emitted from mobile, area, and point sources and from all sources combined. Our study period saw 7,143 newly diagnosed cancer cases in California; of these, 6,989 (97.8%) could be assigned to census tracts and included in our analysis. Using Poisson regression, we estimated rate ratios (RRs) adjusted for age, race/ethnicity, and sex. We found little evidence for elevated cancer RRs for all sites or for gliomas among children living in high-ranking combined-source exposure areas. We found elevated RRs and a significant trend with increasing exposure level for childhood leukemia in tracts ranked highest for exposure to the combined group of 25 HAPs (RR = 1.21; 95% confidence interval, 1.03, 1.42) and in tracts ranked highest for point-source HAP exposure (RR = 1.32; 95% confidence interval, 1.11, 1.57). Our findings suggest an association between increased childhood leukemia rates and high HAP exposure, but studies involving more comprehensive exposure assessment and individual-level exposure data will be important for elucidating this relationship.  相似文献   

14.
15.
OBJECTIVE: To explore possible associations between autism spectrum disorders (ASD) and environmental exposures, we linked the California autism surveillance system to estimated hazardous air pollutant (HAP) concentrations compiled by the U.S. Environmental Protection Agency. METHODS: Subjects included 284 children with ASD and 657 controls, born in 1994 in the San Francisco Bay area. We assigned exposure level by census tract of birth residence for 19 chemicals we identified as potential neurotoxicants, developmental toxicants, and/or endocrine disruptors from the 1996 HAPs database. Because concentrations of many of these were highly correlated, we combined the chemicals into mechanistic and structural groups, calculating summary index scores. We calculated ASD risk in the upper quartiles of these group scores or individual chemical concentrations compared with below the median, adjusting for demographic factors. RESULTS: The adjusted odds ratios (AORs) were elevated by 50% in the top quartile of chlorinated solvents and heavy metals [95% confidence intervals (CIs) , 1.1-2.1], but not for aromatic solvents. Adjusting for these three groups simultaneously led to decreased risks for the solvents and increased risk for metals (AORs for metals: fourth quartile = 1.7 ; 95% CI, 1.0-3.0 ; third quartile = 1.95 ; 95% CI, 1.2-3.1) . The individual compounds that contributed most to these associations included mercury, cadmium, nickel, trichloroethylene, and vinyl chloride. CONCLUSIONS: Our results suggest a potential association between autism and estimated metal concentrations, and possibly solvents, in ambient air around the birth residence, requiring confirmation and more refined exposure assessment in future studies.  相似文献   

16.
The department of social and preventive medicine of the University of Basle is conducting an epidemiologic study on the health effect of air pollution on preschool children. Nitrogen dioxide in childrens' immediate surrounding measured with personal samplers is used as reference substance for air pollution. Meteorologic and Data on air pollution of all permanent air quality control stations are included in the analysis. Health data are collected by means of a diary in which parents record daily respiratory symptoms of their child. Physicians in pediatric services record daily attendance of children with respiratory diseases.  相似文献   

17.
As part of the control technology development for the disposal of waste munitions, an assessment of potential emissions of hazardous air pollutants from a prototype fluidized bed incinerator was conducted. Assessment program elements included identification of potentially toxic emissions through material input analysis and computer simulation modeling of the combustion cycle; development of emission limitations criteria for substances having no present air pollution emission standards; evaluation and development of analytical procedures; and design of a sampling system to condition an emission stream characterized by high temperature and humidity resulting from burning water slurries of explosive materials. Emphasis is placed on the potential emission of nickel and its compounds, particulate and vapor emissions of cyanides, nitrogen oxides, and TNT and RDX energetic residuals.  相似文献   

18.
19.
The Medicare Health Outcomes Survey (HOS) provides a rich source of outcomes data on the Medicare Advantage (MA) program for the US Department of Health and Human Services, managed care organizations participating in Medicare, quality improvement organizations, and health services researchers working to improve quality of care for Medicare enrollees. Since 1998, the Centers for Medicare and Medicaid Services has collected longitudinal functional status information to assess the performance of Medicare managed care organizations. This introduction reviews the goals of the HOS program, how the HOS supports health care reform, and outlines recent HOS studies exploring data applications for monitoring outcomes and implementing quality improvement activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号