首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Osseointegration is the basis of successful dental implantology and the foundation of cementless arthroplasty and the osseointegrated percutaneous prosthetic system. Osseointegration has been considered irreversible thus far. However, controlled heating or cooling of dental implants could selectively damage the bone at the bone–implant interface, causing the reversal of osseointegration or “osseodisintegration”. This review compares five methods for implant removal, published as patent documents between 2010 and 2018, which have not yet been discussed in the scientific literature. We describe these methods and evaluate their potential for reversing osseointegration. The five methods have several technical and methodological similarities: all methods include a handpiece, a connecting device for coronal access, and a controlling device, as well as the application of mechanical and/or thermal energy. The proposed method of quantifying the temperature with a sensor as the sole means for regulating the process seems inadequate. A database used in one of the methods, however, allows a more precise correlation between a selected implant and the energy needed for its removal, thus avoiding unnecessary trauma to the patient. A flapless, microinvasive, and bone-conserving approach for removing failed dental implants, facilitating successful reimplantation, would benefit dental implantology. These methods could be adapted to cementless medical implants and osseointegrated percutaneous prosthetics. However, for some of the methods discussed herein, further research may be necessary.  相似文献   

2.
Osseointegration capacity and good mechanical behavior are key to the success of the dental implant. In many investigations, comparisons of properties are made using different dental implant designs and therefore the results can be influenced by the macrodesign of the dental implant. In this work, studies were carried out with the same dental implant model using different roughness and different materials—commercially pure titanium (grade 4) and zirconia. For this purpose, 80 smooth passivated titanium (Ti), 80 smooth zirconia (ZrO2), and 80 rough passivated titanium (Ti-R) dental implants were used. The samples were characterized by their roughness, wettability, surface energy, residual stresses, and fatigue behavior. The implants were implanted in minipigs for 4 and 12 weeks. The animals were sacrificed, and histological studies were carried out to determine the osseointegration parameters for each of the implantation times. Ti and ZrO2 dental implants have very similar wettability and surface energy properties. However, the roughness causes a decrease in the hydrophilic character and a decrease of the total surface energy and especially the dispersive component, while the polar component is higher. Due to the compressive residual stresses of alumina sandblasting, the rough dental implant has the best fatigue behavior, followed by Ti and due to the lack of toughness and rapid crack propagation the ZrO2 implants have the worst fatigue behavior. The bone index contact (BIC) values for 4 weeks were around 25% for Ti, 32% for ZrO2, and 45% for Ti-R. After 12 weeks the Ti dental implants increased to 42%, for Ti, 43% for ZrO2, and an important increase to 76% was observed for Ti-R implants. In vivo results showed that the key factor that improves osseointegration is roughness. There was no significant difference between ZrO2 and Ti implants without sandblasting.  相似文献   

3.
Corrosion of titanium dental implants has been associated with implant failure and is considered one of the triggering factors for peri-implantitis. This corrosion is concerning, because a large amount of metal ions and debris are generated in this process, the accumulation of which may lead to adverse tissue reactions in vivo. The goal of this study is to investigate the mechanisms for implant degradation by evaluating the surface of five titanium dental implants retrieved due to peri-implantitis. The results demonstrated that all the implants were subjected to very acidic environments, which, in combination with normal implant loading, led to cases of severe implant discoloration, pitting attack, cracking and fretting-crevice corrosion. The results suggest that acidic environments induced by bacterial biofilms and/or inflammatory processes may trigger oxidation of the surface of titanium dental implants. The corrosive process can lead to permanent breakdown of the oxide film, which, besides releasing metal ions and debris in vivo, may also hinder re-integration of the implant surface with surrounding bone.  相似文献   

4.
Despite high rates of osseointegration in healthy patients, complex cases present an increased risk of osseointegration failure when treated with dental implants. Furthermore, if immediate loading of the implants is used, maximizing the response of the host organism would be desirable. Anabolic steroids, such as Nandrolone Decanoate (ND), are reported to have beneficial clinical effects on various bone issues such as osteoporosis and bone fractures. However, their beneficial effects in promoting osseointegration in dental implant placement have not been documented. The study aimed to examine histological changes induced by ND in experimental dental implants in rabbit models. Two dental implants were placed in the tibias of 24 adult rabbits. Rabbits were allocated to one of two groups: control group or test group. Rabbits in the latter group were given nandrolone decanoate (15 mg/kg, immediately after implant placement and after 1 week). Micro-radiographic and histological analyses were assessed to characterize the morphological changes promoted by the nandrolone decanoate use. Total bone volume and fluorescence were significantly higher in the control group after 2 weeks. Such a difference between the two groups might indicate that, initially, nandrolone lengthens the non-specific healing period characteristic of all bone surgeries. However, after the beginning of the reparative processes, the quantity of newly formed bone appears to be significantly higher, indicating a positive stimulation of the androgen molecule on bone metabolism. Based on micro-radiology and fluorescence microscopy, nandrolone decanoate influenced bone regeneration in the implant site. The anabolic steroid nandrolone decanoate affects the healing processes of the peri-implant bone and therefore has the potential to improve the outcomes of implant treatment in medically complex patients.  相似文献   

5.
6.
In thirteen different dental clinics in Singapore, Spain, Czech Republic and Italy, 504 patients were selected, and 483 dental implants were placed in maxillary sites after alveolar socket preservation (ASP) procedures with an autologous demineralized tooth extracted as graft material from an innovative Tooth Transformer device was obtained. All procedures used were reported in n°638 Ethical Committee surgical protocol of University of Chieti and approved. After 4 months, at dental implant placing, bone biopsies were performed to evaluate the histologic outcomes, and 12 months after implant loading, global implant survival rate, failure percentage and peri-implant bone loss were detected. After ASP, only 27 post-operative complications were observed and after 4 months, bone biopsy histomorphometric analysis showed a high percentage of bone volume (BV) 43.58 (±12.09), and vital new bone (NB) 32.38 (±17.15) with an absence of inflammation or necrosis areas. Twelve months after loading, only 10 dental implants failed (2.3%), with a 98.2% overall implant survival rate, nine cases showed mucositis (1.8%) and eight showed peri-implantitis (1.6%). At mesial sites, 0.43 mm (±0.83) of bone loss around the implants was detected and 0.23 mm (±0.38) at the distal sites with an average value of 0.37 mm (±0.68) (p > 0.568). Several studies with a longer follow-up will be necessary to confirm the preliminary data observed. However, clinical results seem to suggest that the post-extraction socket preservation procedure using innovative demineralized autologous tooth-derived biomaterial may be a predictable procedure to produce new vital bone able to support dental implant rehabilitation of maxilla edentulous sites.  相似文献   

7.
Variations in the implant thread shape and occlusal load behavior may result in significant changes in the biological and mechanical properties of dental implants and surrounding bone tissue. Most previous studies consider a single implant thread design, an isotropic bone structure, and a static occlusal load. However, the effects of different thread designs, bone material properties, and loading conditions are important concerns in clinical practice. Accordingly, the present study performs Finite Element Analysis (FEA) simulations to investigate the static, quasi-static and dynamic response of the implant and implanted bone material under various thread designs and occlusal loading directions (buccal-lingual, mesiodistal and apical). The simulations focus specifically on the von Mises stress, displacement, shear stress, compressive stress, and tensile stress within the implant and the surrounding bone. The results show that the thread design and occlusal loading rate have a significant effect on the stress distribution and deformation of the implant and bone structure during clinical applications. Overall, the results provide a useful insight into the design of enhanced dental implants for an improved load transfer efficiency and success rate.  相似文献   

8.
Many studies are being carried out on the particles released during the implantoplasty process in the machining of dental implants to remove bacterial biofilms. However, there are no studies on the release of particles produced by the insertion of bone-level dental implants due to the high compressive frictional loads between the rough titanium implant and the bone tissue. This paper aims to characterize the released particles and determine the release of titanium ions into the physiological environment and their cytocompatibility. For this purpose, 90 dental implants with a neck diameter of 4 mm and a torque of 22 Ncm were placed in 7 fresh cow ribs. The placement was carried out according to the established protocols. The implants had a roughness Ra of 1.92 μm. The arrangement of the particles in the bone tissue was studied by micro-CT, and no particle clusters were observed. The different granulometries of 5, 15, and 30 μm were obtained; the specific surface area was determined by laser diffraction; the topography was determined by scanning electron microcopy; and the particles were chemically analysed by X-ray energy microanalysis. The residual stresses of the particles were obtained by X-ray diffraction using the Bragg-Bentano configuration. The release of titanium ions to the physiological medium was performed using ICP-MS at 1, 3, 7, 14, and 21 days. The cytocompatibility of the particles with HFF-1 fibroblast and SAOS-2 osteoblast cultures was characterized. The results showed that the lowest specific surface area (0.2109 m2/g) corresponds to the particles larger than 30 μm being higher than 0.4969 and 0.4802 m2/g of those that are 5 and 15 μm, respectively, observing in all cases that the particles have irregular morphologies without contamination of the drills used in the surgery. The highest residual stresses were found for the small particles, −395 MPa for the 5 μm particles, and −369 for the 15 μm particles, and the lowest residual stresses were found for the 30 μm particles with values of −267 MPa. In all cases, the residual stresses were compressive. The lowest ion release was for the 30 μm samples, as they have the lowest specific surface area. Cytocompatibility studies showed that the particles are cytocompatible, but it is the smallest ones that are lower and very close to the 70% survival limit in both fibroblasts and osteoblasts.  相似文献   

9.
The long-term success of dental implants is greatly influenced by the use of appropriate materials while applying the “All-on-4” concept in the edentulous jaw. This study aims to evaluate the stress distribution in the “All-on-4” prosthesis across different material combinations using three-dimensional finite element analysis (FEA) and to evaluate which opposing arch material has destructive effects on which prosthetic material while offering certain recommendations to clinicians accordingly. Acrylic and ceramic-based hybrid prosthesis have been modelled on a rehabilitated maxilla using the “All-on-4” protocol. Using different materials and different supports in the opposing arch (natural tooth, and implant/ceramic, and acrylic), a multi-vectorial load has been applied. To measure stresses in bone, maximum and minimum principal stress values were calculated, while Von Mises stress values were obtained for prosthetic materials. Within a single group, the use of an acrylic implant-supported prosthesis as an antagonist to a full arch implant-supported prosthesis yielded lower maximum (Pmax) and minimum (Pmin) principal stresses in cortical bone. Between different groups, maxillary prosthesis with polyetheretherketone as framework material showed the lowest stress values among other maxillary prostheses. The use of rigid materials with higher moduli of elasticity may transfer higher stresses to the peri implant bone. Thus, the use of more flexible materials such as acrylic and polyetheretherketone could result in lower stresses, especially upon atrophic bones.  相似文献   

10.
The success of titanium dental implants depends on their osseointegration into the bone, which is determined by the composition and surface properties of the implant in close contact with the bone. There is a wide variety of implants on the market. Is it possible to identify the implant with the best composition and surface topography for optimal osseointegration? To this aim, 13 brands of dental implants from nine distinct manufacturers have been selected and their composition and surface topography determined. The obtained results show differences between these implants, in this case, the Ssk averages of the three measurements performed on each implant were positive, or 0.4 (0.1–0.8), indicating that the roughness of all implants analyzed was primarily textured and not flat. Like Sa, we found the highest Sdr for implants subjected only to sandblasting. In addition, only the ALS-active® implant had a modified microstructure on its surface. However, analysis of the NANOTITE implant surface revealed a 1.40% presence of calcium which we consider too low to have an effect on bone formation around the implant. As a result, we have also highlighted the lack of a recognized independent standard for dental implant surface conditions and the lack of independent quality control vis-à-vis manufacturers. Of all the surface types studied, none proved more satisfactory than another.  相似文献   

11.
Dental implants’ success comprises their proper stability and adherence to different oral tissues (integration). The implant is exposed to different mechanical stresses from swallowing, mastication and parafunctions for a normal tooth, leading to the simultaneous mechanical movement and deformation of the whole structure. The knowledge of the mechanical properties of the bone and gingival tissues in normal and pathological conditions is very important for the successful conception of dental implants and for clinical practice to access and prevent potential failures and complications originating from incorrect mechanical factors’ combinations. The challenge is that many reported biomechanical properties of these tissues are substantially scattered. This study carries out a critical analysis of known data on mechanical properties of bone and oral soft tissues, suggests more convenient computation methods incorporating invariant parameters and non-linearity with tissues anisotropy, and applies a consistent use of these properties for in silico design and the application of dental implants. Results show the advantages of this approach in analysis and visualization of stress and strain components with potential translation to dental implantology.  相似文献   

12.
(1) Background: Most of the clinical literature dealing with dental implants has been issued by experienced teams working either in university settings or in private practice. The purpose of this study was to identify contributing covariates to implant failure and marginal bone loss (MBL) at the 1-year follow-up of a novel triangular-neck implant design when placed by inexperienced post-graduate students. (2) Methods: A prospective cohort study was conducted on study participants eligible for implant placement at the UIC (International University of Catalonia), Barcelona, Spain. Implant failure rate and contributors to implant failure and MBL were investigated among 24 implant and patient variables. (3) Results: One hundred and twenty implants (V3, MIS) were placed and rehabilitated by the students. The mean insertion torque was 37.1 Ncm. Survival and success rates were 97.5% and 96.7%, respectively. Implants placed in patients with smoking habits displayed a tendency of higher failure risk (OR = 5.31, p = 0.17) when compared to non-smokers. The mean (SD) MBL was 0.51 (0.44) mm. Gender significantly affected the MBL (p = 0.020). Bleeding on probing (BoP) on the buccal sites proved to be a good predictor of proximal MBL (p = 0.030). (4) Conclusions: The survival and success rates of the V3 triangular-neck implant placed by inexperienced post-graduate students at the 1-year follow-up were high and similar to the ones published in the literature by experienced teams on other implants.  相似文献   

13.
Osseodensification is a new method of bone instrumentation for dental implant placement that preserves bulk bone and increases primary implant stability, and may accelerate the implant rehabilitation treatment period and provide higher success and survival rates than conventional methods. The aim of this retrospective study was to evaluate and discuss results obtained on immediate implant placement with immediate and delayed loading protocols under Osseodensification bone instrumentation. This study included private practice patients that required dental implant rehabilitation, between February 2017 and October 2019. All implants were placed under Osseodensification and had to be in function for at least 12 months to be included on the study. A total of 211 implants were included in the study, with a 98.1% total survival rate (97.9% in the maxilla and 98.5% in the mandible). For immediate implants with immediate load, 99.2% survival rate was achieved, and 100% survival rate for immediate implant placement without immediate load cases. A total of four implants were lost during this period, and all of them were lost within two months after placement. Within the limitations of this study, it can be concluded that Osseodensification bone instrumentation provided similar or better results on survival rates than conventional bone instrumentation.  相似文献   

14.
Abstract: This study evaluated the effect of the topical application of melatonin mixed with collagenized porcine bone on the osteointegration on the rough discrete calcium deposit (DCD) surface implants in Beagle dogs 3 months after their insertion. In preparation for subsequent insertion of dental implants, lower molars were extracted from 12 Beagle dogs. Each mandible received two parallel wall expanded platform implants with a DCD surface of 4 mm in diameter and 10 mm in length. The implants were randomly assigned to the distal sites on each mandible in the molar area and the gaps were filled with 5 mg lyophilized powdered melatonin and porcine bone and collagenized porcine bone alone. Ten histological sections per implant were obtained for histomorphometric studies. After a 4‐wk treatment period, melatonin plus porcine bone significantly increased the perimeter of bone that was in direct contact with the treated implants (P < 0.0001), bone density (P < 0.0001), and new bone formation (P < 0.0001) in comparison with porcine bone alone around the implants. Melatonin plus collagenized porcine bone on DCD surface may act as a biomimetic agent in the placement of endo‐osseous dental implants and enhance the osteointegration. Melatonin combined with porcine bone on DCD implants reveals more bone in implant contact at 12 wk (84.5 ± 1.5%) compared with porcine bone alone treated area (67.17 ± 1.2%).  相似文献   

15.
The present review aimed to evaluate the impact of implant length on failure rates between short (<10 mm) and long (≥10 mm) dental implants. An electronic search was undertaken in three databases, as well as a manual search of journals. Implant failure was the outcome evaluated. Meta-analysis was performed in addition to a meta-regression in order to verify how the risk ratio (RR) was associated with the follow-up time. The review included 353 publications. Altogether, there were 25,490 short and 159,435 long implants. Pairwise meta-analysis showed that short implants had a higher failure risk than long implants (RR 2.437, p < 0.001). There was a decrease in the probability of implant failure with longer implants when implants of different length groups were compared. A sensitivity analysis, which plotted together only studies with follow-up times of 7 years or less, resulted in an estimated increase of 0.6 in RR for every additional month of follow-up. In conclusion, short implants showed a 2.5 times higher risk of failure than long implants. Implant failure is multifactorial, and the implant length is only one of the many factors contributing to the loss of an implant. A good treatment plan and the patient’s general health should be taken into account when planning for an implant treatment.  相似文献   

16.
Abstract:  The aim of this study was to evaluate the effect of the topical application of melatonin on osteointegration of dental implants in Beagle dogs 14 days after their insertion. In preparation for subsequent insertion of dental implants, upper and lower premolars and molars were extracted from 12 Beagle dogs. Each mandible received cylindrical screw implants of 3.25 mm in diameter and 10 mm in length. The implants were randomly assigned to the mesial and distal sites on each side of the mandible. Prior to implanting, 1.2 mg lyophylized powdered melatonin was applied to one bone hole at each side of the mandible. None was applied at the control sites. Eight histological sections per implant were obtained for histomorphometric studies. After a 2-wk treatment period, melatonin significantly increased the perimeter of bone that was in direct contact with the treated implants ( P  <   0.0001), bone density ( P  <   0.0001), new bone formation ( P  <   0.0001) and inter-thread bone ( P  <   0.05) in comparison with control implants. Topical application of melatonin may act as a biomimetic agent in the placement of endo-osseous dental implants.  相似文献   

17.
Abstract:  The aim of this study was to evaluate the effect of the topical application of melatonin mixed with collagenized porcine bone to accelerate the osteointegration on the rough discrete calcium deposit (DCD) surface implants in Beagle dogs 3 months after their insertion. In preparation for subsequent insertion of dental implants, lower premolars and molars were extracted from 12 Beagle dogs. Each mandible received three parallel wall implants with discrete calcium deposit (DCD) surface of 4 mm in diameter and 10 mm in length. The implants were randomly assigned to the distal sites on each side of the mandible in three groups: group I implants alone, group II implants with melatonin and group III implants with melatonin and porcine bone. Prior to implanting, 5 mg lyophylized powdered melatonin was applied to one bone hole at each side of the mandible. None was applied at the control sites. Ten histological sections per implant were obtained for histomorphometric studies. After a 4-wk treatment period, melatonin significantly increased the perimeter of bone that was in direct contact with the treated implants ( P <  0.0001), bone density ( P <  0.0001), new bone formation ( P <  0.0001) in comparison with control implants. Topical application of melatonin on DCD surface may act as a biomimetic agent in the placement of endo-osseous dental implants and enhance the osteointegration. Melatonin combined with porcine bone on DCD implants reveals more bone to implant contact at 12 wk (84.5 ± 1.5%) compared with melatonin treated (75.1 ± 1.4%) and nonmelatonin treated surface implants (64 ± 1.4%).  相似文献   

18.
This research aimed to compare the accuracy of dental implant placement among three types of surgical guide: metal sleeve with key handle (Nobel guide, Nobel Biocare, Göteborg, Sweden), metal sleeve without key handle, and non-sleeve without key handle (Dentium full guide kit, Dentium Co., Seoul, Korea) when placing the implant in different bone inclinations. A total of 72 polyurethane bone models were fabricated in different inclinations (0°, 45°, and 60°). The dental implants were placed in bone models following the company’s recommendations. After dental implants were installed, the digital scans were done by an extraoral scanner. The deviations of the dental implant position were evaluated by superimposition between post-implant placement and reference model by using GOM inspect software. The deviation measurement was shown in 5 parameters: angular deviation, 3D deviation at the crest, 3D deviation at the apex, lateral linear deviation, and vertical linear deviation. The data were analyzed using One-way ANOVA and post-hoc tests at a significance level of 0.05. The accuracy of the dental implant position was not significantly influenced by the difference in the surgical guide system (p > 0.05). There were significant differences between placed and planned implant positions in the different inclinations of the bone. A significant difference was found in all parameters of 0° and 60° bone inclinations (p < 0.05). At 0° and 45°, angulated bone showed significant differences except in 3D deviation at the apex. Between 45° and 60° were significant differences only in angular deviation. Within the limitations of this study, the accuracy of implant placement among three types of surgical guides (Non-sleeve without key handle, Metal sleeve without key handle, and Metal sleeve with key handle) from two companies (Dentium and Nobel Biocare) was similar. Hence, the operators can choose the surgical guide system according to their preference. The inclination of bone can influence the angulation of dental implants.  相似文献   

19.
In this study, the Bioeutectic® blocks were inserted into the critical size defects of eight rabbits, using both tibiae, and the physical and chemical nature of the remodeled interface between the Bioeutectic® implants and the surrounding bone were performed at four and 15 months. The results showed a new fully mineralized bone growing in direct contact with the implants. The ionic exchange, taking place at the implant interface with the body fluids was essential in the process of the implant integration through a dissolution-precipitation-transformation mechanism. The study found the interface biologically and chemically active over the 15 months implantation period. The osteoblastic cells migrated towards the interface and colonized the surface at the contact areas with the bone. The new developed apatite structure of porous morphology mimics natural bone.  相似文献   

20.
目的观察静磁场对牙种植体骨结合的影响。方法于实验兔股骨外侧髁植入牙种植体。实验组在种植体植入部位建立磁场强度为50 mT的静磁场,对照组无静磁场。在种植体植入后不同时间点,分别检测种植体的稳定性、骨结合率和种植体拔出力。结果在种植体植入后8周内,实验组种植体稳定性、骨结合率和拔出力高于对照组(P均<0.05)。结论静磁场能促进牙种植体的骨结合,缩短种植体达到稳定骨性结合的时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号