首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Meta-analysis of residential exposure to radon gas and lung cancer   总被引:4,自引:0,他引:4  
OBJECTIVES: To investigate the relation between residential exposure to radon and lung cancer. METHODS: A literature search was performed using Medline and other sources. The quality of studies was assessed. Adjusted odds ratios with 95% confidence intervals (CI) for the risk of lung cancer among categories of levels of exposure to radon were extracted. For each study, a weighted log-linear regression analysis of the adjusted odds ratios was performed according to radon concentration. The random effect model was used to combine values from single studies. Separate meta-analyses were performed on results from studies grouped with similar characteristics or with quality scores above or equal to the median. FINDINGS: Seventeen case-control studies were included in the meta-analysis. Quality scoring for individual studies ranged from 0.45 to 0.77 (median, 0.64). Meta-analysis based on exposure at 150 Bq/m3 gave a pooled odds ratio estimate of 1.24 (95% CI, 1.11-1.38), which indicated a potential effect of residential exposure to radon on the risk of lung cancer. Pooled estimates of fitted odds ratios at several levels of randon exposure were all significantly different from unity--ranging from 1.07 at 50 Bq/m3 to 1.43 at 250 Bq/m3. No remarkable differences from the baseline analysis were found for odds ratios from sensitivity analyses of studies in which > 75% of eligible cases were recruited (1.12, 1.00-1.25) and studies that included only women (1.29, 1.04-1.60). CONCLUSION: Although no definitive conclusions may be drawn, our results suggest a dose-response relation between residential exposure to radon and the risk of lung cancer. They support the need to develop strategies to reduce human exposure to radon.  相似文献   

2.
The Precautionary Principle in its simplest form states: "When an activity raises threats of harm to human health or the environment, precautionary measures should be taken even if some cause-and-effect relationships are not fully established scientifically". This Principle is the basis for European environmental law, and plays an increasing role in developing environmental health policies as well. It also is used in environmental decision-making in Canada and in several European countries, especially in Denmark, Sweden, and Germany. The Precautionary Principle has been used in the environmental decision-making process and in regulating drugs and other consumer products in the United States. The Precautionary Principle enhances the collection of risk information for, among other items, high production volume chemicals and risk-based analyses in general. It does not eliminate the need for good science or for science-based risk assessments. Public participation is encouraged in both the review process and the decision-making process. The Precautionary Principle encourages, and in some cases may require, transparency of the risk assessment process on health risk of chemicals both for public health and the environment. A debate continues on whether the Principle should embrace the "polluter pays" directive and place the responsibility for providing risk assessment on industry. The best elements of a precautionary approach demand good science and challenge the scientific community to improve methods used for risk assessment.  相似文献   

3.
A study of lung cancer risk from residential radon exposure and its radioactive progeny was performed with 200 cases (58% male, 42% female) and 397 controls matched on age and sex, all from the same health maintenance organization. Emphasis was placed on accurate and extensive year-long dosimetry with etch-track detectors in conjunction with careful questioning about historic patterns of in-home mobility. Conditional logistic regression was used to model the outcome of cancer on radon exposure, while controlling for years of residency, smoking, education, income, and years of job exposure to known or potential carcinogens. Smoking was accounted for by nine categories: never smokers, four categories of current smokers, and four categories of former smokers. Radon exposure was divided into six categories (model 1) with break points at 25, 50, 75, 150, and 250 Bq m, the lowest being the reference. Surprisingly, the adjusted odds ratios (AORs) were, in order, 1.00, 0.53, 0.31, 0.47, 0.22, and 2.50 with the third category significantly below 1.0 (p < 0.05), and the second, fourth, and fifth categories approaching statistical significance (p < 0.1). An alternate analysis (model 2) using natural cubic splines allowed calculating AORs as a continuous function of radon exposure. That analysis produces AORs that are substantially less than 1.0 with borderline statistical significance (0.048 < or = p < or = 0.05) between approximately 85 and 123 Bq m. College-educated subjects in comparison to high-school dropouts have a significant reduction in cancer risk after controlling for smoking, years of residency, and job exposures with AOR = 0.30 (95% CI: 0.13, 0.69), p = 0.005 (model 1).  相似文献   

4.
Residential radon has been shown to be a risk factor for lung cancer in several studies-but with limited power in each single study. The data of two case-control studies performed during 1990-1997 in Germany and used for previous publications have been extended and pooled. Both studies have identical study designs. In total, data of 2,963 incident lung cancer cases and 4,232 population controls are analyzed here. One-year radon measurements were performed in houses occupied during the 5-35 y prior to the interview. Conditional logistic and linear relative risk regression was used for the analysis. Measurements covered on average 70% of the exposure time window, with an average radon exposure of 61 Bq m(-3). The smoking and asbestos-adjusted ORs were 0.97 [95% confidence interval (CI) 0.85 to 1.11] for 50-80 Bq m(-3), 1.06 (95% CI 0.87 to 1.30) for 80-140 Bq m(-3) and 1.40 (95% CI 1.03 to 1.89) for radon concentrations above 140 Bq m(-3), compared to the reference category <50 Bq m(-3). The linear increase in the odds ratio per 100 Bq m(-3) was 0.10 (95% CI -0.02 to 0.30) for all subjects and 0.14 (95% CI -0.03 to 0.55) for less mobile subjects who lived in only one home in the last 5-35 y. The risk coefficients generally were higher when measurement error in the radon concentrations was reduced by restricting the population. With respect to histopathology, the risk for small cell carcinoma was higher than for other subtypes. This analysis strengthens the evidence that residential radon is a relevant risk factor for lung cancer.  相似文献   

5.
Case-control study on lung cancer and residential radon in western Germany   总被引:5,自引:0,他引:5  
In a 1990-1996 case-control study in western Germany, the authors investigated lung cancer risk due to exposure to residential radon. Confirmed lung cancer cases from hospitals and a random sample of community controls were interviewed by trained interviewers regarding different risk factors. For 1 year, alpha track detectors were placed in dwellings to measure radon gas concentrations. The evaluation included 1,449 cases and 2,297 controls recruited from the entire study area and a subsample of 365 cases and 595 controls from radon-prone areas of the basic study region. Rate ratios were estimated by using conditional logistic regression adjusted for smoking and for asbestos exposure. In the entire study area, no rate ratios different from 1.0 were found; in the radon-prone areas, the adjusted rate ratios for exposure in the present dwelling were 1.59 (95% confidence interval (CI): 1.08, 2.27), 1.93 (95% CI: 1.19, 3.13), and 1.93 (95% CI: 0.99, 3.77) for 50-80, 80-140, and >140 Bq/m3, respectively, compared with 0-50 Bq/m3. The excess rate ratio for an increase of 100 Bq/m3 was 0.13 (-0.12 to 0.46). An analysis based on cumulative exposure produced similar results. The results provide additional evidence that residential radon is a risk factor for lung cancer, although a risk was detected in radon-prone areas only, not in the entire study area.  相似文献   

6.
氡是地壳中铀的天然衰变产物,普遍存在于环境空气中。近年来,随着建筑材料的广泛应用,普通人群对氡的接触机会和暴露水平明显增加。主要的职业性氡接触人群是铀矿工。矿工吸入高浓度氡(^222Rn)会增加患肺癌的危险性。利用矿工模型的外推表明,氡是第二位致肺癌因素。德国7%的肺癌、荷兰4%的肺癌、瑞典4%的肺癌以及美国10%~15%的肺癌由氧暴露引起。  相似文献   

7.
Epidemiological evidence of lung cancer risk from radon is based mainly on studies of men employed underground in mines where exposures are relatively high in comparison to indoor exposure. Risk from residential radon can be estimated from occupational studies. Nevertheless, as such extrapolations depend on a number of assumptions, direct estimation of the risk is needed. The present study of lung cancer mortality was designed as a follow-up of a population (N = 12,004) in a radon prone area of the Czech Republic covering the period 1960-1999. Information on vital status and causes of death were obtained mostly from local authorities and from the national population registry. Exposure estimates were based on one year measurements of radon progeny in most houses of the study area (74%). Exposures outside the area (16%) were based on country radon mapping. Mean concentration of 509 Bq/m3 is higher than the country estimate by a factor of 5. By 1999, a total of 210 lung cancers were observed, somewhat more than the nationally expected number (O/E = 1.10) in comparison to generally low numbers corresponding to cancers other than lung (O/E = 0.81). The excess relative risk per standard radon concentration (100 Bq/m3) was 0.087 (90% CI: 0.017-0.208). This value is consistent with risk coefficients derived in other indoor studies. The present follow-up demonstrated that increased incidence of lung cancer depends linearly on exposure in terms of average radon concentration in the course of previous 5-34 years. Adjustment for smoking did not substantially change this estimate, although the risk coefficient for non-smokers (0.130) was higher in comparison to that for ever smokers (0.069), but not statistically different.  相似文献   

8.
Studies on miners as well as epidemiological studies in the general population show an increased lung cancer risk after exposure to radon and its progeny. The European pooled analysis of indoor radon studies estimates an excess relative risk of 8% (16% after correction for measurement uncertainties) per 100 Bq m(-3) indoor radon concentration. Here, we determine the population attributable fraction (PAF) for lung cancer due to residential radon based on this risk estimate for Switzerland and Germany. Based on regionally stratified radon data, the PAF was calculated following the World Health Organization concept of global burden of disease, compared to a realistic baseline radon concentration equal to the outdoor concentration. Lifetable approaches were used taking smoking and sex into account. Measurement error corrections were applied to both risk estimates and the radon distribution. In Switzerland, the average indoor radon concentration is 78 Bq m(-3), resulting in a PAF of 8.3%. Therefore, 169 male lung cancer deaths and 62 deaths in women can be attributed to residential radon per year. For Germany, the average indoor radon concentration is 49 Bq m(-3), corresponding to a PAF of 5.0% (1,422 male and 474 female deaths annually). In both countries, a large regional variation in the PAF was observed due to regional differences in radon concentrations and population structure. Both calculations show a strong dependency on the risk model used. Risk models based on miner studies result in higher PAF estimates than risk models based on indoor radon studies due to different assumptions regarding exposures received more than 35 years ago. The use of a non-zero baseline radon concentration also contributes to the lower PAF estimates reported here. Although the estimates of the population attributable fraction of residential radon presented here are lower than previously reported estimates, the risk is still one of the most widespread environmental hazards. Radon monitoring and radon reduction programs are therefore important issues for environmental public health management.  相似文献   

9.
Although high radon concentrations have been linked to increased risk of lung cancer by both experimental studies and investigations of underground miners, epidemiologic studies of residential radon exposure display inconsistencies. The authors therefore decided to conduct a population-based case-control study in northwest Spain to determine the risk of lung cancer associated with exposure to residential radon. The study covered a total of 163 subjects with incident lung cancer and a population sample of 241 cancer-free subjects since 1992-1994. Odds ratios for radon were estimated using logistic regression adjusted for sex, age, lifetime tobacco use, family history, and habitat. The adjusted odds ratios for the second, third, and fourth quartiles of radon (breakpoints: 37.0, 55.2, and 148.0 Bq/m(3)) were 2.73 (95% confidence interval (CI): 1.12, 5.48), 2.48 (95% CI: 1.29, 6.79), and 2.96 (95% CI: 1.29, 6.79), respectively. An additive synergic effect between radon and tobacco was found. The results from this study suggest that, even at concentrations far below official guideline levels, radon may lead to a 2.5-fold rise in the risk of lung cancer. Furthermore, the synergy found between smoking and radon may prove useful when it comes to drafting public health recommendations.  相似文献   

10.
Cohen's ecological analysis of US lung cancer mortality rates and mean county radon concentration shows decreasing mortality rates with increasing radon concentration (Cohen 1995 Health Phys. 68 157-74). The results prompted his rejection of the linear-no-threshold (LNT) model for radon and lung cancer. Although several authors have demonstrated that risk patterns in ecological analyses provide no inferential value for assessment of risk to individuals, Cohen advances two arguments in a recent response to Darby and Doll (2000 J. Radiol. Prot. 20 221-2) who suggest Cohen's results are and will always be burdened by the ecological fallacy. Cohen asserts that the ecological fallacy does not apply when testing the LNT model, for which average exposure determines average risk, and that the influence of confounding factors is obviated by the use of large numbers of stratification variables. These assertions are erroneous. Average dose determines average risk only for models which are linear in all covariates, in which case ecological analyses are valid. However, lung cancer risk and radon exposure, while linear in the relative risk, are not linearly related to the scale of absolute risk, and thus Cohen's rejection of the LNT model is based on a false premise of linearity. In addition, it is demonstrated that the deleterious association for radon and lung cancer observed in residential and miner studies is consistent with negative trends from ecological studies, of the type described by Cohen.  相似文献   

11.
12.
OBJECTIVES: A consideration of the effects of residential mobility produces much more realistic estimates of typical individuals' radon exposures and mortality risks than those of the Environmental Protection Agency (EPA). METHODS: A model linking residential mobility, the distribution of radon in US homes, and lung cancer risk is used to simulate lifetime radon exposure, with and without mitigation of high-radon homes, for typical mobile individuals. Radon-related lung cancer mortality risks are then estimated for smokers and never-smokers. RESULTS: Most individuals residing in high-radon homes have equivalent lifelong radon exposures well below those they are currently experiencing. Consequently, actual lung cancer risks are generally well below those implied in the EPA's radon risk charts. For most people who mitigate high-radon homes, risk reduction is modest. CONCLUSIONS: Radon may indeed be responsible for as large a population risk of lung cancer as the EPA estimates. However, caution must be used in interpreting the EPA's risk assessment for individuals; in many cases, mitigation will have little effect on residents' health risks.  相似文献   

13.
14.
Residential radon exposure and lung cancer: risk in nonsmokers   总被引:4,自引:0,他引:4  
Lung cancer is a disease that is almost entirely caused by smoking; hence, it is almost totally preventable. Yet there are a small percentage of cases, perhaps as many as 5 to 15%, where there are other causes. Risk factors identified for this other group include passive smoking, occupational exposure to certain chemicals and ionizing radiation, diet, and family history of cancer. In the United States cigarette smoking is on the decline among adults, occupational exposures are being reduced, and people are being made more aware of appropriate diets. These changes are gradually resulting in a reduced risk for this disease. Lung cancer in the U.S. may, therefore, eventually become largely a disease of the past. It remains important, however, to continue to study the cause(s) of lung cancer in non-smokers, particularly never smokers. Because of our interest in the effects of residential radon exposure on the development of lung cancer in non-smokers, we conducted a critical review of the scientific literature to evaluate this issue in detail. Strict criteria were utilized in selecting studies, which included being published in a peer reviewed journal, including non-smokers in the studied populations, having at least 100 cases, and being of case-control design. A total of 12 individual studies were found that met the criteria, with 10 providing some information on non-smokers. Most of these studies did not find any significant association between radon and lung cancer in non-smokers. Furthermore, data were not presented in sufficient detail for non-smokers in a number of studies. Based on the most recent findings, there is some evidence that radon may contribute to lung cancer risk in current smokers in high residential radon environments. The situation regarding the risk of lung cancer from radon in non-smokers (ex and never) is unclear, possibly because of both the relatively limited sample size of non-smokers and methodological limitations in most of the individual studies. A summary of these studies is provided concerning the state of knowledge of the lung cancer risk from radon, methodological problems with the residential studies, the need for the provision of additional data on non-smokers from researchers, and recommendations for future research in non-smokers.  相似文献   

15.
Residential radon and risk of lung cancer in Eastern Germany   总被引:2,自引:0,他引:2  
BACKGROUND: There is suggestive evidence that residential radon increases lung cancer risk. To elucidate this association further, we conducted a case-control study in Thuringia and Saxony in Eastern Germany during 1990-1997. METHODS: Histologically confirmed lung cancer patients from hospitals and a random sample of population controls matched on age, sex and geographical area were personally interviewed with respect to residential history, smoking, and other risk factors. One-year radon measurements were performed in houses occupied during the 5-35 years prior to the interview. The final analysis included a total of 1,192 cases and 1,640 controls. Odds ratios (OR) and 95% confidence intervals (CI) were estimated by logistic regression. RESULTS: Measurements covered on average 72% of the exposure time window, with mean radon concentrations of 76 Bq/m3 among the cases and 74 Bq/m3 among the controls. The smoking- and asbestos-adjusted ORs for categories of radon (50-80, 80-140 and >140 Bq/m*3, compared with 0-50 Bq/m3) were 0.95 (CI = 0.77 to 1.18), 1.13 (CI = 0.86 to1.50) and 1.30 (CI = 0.88 to 1.93). The excess relative risk per 100 Bq/m? was 0.08 (CI = -0.03 to 0.20) for all subjects and 0.09 (CI = -0.06 to 0.27) for subjects with complete measurements for all 30 years. CONCLUSIONS: Our data indicate a small increase in lung cancer risk as a result of residential radon that is consistent with the findings of previous indoor radon and miner studies.  相似文献   

16.
The precautionary principle asserts that the burden of proof for potentially harmful actions by industry or government rests on the assurance of safety and that when there are threats of serious damage, scientific uncertainty must be resolved in favor of prevention. Yet we in public health are sometimes guilty of not adhering to this principle. Examples of actions with unintended negative consequences include the addition of methyl tert-butyl ether to gasoline in the United States to decrease air pollution, the drilling of tube wells in Bangladesh to avoid surface water microbial contamination, and villagewide parenteral antischistosomiasis therapy in Egypt. Each of these actions had unintended negative consequences. Lessons include the importance of multidisciplinary approaches to public health and the value of risk-benefit analysis, of public health surveillance, and of a functioning tort system-all of which contribute to effective precautionary approaches.  相似文献   

17.
18.
The precautionary principle is a response to uncertainty in the face of risks to health or the environment. In general, it involves taking measures to avoid potential harm, despite lack of scientific certainty. In recent years it has been applied, not without difficulties, as a legal and political principle in many countries, particularly on the European and International level. In spite of the controversy, the precautionary principle has become an integral component of a new paradigm for the creation of public policies needed to meet today's challenges and those of the future.  相似文献   

19.
目的研究居室氡暴露与肺癌危险的关系。方法采用巢式病例-对照研究设计,病例与对照为1∶2个体配比。以面访的方式访问调查对象的家属或其他知情人。用固体核径迹探测器方法,对调查对象曾住房屋的氡浓度进行累积测量。结果成功访问了63例肺癌病例和125例对照,病例与对照的平均死亡年龄分别为60.1岁和60.6岁。病例和对照所在室内氡的平均浓度分别为40.1和39.2 Bq/m3。单因素条件logistic回归分析氡暴露与肺癌危险的关系,比值比[(OR)95%可信限(95%CI)]为1.25(0.63~2.52)。不同程度氡暴露,肺癌危险有增加趋势,但差异无统计学意义(P>0.05)。在100 Bq/m3氡浓度时,氡暴露的超额比值比(EOR)为0.30(95%CI:-0.53~14.93),调整钍射气贡献后,EOR=0.14。结论未发现室内氡暴露与肺癌危险有统计学意义的关联。  相似文献   

20.
The World Health Organization recently reported that breast cancer has become the most common cancer in women throughout the world. Known risk factors account for less than half of all cases of breast cancer, and inherited germ line mutations occur in at most only 10% of all cases. Cumulative exposure to estradiol and other hormones links many of the established risk factors for breast cancer. This paper reviews epidemiologic and toxicologic evidence on breast cancer risks and presents a comprehensive construct of risk factors intended to focus on the identification of those factors that can be controlled or modified. We attempt to provide a framework for interpreting the etiologic interplay of endogenous metabolic changes and environmental changes in the etiology of breast cancer. The construct we develop distinguishes between those risk factors that are directly causal, such as ionizing radiation and inherited germ cell defects, those vulnerability factors that extend the time period during which the breast undergoes development, and those contributing factors that increase total hormonal stimulation of the breast. Some hormonally active compounds, such as those in soy and broccoli and other phytoestrogen-containing foods, can be protective against breast cancer, while others, such as some environmental contaminants, appear to increase the risk of the disease by increasing levels of harmful hormones. Efforts to explain patterns of breast cancer should distinguish between these different risk factors. Identification of vulnerability and contributing risk factors can foster the development of public policy to reduce the burden of this prevalent cancer. Prudent precautionary principles suggest that reducing exposure to avoidable or modifiable risk factors should receive high priority from the public and private sectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号