首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Motopsin (PRSS12) is a mosaic protease expressed in the central nervous system. Truncation of the human motopsin gene causes nonsyndromic mental retardation. Understanding the enzymatic properties and localization of motopsin protein in the central nervous system will help identify the molecular mechanism by which the loss of motopsin function causes mental retardation. Recombinant motopsin showed amidolytic activity against the synthetic substrate benzyloxycarbonyl-l-phenylalanyl-l-arginine 4-methyl-coumaryl-7-amide. Motopsin activated the single-chain tissue plasminogen activator precursor and exhibited gelatinolytic activity. This enzymatic activity was inhibited by typical serine protease inhibitors such as aprotinin, leupeptin, and (4-amidinophenyl) methanesulfonyl fluoride. Immunocytochemistry using anti-motopsin IgG revealed that both human and mouse motopsin proteins were distributed in discrete puncta along the dendrites and soma as well as axons in cultured hippocampal neurons. In the limbic system, including the cingulate and hippocampal pyramidal neurons and piriform cortex, high level of motopsin protein was expressed at postnatal day 10, but a very low level at 10-week-old mice. Motopsin and tissue plasminogen activator were co-expressed in the cingulate pyramidal neurons at postnatal day 10 and were distributed along dendrites of cultured pyramidal neurons. In cranial nuclei, a moderate level of motopsin protein was detected independently on the developmental stage. Our results suggest that motopsin has multiple functions, such as axon outgrowth, arranging perineuronal environment, and maintaining neuronal plasticity, partly in coordination with other proteases including tissue plasminogen activator.  相似文献   

2.
The enzyme 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) catalyzes the conversion of progesterone into its inactive form, 20alpha-hydroxyprogesterone. We studied the expression of 20alpha-HSD mRNA in mouse brain by in situ hybridization. 20alpha-HSD mRNA was exclusively found in neurons in cortex and hippocampus. In the cortex, the labelled cells were concentrated in the external granular layer, the external pyramidal layer and the inner granular layer. In the hippocampus, the labelling was mostly located over pyramidal cells of the CA1 layer. These results suggest that progesterone can be inactivated by 20alpha-HSD in some specific brain areas.  相似文献   

3.
The mu (μ) opioid receptors, which mediate the effects of morphine, are widely distributed in brain. We have examined the distribution of mRNA encoding a μ opioid receptor in rat brain with in situ hybridization histochemistry at the single-cell level to obtain information about the cell types synthesizing this receptor. Only neurons, not glia, were labeled in discrete brain regions. High levels of labeling were detected in the thalamus, striosomes of the caudateputamen, globus pallidus, and brain regions involved in nociception, arousal, respiratory control, and, possibly, addiction. The general distribution of the receptor mRNA paralleled that of μ opioid binding sites with some notable exceptions. These include the cerebral cortex, which contains binding sites, but very few labeled neurons. No labeling was observed in the cerebellum, a region devoid of μ binding sites. Three main findings emerged from these experiments: (1) the mRNA was present in regions mediating both the therapeutic (analgesia) and the unwanted (respiratory depression, addiction) effects of morphine, (2) the mRNA was very densely expressed by neurons known to receive dense enkephalin-containing inputs, and (3) the dissociation between the presence of binding sites and absence of mRNA in some brain regions supports a presynaptic localization of μ opioid receptors in these areas. Alternatively, other subtypes of μ opioid receptors may be encoded by a different mRNA. These results provide new insights into the receptor types and neuronal circuits involved in the effects of endogenous opioids and morphine. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Carboxypeptidase E (CPE), also referred to as enkephalin convertase or carboxypeptidase H (EC 3.4.17.10), is present in neurotransmitter secretory granules and can remove C-terminal basic residues following endopeptidase cleavage during peptide processing. Using in situ hybridization with 35S-labeled oligonucleotide probes, we have mapped the localization of CPE mRNA in the rat brain. Specificity for CPE was confirmed by control experiments, which included production of identical patterns hybridization with 3 different antisense oligonucleotide probes, loss of label with RNase pretreatment of sections or co-incubation with excess unlabeled probe, and lack of labeling with sense orientation probes. In addition, the regional distribution of CPE mRNA by Northern blot analysis corresponded with distribution of labeling by in situ hybridization. The highest levels of CPE mRNA were found to be present in the pyramidal cells of the hippocampus, the pituitary anterior and intermediate lobes, the ependymal cells of the lateral ventricle, the endopiriform nucleus, the basolateral amygdala, the supraoptic nucleus, and the paraventricular nucleus. Intermediate levels were present in the thalamus, medial geniculate nucleus, lateral septal nucleus, piriform and entorhinal cortex, nucleus of the tractus solitarius, cerebellar cortex, pontine nuclei, and inferior olive. The lowest levels were found in the hippocampal granule cell layer, lateral hypothalamus, globus pallidus, and brain stem reticular formation. Ibotenic acid lesions of the hippocampus eliminated the majority of the label, which had been present over pyramidal cells, though labeling was increased over areas of reactive gliosis, suggesting that activated astrocytes can also synthesize CPE mRNA. In general, the localization of CPE mRNA in the rat brain corresponded to the distribution of enkephalin and other peptide neurotransmitter-synthesizing neurons, though CPE mRNA was also present in neurons that do not secrete known peptides and in reactive glia. The widespread yet specific localization of CPE mRNA in the rat brain suggests it may be an excellent marker for peptide synthesizing cells in the CNS.  相似文献   

5.
The distribution of the messenger RNA (mRNA) coding for neprilysin (EC 3.4.24.11) has been studied by in situ hybridization in the adult rat brain. A markedly heterogeneous distribution among various brain regions was found. A strong signal was observed in the glomerular layer of the olfactory bulb, the olfactory tubercle, the caudate putamen, the habenular, anterior pretectal, interpeduncular, red, dorso tegmental, pontine, and vestibular nuclei, the mammillary bodies, the Purkinje cells, and the choroid plexus of the fourth ventricle. A large number of areas such as the cortex, the dentate gyrus, the hippocampus, the medial terminal nucleus of the accessory tract, the accumbens and the arcuate nuclei, the superior and inferior colliculi, and a few regions in the thalamus at the mesencephalic level exhibited a moderate or low signal of hybridization. The majority of these regions are also known to contain the neprilysin protein. On the other hand, the globus pallidus, the substantia nigra, and the central gray matter, which show a high or a moderate amount of neprilysin, did not contain any neprilysin mRNA. Comparison of the regional distribution of neprilysin mRNA with that of its translation product provides insight into neprilysin neuronal pathways in the central nervous system. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Aromatic L-amino acid decarboxylase (AAAD) is the second enzyme in the sequence leading to the synthesis of catecholamines or serotonin. Antisense riboprobes for aromatic L-amino acid decarboxylase mRNA were used to map the gene in mouse brain by in situ hybridization. The substantia nigra, the ventral tegmental nucleus, the dorsal raphe nucleus, the locus coeruleus, and the olfactory bulb contained the highest signal for AAAD mRNA. After treatment with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the signal disappeared in the substantia nigra, decreased somewhat in the ventral tegmental area, and remained unchanged in the dorsal raphe nucleus. Hypothalamic and cerebellar Purkinje neurons known to contain histidine decarboxylase or glutamic acid decarboxylase, respectively, were unlabeled by the probes. However, neurons in the deep layers of the frontal cortex, many thalamic nuclei, and the pyramidal neurons of the hippocampus were lightly to moderately labeled for mouse AAAD mRNA. The presence of AAAD message in these neurons suggests that the enzyme has functions other than that for the synthesis of the classical biogenic amine neurotransmitters. © 1993 Wiley-Liss,Inc.  相似文献   

7.
The mRNA expression for preprotachykinin-A (PPT-A) was studied throughout the human and cynomolgus monkey brain to assess the neuroanatomical expression pattern of the PPT-A gene in primates. In situ hybridization showed that the PPT-A mRNA is expressed highly in specific regions of the postmortem human brain, including the striatum, islands of Calleja, hypothalamus (posterior, premammillary, medial mammillary, and ventromedial nuclei), superior and inferior colliculi, periaqueductal gray, and oculomotor nuclear complex. PPT-A mRNA-expressing neurons also were present in the paranigralis (ventral tegmental area) and were scattered in the bed nucleus stria terminalis throughout the sublenticular substantia innominata region, including the diagonal band of Broca and the nucleus basalis of Meynert. In the hippocampus, high PPT-A mRNA expression was localized predominantly to the polymorphic layer of the dentate gyrus; no labeled cells were present in the granular layer. Positively labeled cells also were found scattered in the CA regions as well as in the amygdaloid complex. Neocortical expression of PPT-A mRNA was localized mainly to the deep laminae (layers V/VI), except for the striate cortex (labeling was seen also in superficial layers). The subiculum, thalamus, globus pallidus, ventral pallidum, substantia nigra pars compacta, red nucleus, pontine nuclei, and cerebellum were characterized by very weak to undetectable expression of PPT-A mRNA. An expression pattern was evident in the monkey forebrain similar to that observed in the human, except for the absence of PPT mRNA-expressing cells in the medial mammillary nucleus despite intense expression in supramammillary, lateral mammillary, and premammillary nuclei. Overall, more similarities than differences are apparent between primate species in the expression pattern of the PPT-A gene. J. Comp. Neurol. 411;56-72, 1999.  相似文献   

8.
We examined the distribution of choline acetyltransferase (ChAT) mRNA in the brain of six autopsied individuals by in situ hybridization with -labeled human ChAT riboprobes. Neurons containing hybridization signal for ChAT mRNA were observed in the nucleus of the diagonal band of Broca, the basal nucleus of Meynert, the caudate nucleus, the putamen, the pedunculopontine tegmental nucleus, the laterodorsal tegmental nucleus, the parabigeminal nucleus, the oculomotor nucleus and the trochlear nucleus. These findings were in good agreement with previous ChAT-immunohistochemical data. In contrast, labeled neurons were not observed in the medial septal and medial habenular nuclei, in which previously ChAT-immunoreactive neurons have been identified in many mammalian species, including the human. An unexpected result of the present study was the demonstration of neurons with ChAT mRNA signal in restricted areas of the human cerebral cortex.  相似文献   

9.
10.
Fibroblast growth factors (FGFs) are potent growth factors with roles in the brain ranging from development to adult plasticity. FGF-5 is a newly described member of the fibroblast growth factor family. In order to evaluate a possible role of FGF-5, we have examined the locus of synthesis of FGF-5 in the rat brain. We have used in situ hybridization of35S-labelled RNA probe complementary to FGF-5 mRNA. FGF-5 mRNA was present in neurons in select regions of the rat brain. FGF-5 mRNA expression was particularly intense in the olfactory bulb within periglomerular elements and the mitral cell layer. The primary olfactory cortex also showed a robust expression of FGF-5 mRNA mostly within layer II. In the hippocampal formation, the greatest labelling of FGF-5 mRNA occurred in hippocampal pyramidal cells within subfields CA3 and secondarily within subfields CA1, CA2 and CA4. The dentate gyrus granule cells displayed a modest hybridization signal. The cerebral cortex (neocortex) showed a light labelling throughout its rostro-caudal extent mostly within external layers. The entorhinal cortex showed a higher FGF-5 mRNA expression as compared to the neocortex and signal appeared more intense in layer II. In general, FGF-5 mRNA was shown to be localized mostly in limbic structures, suggesting that FGF-5 may play a role in limbic system function of dysfunction.  相似文献   

11.
The distribution of calretinin containing neurons examined by in situ hybridization mapping was compared with that obtained by immunocytochemistry in the brain of octopus. Results revealed a close correspondence between the two types of investigations. Western blot analysis disclosed a 29 kDa protein immunostained with anti-calretinin antibody. Calretinin containing neurons were localized mainly in the cortex of octopus lobes, including the vertical, frontal, basal, buccal, palliovisceral, pedal and branchial, with variations of staining intensity and density of immunoreactive cells. The amacrine cells surrounding calretinin containing neuronal bodies of the cortex were also labeled unlike the glial cells. The close correspondence of blotting analysis, immunocytochemistry and in situ hybridization indicates with no doubt that calretinin, like other calcium-binding proteins previously studied, is also present in the nervous system of cephalopods. Furthermore, although recent findings localize calretinin also in endocrine glands, the presence of this calcium-binding protein in the brain of octopus indicates that calretinin appeared early in the phylogeny as a neuronal protein already in invertebrates.  相似文献   

12.
Previous immunohistochemical analysis revealed a wide distribution of L1cam-positive neural and nonneural structures in adult mouse brain. Although there were numerous punctate immunoreactive nerve terminals, only a few immunoreactive neuronal cell somata were present (Munakata et al. [2003] BMC Neurosci. 4:7). To explore the distribution of L1cam mRNA-containing cells, which are interpreted to be L1cam-producing cells, we performed in situ hybridization histochemistry with an antisense L1cam cRNA probe. L1cam mRNA was distributed widely from the olfactory bulb to the upper cervical cord with an uneven localization pattern in adult brain. All positive cell somata with silver grains after emulsion autoradiography were neuronal, and no grains were detected on nonneural cells in the present study. A high density of signals for neuronal L1cam mRNA was found in the thalamus, mammillary body, and hippocampus. In addition, strong hybridization signals were localized in various nuclei: main and accessory olfactory bulb, compact part of the substantia nigra, pontine gray matter, tegmental reticular nucleus, Edinger-Westphal nucleus, trigeminal motor nucleus, locus coeruleus, mesencephalic trigeminal nucleus, raphe nuclei, facial nucleus, ambiguus nucleus, dorsal motor vagal nucleus, and inferior olivary nucleus. Some long projection neurons such as the pyramidal, mitral, principal neurons of several cranial nuclei, and presumably monoaminergic cells containing noradrenalin, dopamine, and serotonin, expressed high levels of L1cam.  相似文献   

13.
The distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide (PACAP) receptor (PACAP-R) was examined in the rat brain, and also in the hypophysis and pineal gland, by in situ hybridization with a specific 35S-labeled riboprobe which was generated from a rat PACAP-R cDNA clone. In the brain, expression of PACAP-R mRNA was most prominent in the periglomerular and granule cells of the olfactory bulb, granule cells of the dentate gyrus, supraoptic nucleus, and area postrema. The expression was also intense in the piriform, cingulate, and retrosplenial cortices, pyramidal cells in CA2, non-pyramidal cells in CA1-CA3, neuronal cells in the hilus of the dentate gyrus, lateral septal nucleus, intercalated amygdaloid nucleus, anterodorsal thalamic nucleus, most of the midline and intralaminar thalamic nuclei, many regions of the hypothalamus, dorsal motor nucleus of the vagus nerve, hypoglossal nucleus, and lateral reticular nucleus. No significant expression was detected in the mitral and tufted cells in the olfactory bulb, pyramidal cells in CA1 and CA3, posterior nuclear group of the thalamus, dorsal lateral geniculate nucleus, and Purkinje, Golgi, and granule cells in the cerebellar cortex. Moderate-to-weak expression was further observed in many other regions of the brain. In the cerebellar cortex, presumed Bergmann glia cells showed moderate expression. In the hypophysis, the expression was moderate in the anterior lobe, and weak to moderate in the posterior lobe; no significant expression was observed in the intermediate lobe. In the pineal gland, the expression was very weak, if any. Thus, the expression of PACAP-R was detected not only on neuronal cells but also on some particular glial cells. The present study has shown, for the first time, the exact site of PACAP-R expression in the brain and hypophysis. Although the functional significance of PACAP and PACAP-R in the brain still remains to be clarified, the present results are considered to provide some direction for future functional studies. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Myotonic dystrophy1 (DM1) is an autosomal dominant, multi-system disorder resulting from a CTG repeat expansion located in the 3' untranslated region of DMPK and immediately in the 5' of SIX5. Skeletal muscle, heart and smooth muscle are prominently affected in DM1. Endocrine abnormalities, gonadal atrophy, brain, skin, skeletal, immune and respiratory defects are also features of the disorder. Both DMPK and SIX5 levels are decreased in DM1 patients. Importantly, expression of mutant mRNAs encoding expanded CUG repeats has been shown to alter the activity of CUG repeat binding proteins in DM1. Mouse models have demonstrated that decreased levels of Dmpk, Six5 and the expression of expanded CUG repeats independently contribute to the development of DM1 pathology. However, an important gap in these studies is a lack of clear understanding of the expression pattern of Dmpk. We demonstrate that Dmpk mRNA is expressed in a range of adult mouse tissues that show pathology in DM1 including skeletal muscle, heart, smooth muscle, bone, testis, pituitary, brain, eye, skin, thymus and lung. Thus DMPK loss or CUG repeat expansion could contribute to DM1 pathology to these tissues. Dmpk mRNA is not detected in the ovary, pancreas or kidney. Significantly, Dmpk mRNA is expressed in the intestinal epithelium, cartilage and liver, which have not been reported to show consistent abnormalities in Dmpk(-/-) mice or in transgenic animals expressing CUG repeats. Taken together these data suggest that Dmpk loss or CUG repeat expression per se may not be sufficient to initiate pathology and are consistent with the hypothesis that coexpression of specific CUG repeat binding proteins with the mutant Dmpk mRNA or deregulation of genes such as Six5 that flank the CTG repeat tract may be necessary for DM1 to manifest.  相似文献   

15.
Expression of muscarinic receptor mRNA subtypes (m1–5) and nicotinic receptor subunits (α2–4, and β2) was examined in the rat submandibular gland by in situ hybridization histochemistry, using oligonucleotide probes for the muscarinic receptor and RNA probes for the nicotinic receptors, m2, α3, and β2 mRNA were strongly expressed in the submandibular ganglion, and m3, α2, α3, α4, and β2 were expressed in the striated and interlobular duct cells. Both muscarinic and nicotinic receptors were coexpressed in the same ganglion neurons, while none of these mRNA were detected in the terminal secretory units.  相似文献   

16.
An endogenous peptide, named diazepam-binding inhibitor (DBI) capable of displacing benzodiazepines from binding sites has been recently fully characterized. In order to clearly identify the cell types responsible for the biosynthesis of DBI in the rat central nervous system, we have performed high resolution in situ hybridization in the area postrema, hypothalamus and cerebellum, using a [35S]-labeled single stranded RNA probe. Hybridization signal was detected in both semithin and ultrathin sections. In all the brain areas examined, specific labeling was exclusively observed in non-neuronal cells including ependymal and subependymal cells bordering the third ventricle. The results obtained clearly establish that DBI is synthesized by non-neuronal cells in the rat brain.  相似文献   

17.
Our group has reported on the cloning of a novel rat neuropeptide Y (NPY) receptor involved in NPY-induced food intake, the Y5 receptor. The distribution in rat brain of the mRNA encoding this receptor has been determined by in situ hybridization histochemistry, using radiolabeled oligonucleotide probes. Control experiments were carried out in cell lines transfected with either rat Y1 or rat Y5 cDNAs. With the exception of the cerebellum, only the antisense probes yielded hybridization signal in rat brain tissue sections. A number of brain regions contained hybridization signals indicative of Y5 mRNA localization. Chief among these were various hypothalamic nuclei, including the medial preoptic nucleus, the supraoptic nucleus, the paraventricular nucleus, and the lateral hypothalamus. Other regions with substantial hybridization signals included the midline thalamus, parts of the amygdala and hippocampus, and some midbrain and brain-stem nuclei. In general a low density of Y5 mRNA was observed in most cortical structures, with the exception of the cingulate and retrosplenial cortices, each of which contained a moderate abundance of Y5 hybridization signal. The distribution of this receptor mRNA is consistent with a role for the Y5 receptor in food intake and also suggests involvement in other processes mediated by NPY.  相似文献   

18.
Preproenkephalin A (PPA) mRNA expression was studied by Northern blot and in situ hybridization in cell lines (rat glioma C6, rat hepatoma HTC, human neuroblastoma IMR32, mouse neuroblastoma NS20Y, rat fibroblast FR3T3, human bladder carcinoma EJ, human vulva carcinoma A431, myelocytic leukemia HL60, rat adrenal carcinoma Y1) and in brain tumours (implanted C6 cells). C6 glioma in cell culture, as well as in brain tumours, expressed high levels of PPA mRNA as compared to the caudate nucleus of the rat brain. EJ and FR3T3 cell lines also expressed the PPA mRNA, which was not detectable in A431, Y1, NS20Y, IMR32, HTC, HL60 cell lines as well as in the rat liver. This observation provides an interesting model to study the mechanisms by which the malignant transformation can induce in glial cells the derepression of a gene which is usually expressed in neurons or in neuron-like cells.  相似文献   

19.
The regional distribution of neurones expressing aromatase mRNA in the ram hypothalamus was examined by in situ hybridization using 33P-labelled cRNA probes. The highest amounts of hybridization signal were observed in the central part of the medial preoptic nucleus and posterior medial part of the bed nucleus of the stria terminalis. Moderate amounts of hybridization signal were observed in the anteroventral periventricular preoptic nucleus, medial preoptic nucleus and a broad band extending between the medial preoptic nucleus and bed nucleus of the stria terminalis. Low levels of hybridization signal were observed in the organum vasculosum of the lamina terminalis, anterior part of the medial preoptic nucleus, and central part of the ventromedial nucleus of the hypothalamus. The presence of aromatase mRNA within neurones of the steroid-sensitive hypothalamic circuit supports a role for aromatization in the mechanism of testosterone action on reproductive function in male sheep. The distribution of aromatase mRNA in the ovine hypothalamus was similar to that described for other vertebrate species, suggesting a high degree of functional conservation across species.  相似文献   

20.
The bradykinin 1 and 2 receptors (B1R, B2R) are important mediators of cardiovascular homeostasis, inflammation, and nociception. While B2R is constitutively expressed in many tissues, B1R expression is thought to be absent, but induced under proinflammatory conditions. However, recent data from knockout mice have indicated that B1R acts centrally to mediate nociception, a finding that suggests the constitutive presence of B1R in brain and/or spinal cord. The purpose of the present study was to further elucidate the physiological role of B1R by evaluating the localization of B1R mRNA in the nonhuman primate brain and spinal cord with in situ hybridization. Cryostat sections from monkey brain and spinal cord were hybridized with a [(35)S]-labeled riboprobe complementary to B1R mRNA, stringently washed, and apposed to film and emulsion. The results of these studies revealed the presence of B1R mRNA throughout the rostral-caudal extent of the brain and spinal cord. In particular, labeled cells were seen in the cerebral and entorhinal cortex, dentate gyrus, and pyramidal neurons of the hippocampus, in the thalamus, hypothalamus, amygdala, pontine nuclei, spinal cord, and dorsal root ganglion. Together the present findings offer detailed information about the distribution of B1R mRNA in the primate brain and spinal cord and demonstrate a basal level of expression in the primate nervous system. Moreover, these data provide a foundation for understanding the central actions of kinins and their putative role in mediating a number of processes, including pain and nociception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号