首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
Heparan sulfate abnormalities in exostosis growth plates   总被引:6,自引:0,他引:6  
Hecht JT  Hall CR  Snuggs M  Hayes E  Haynes R  Cole WG 《BONE》2002,31(1):199-204
Hereditary multiple exostoses (HME), a condition associated with development and growth of bony exostoses at the ends of the long bones, is caused by germline mutations in the EXT genes. EXT1 and EXT2 function as glycosyltransferases that participate in the biosynthesis of heparan sulfate (HS) to modify proteoglycans. HS proteoglycans, synthesized by chondrocytes and secreted to the extracellular matrix of the growth plate, play critical roles in growth plate signaling and remodeling. As part of studies to delineate the mechanism(s) by which an exostosis develops, we have systematically evaluated four growth plates from two HME and two solitary exostoses. Mutational events were correlated with the presence/absence and distribution of HS and the normally abundant proteoglycan, perlecan (PLN). DNA from the HME exostoses demonstrated heterozygous germline EXT1 or EXT2 mutations, and DNA from one solitary exostosis demonstrated a somatic EXT1 mutation. No loss of heterozygosity was observed in any of these samples. The chondrocyte zones of four exostosis growth plates showed absence of HS, as well as diminished and abnormal distribution of PLN. These results indicate that, although multiple mutational events do not occur in the EXT1 or EXT2 genes, a complete loss of HS was found in the exostosis growth plates. This functional knockout of the exostosis chondrocytes' ability to synthesize HS chains further supports the observations of cytoskeletal abnormalities and chondrocyte disorganization associated with abnormal cell signaling.  相似文献   

2.
Multiple Hereditary Exostoses (MHE) is an autosomal dominant skeletal disorder most frequently caused by mutations in the EXT1 gene. MHE affects proper development of endochondral bones, such that all affected individuals present with exostoses adjacent to the growth plate of long bones, while some individuals exhibit additional bone deformities. EXT1 functions as a heparan sulfate (HS) co-polymerase, and when defective causes improper elongation of glycosaminoglycan side chains on core proteins of HS proteoglycans. Although analysis of heterozygous EXT1-deficient mice has failed to reveal any significant gross morphological variations in skeletal development, significant alterations in molecular signaling occur in the developing long bones. Our results indicate that defects in EXT1 and the resulting reduction in HS lead to enhanced Indian Hedgehog diffusion causing an increase in chondrocyte proliferation and delayed hypertrophic differentiation.  相似文献   

3.
Hereditary multiple exostoses (HME), an autosomal skeletal disorder characterized by cartilage-capped excrescences, has been ascribed to mutations in EXT 1 and EXT 2, two tumor suppressor-related genes encoding glycosyltransferases involved in the heparan sulfate proteoglycan (HSPG) biosynthesis. Taking advantage of the availability of three different exostoses from a patient with HME harboring a premature termination codon in the EXT 1 gene, morphological, immunologic, and biochemical analyses of the samples were carried out. The cartilaginous exostosis, when compared with control cartilage, exhibited alterations in the distribution and morphology of chondrocytes with abundant bundles of actin filaments indicative of cytoskeletal defects. Chondrocytes in the exostosis were surrounded by an extracellular matrix containing abnormally high amounts of collagen type X. The unexpected presence of collagen type I unevenly distributed in the cartilage matrix further suggested that some of the hypertrophic chondrocytes detected in the cartilaginous caps of the exostoses underwent accelerated differentiation. The two mineralized exostoses presented lamellar bone arrangement undergoing intense remodeling as evidenced by the presence of numerous reversal lines. The increased electrophoretic mobility of chondroitin sulfate and dermatan sulfate proteoglycans (PGs) extracted from the two bony exostoses was ascribed to an absence of the decorin core protein. Altogether, these data indicate that EXT mutations might induce a defective endochondral ossification process in exostoses by altering actin distribution and chondrocyte differentiation and by promoting primary calcification through decorin removal.  相似文献   

4.
Cytoskeletal abnormalities in chondrocytes with EXT1 and EXT2 mutations.   总被引:4,自引:0,他引:4  
The EXT genes are a group of putative tumor suppressor genes that previously have been shown to participate in the development of hereditary multiple exostoses (HME), HME-associated and isolated chondrosarcomas. Two HME disease genes, EXT1 and EXT2, have been identified and are expressed ubiquitously. However, the only known effect of mutations in the EXT genes is on chondrocyte function as evidenced by aberrant proliferation of chondrocytes leading to formation of bony, cartilage-capped projections (exostoses). In this study, we have characterized exostosis chondrocytes from three patients with HME (one with EXT1 and two with EXT2 germline mutations) and from one individual with a non-HME, isolated exostosis. At the light microscopic level, exostosis chondrocytes have a stellate appearance with elongated inclusions in the cytoplasm. Confocal and immunofluorescence of in vitro and in vivo chondrocytes showed that these massive accumulations are composed of actin bundled by 1.5-microm repeat cross-bridges of alpha-actinin. Western blot analysis shows that exostosis chondrocytes from two out of three patients aberrantly produce high levels of muscle-specific alpha-actin, whereas beta-actin levels are similar to normal chondrocytes. These findings suggest that mutations in the EXT genes cause abnormal processing of cytoskeleton proteins in chondrocytes.  相似文献   

5.
6.
Glomerular deposition of fibrillar collagen is a characteristic finding of genetically distinct conditions, including nail-patella syndrome and collagen type III glomerulopathy. A case of familial nephropathy in which steroid-sensitive nephrotic syndrome and glomerular deposits of fibrillar collagen are associated with multiple exostoses due to mutation of the EXT1 gene is described. This gene encodes a glycosyltransferase required for synthesis of heparan sulfate glycosaminoglycans. There is deficiency of heparan sulfate and perlecan, together with accumulation of collagens, in the matrix of EXT1-associated osteochondromas. Similar glomerular basement membrane abnormalities could offer an explanation for both the renal ultrastructural changes and steroid-sensitive nephrotic syndrome.  相似文献   

7.
Podocytes synthesize the majority of the glomerular basement membrane components with some contribution from the glomerular capillary endothelial cells. The anionic charge of heparan sulfate proteoglycans is conferred by covalently attached heparan sulfate glycosaminoglycans and these are thought to provide critical charge selectivity to the glomerular basement membrane for ultrafiltration. One key component in herparan sulfate glycosaminoglycan assembly is the Ext1 gene product encoding a subunit of heparan sulfate co-polymerase. Here we knocked out Ext1 gene expression in podocytes halting polymerization of heparin sulfate glycosaminoglycans on the proteoglycan core proteins secreted by podocytes. Glomerular development occurred normally in these knockout animals but changes in podocyte morphology, such as foot process effacement, were seen as early as 1 month after birth. Immunohistochemical analysis showed a significant decrease in heparan sulfate glycosaminoglycans confirmed by ultrastructural studies using polyethyleneimine staining. Despite podocyte abnormalities and loss of heparan sulfate glycosaminoglycans, severe albuminuria did not develop in the knockout mice. We show that the presence of podocyte-secreted heparan sulfate glycosaminoglycans is not absolutely necessary to limit albuminuria suggesting the existence of other mechanisms that limit albuminuria. Heparan sulfate glycosaminoglycans appear to have functions that control podocyte behavior rather than be primarily an ultrafiltration barrier.  相似文献   

8.
Individuals with multiple osteochondromas (MO) demonstrate shortened long bones. Ext1 or Ext2 haploinsufficiency cannot recapitulate the phenotype in mice. Loss of heterozygosity for Ext1 may induce shortening by steal of longitudinal growth into osteochondromas or by a general derangement of physeal signaling. We induced osteochondromagenesis at different time points during skeletal growth in a mouse genetic model, then analyzed femora and tibiae at 12 weeks using micro‐CT and a point‐distribution‐based shape analysis. Bone lengths and volumes were compared. Metaphyseal volume deviations from normal, as a measure of phenotypic widening, were tested for correlation with length deviations. Mice with osteochondromas had shorter femora and tibiae than controls, more consistently when osteochondromagenesis was induced earlier during skeletal growth. Volumetric metaphyseal widening did not correlate with longitudinal shortening, although some of the most severe shortening was in bones with abundant osteochondromas. Loss of heterozygosity for Ext1 was sufficient to drive bone shortening in a mouse model of MO, but shortening did not correlate with osteochondroma volumetric growth. While a steal phenomenon seems apparent in individual cases, some other mechanism must also be capable of contributing to the short bone phenotype, independent of osteochondroma formation. Clones of chondrocytes lacking functional heparan sulfate must blunt physeal signaling generally, rather than stealing growth potential focally. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 651–657, 2013  相似文献   

9.
The anatomic singularities of the nail unit explain why bony tumors and osseous outgrowths of the distal phalanx quickly interfere with the nail apparatus. Osteochondromas (or exostosis) are benign osteocartilaginous outgrowths most commonly located on the hallux. They are by far the most common bony lesions affecting the nail unit. While frequently considered benign tumors, subungual exostoses are better regarded as reactional osseous outgrowths rather than true tumors. Enchondromas (better named chondromas) are intraosseous tumors whose location at the distal phalanx is rare. Large tumors may be responsible for phalanx deformity.  相似文献   

10.
Regulation of BMP-induced ectopic bone formation by Ahsg.   总被引:7,自引:0,他引:7  
alpha2-HS-glycoprotein (Ahsg), also known as fetuin is a serum and bone resident glycoprotein, which binds to TGF-beta superfamily members including bone morphogenetic proteins (BMP) and inhibits dexamethasone-induced osteogenesis in bone marrow cultures in vitro. Here we demonstrate that Ahsg reduces cytokine binding to its cognate receptor in HOS osteocyte cells and suppresses intracellular signaling, while in vivo, we test the hypothesis that Ahsg-deficient mice are hyper-responsive to BMP-induced osteogenesis. Human native BMP was implanted into the hindquarter muscles of Ahsg(+/+), Ahsg(+/-) and Ahsg(-/-) mice and 4 weeks later, ossicle formation was analyzed by radiography, bone density scanning (DEXA) and histomorphometry. Alkaline phosphatase (AP) activity was measured in ossicles as a marker for bone cell differentiation, and was significantly higher in Ahsg(-/-) versus Ahsg(+/-) and/or Ahsg(+/+) mice. Ectopic ossicle size in the Ahsg(+/-) mouse was 4-fold greater than that in the wild type (Ahsg(+/+)), and intermediate to that shown in Ahsg(-/-) mouse. Bone mineral density (BMD) was lower in the Ahsg(-/+) and Ahsg(-/-) mice compared to Ahsg(+/+) littermates. The ratio of cortical to cancellous bone was found to be >2-fold higher in Ahsg(-/-) mouse in comparison to the Ahsg(+/+) mice with no significant change in the Ahsg(-/+) mouse. Finally, a significantly higher incidence of satellite ossification; small islands of immature bone, was shown in Ahsg(-/-) mice as compared to Ahsg(+/+) mice. Although Ahsg binds to TGF-beta/BMP and blocks receptor signalling, it may also sequester cytokines in matrix, thereby acting as a reservoir of osteoinductive activity when released. This may explain the non-linear relationship between ectopic bone formation characteristics and Ahsg(+/+), Ahsg(+/-) and Ahsg(-/-) genotypes, although the increase in satellite bone formation might also explain this phenomenon. Our results suggest that Ahsg may be useful for prevention of the heterotopic ossification and the regulation of osteoinductive effects of BMP used with grafts.  相似文献   

11.
Hereditary multiple exostosis (HME), a disorder inherited in an autosomal dominant manner, is characterized by multiple projections of bone, mainly at the extremities. The risk of malignant transformation of the exostoses is estimated to be up to 2%. The most common underlying cause of the disease involves mutations in either the EXT1 or the EXT2 gene. We report on the clinical and molecular findings in a family affected with HME.A mother and her three children from different partnerships, all clinically diagnosed with HME, were referred for genetic counseling. Subsequently, molecular analysis of the EXT1 gene was performed according to standard procedures. We identified a mutation in the EXT1 gene in all four affected family members (delA in codon 133). This mutation has not been previously described and is suggested to cause the disease in this family. Identification of disease causing mutations in patients with HME and their relatives can help to improve the clinical management of tumor prevention, early tumor detection, and orthopedic therapy.  相似文献   

12.
The solitary osteochondroma, a common pediatric bone tumor, is a cartilage-capped exostosis. Hereditary multiple exostosis is an autosomal dominant disorder manifested by the presence of multiple osteochondromas. Linkage analysis has implicated mutations in the EXT gene family, resulting in an error in the regulation of normal chondrocyte proliferation and maturation that leads to abnormal bone growth. Although exostoses are benign lesions, they are often associated with characteristic progressive skeletal deformities and may cause clinical symptoms. The most common deformities include short stature, limb-length discrepancies, valgus deformities of the knee and ankle, asymmetry of the pectoral and pelvic girdles, bowing of the radius with ulnar deviation of the wrist, and subluxation of the radiocapitellar joint. For certain deformities, surgery can prevent progression and provide correction. Patients with hereditary multiple exostosis have a slight risk of sarcomatous transformation of the cartilaginous portion of the exostosis.  相似文献   

13.
We performed a prospective genotype-phenotype study using molecular screening and clinical assessment to compare the severity of disease and the risk of sarcoma in 172 individuals (78 families) with hereditary multiple exostoses. We calculated the severity of disease including stature, number of exostoses, number of surgical procedures that were necessary, deformity and functional parameters and used molecular techniques to identify the genetic mutations in affected individuals. Each arm of the genotype-phenotype study was blind to the outcome of the other. Mutations EXT1 and EXT2 were almost equally common, and were identified in 83% of individuals. Non-parametric statistical tests were used. There was a wide variation in the severity of disease. Children under ten years of age had fewer exostoses, consistent with the known age-related penetrance of this condition. The severity of the disease did not differ significantly with gender and was very variable within any given family. The sites of mutation affected the severity of disease with patients with EXT1 mutations having a significantly worse condition than those with EXT2 mutations in three of five parameters of severity (stature, deformity and functional parameters). A single sarcoma developed in an EXT2 mutation carrier, compared with seven in EXT1 mutation carriers. There was no evidence that sarcomas arose more commonly in families in whom the disease was more severe. The sarcoma risk in EXT1 carriers is similar to the risk of breast cancer in an older population subjected to breast-screening, suggesting that a role for regular screening in patients with hereditary multiple exostoses is justifiable.  相似文献   

14.
A 13-year-old boy with a solitary exostosis of the left femur was seen with a pseudo-aneurysm of the popliteal artery. When left leg pain occurred 3 months earlier, radiographic examination revealed an exostosis with a cartilage cap. Serial radiographic examination demonstrated gradual disruption of the cartilage cap of the exostosis as the pseudoaneurysm developed. An exostosis with an irregular surface was found at surgery. A literature review disclosed 39 similar cases in which loss of the cartilage cap was considered as one of the causes of the aneurysm formation. Considering the clinical course of our patient, however, we believe that exostoses lose their cartilage caps by pressure destruction due to the aneurysms. It is highly probable that loss of the cartilage does not cause the aneurysms.  相似文献   

15.
Kwan EP  Xie L  Sheu L  Nolan CJ  Prentki M  Betz A  Brose N  Gaisano HY 《Diabetes》2006,55(5):1421-1429
Munc13-1 is a diacylglycerol (DAG) receptor that is essential for synaptic vesicle priming. We recently showed that Munc13-1 is expressed in rodent and human islet beta-cells and that its levels are reduced in islets of type 2 diabetic humans and rat models, suggesting that Munc13-1 deficiency contributes to the abnormal insulin secretion in diabetes. To unequivocally demonstrate the role of Munc13-1 in insulin secretion, we studied heterozygous Munc13-1 knockout mice (+/-), which exhibited elevated glucose levels during intraperitoneal glucose tolerance tests with corresponding lower serum insulin levels. Munc13-1(+/-) mice exhibited normal insulin tolerance, indicating that a primary islet beta-cell secretory defect is the major cause of their hyperglycemia. Consistently, glucose-stimulated insulin secretion was reduced 50% in isolated Munc13-1(+/-) islets and was only partially rescued by phorbol ester potentiation. The corresponding alterations were minor in mice expressing one allele of a Munc13-1 mutant variant, which does not bind DAG (H567K/+). Capacitance measurements of Munc13-1(+/-) and Munc13-1(H567k/+) islet beta-cells revealed defects in granule priming, including the initial size and refilling of the releasable pools, which become accentuated by phorbol ester potentiation. We conclude that Munc13-1 plays an important role in glucose-stimulated insulin secretion and that Munc13-1 deficiency in the pancreatic islets as occurs in diabetes can reduce insulin secretion sufficient to cause abnormal glucose homeostasis.  相似文献   

16.
Hereditary multiple exostoses (HME) is an autosomal dominant skeletal disorder with a wide spectrum of clinical manifestations. In 52 out of 60 individuals from HME+ families, exostoses became clinically apparent. In this study, the clinical and radiological outcome of these 52 HME patients (19 families) was investigated by medical history, clinical examination, and radiographs. In addition to correlating phenotype with genotype, a linkage/exclusion analysis was performed in 35 HME patients. We found several correlations between HME genes (EXT1, EXT2) and phenotype. Compared to EXT2‐linkage, female individuals with EXT1‐linkage were smaller in stature. Patients with EXT1‐linkage and patients with undetermined linkage (EXT?) were more severely affected, underwent more surgeries, and showed a higher number of exostoses at follow‐up. Moreover, we found an increased phenotype risk for limb shortening for EXT1‐ and EXT?‐linkage. This study corresponds to data of other investigators who showed that EXT1 mutations are associated with a more severe phenotype than other EXT forms. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:1541–1551, 2007  相似文献   

17.
Metachondromatosis is a benign bone disease predominantly observed in the hands and feet of children or young adults demonstrating two different manifestations: a cartilage‐capped bony outgrowth on the surface of the bone called exostosis and ectopic cartilaginous nodules inside the bone called enchondroma. Recently, it has been reported that loss‐of‐function mutations of the SHP2 gene, which encodes the SHP2 protein tyrosine phosphatase, are associated with metachondromatosis. The purpose of this study was to investigate the role of SHP2 in postnatal cartilage development, which is largely unknown. We disrupted Shp2 during the postnatal stage of mouse development in a chondrocyte‐specific manner using a tamoxifen‐inducible system. We found tumor‐like nodules on the hands and feet within a month after the initial induction. The SHP2‐deficient mice demonstrated an exostosis‐like and enchondroma‐like phenotype in multiple bones of the hands, feet, and ribs as assessed by X‐ray and micro‐computed tomography (CT). Histological assessment revealed the disorganization of the growth plate cartilage, a cartilaginous protrusion from the epiphyseal bone, and ectopic cartilage nodules within the bones, which is consistent with the pathological features of metachondromatosis in humans (ie, both exostosis and enchondroma). At molecular levels, we observed an abundant expression of Indian hedgehog protein (IHH) and fibroblast growth factor 2 (FGF2) and impaired expression of mitogen‐activated protein kinases (MAPK) in the affected cartilage nodules in the SHP2‐deficient mice. In summary, we have generated a mouse model of metachondromatosis that includes manifestations of exostosis and enchondroma. This study provides a novel model for the investigation of the pathophysiology of the disease and advances the understanding of metachondromatosis. This model will be useful to identify molecular mechanisms for the disease cause and progression as well as to develop new therapeutic strategies in the future. © 2014 American Society for Bone and Mineral Research.  相似文献   

18.
Oxidative stress contributes to the pathogenesis of diabetic nephropathy. In mitochondria, lipoic acid synthase produces α-lipoic acid, an antioxidant and an essential cofactor in α-ketoacid dehydrogenase complexes, which participate in glucose oxidation and ATP generation. Administration of lipoic acid abrogates diabetic nephropathy in animal models, but whether lower production of endogenous lipoic acid promotes diabetic nephropathy is unknown. Here, we crossed mice heterozygous for lipoic acid synthase deficiency (Lias(+/-)) with Ins2(Akita/+) mice, a well characterized model of type 1 diabetes. Double mutant mice had more overt diabetic nephropathy, including microalbuminuria, glomerular basement thickening, mesangial matrix expansion, and hypertension, compared with Lias(+/+)Ins2(Akita/+) controls. We also identified proximal tubules as a major site for generation of superoxide anions during diabetic nephropathy. Mitochondria in proximal tubular cells were particularly sensitive to damage in diabetic mice with reduced lipoic acid production. These results suggest that lipoic acid synthase deficiency increases oxidative stress and accelerates the development of diabetic nephropathy.  相似文献   

19.
To clarify the lineage relationship between cells that express the neural stem cell marker nestin and endocrine cells of the pancreas, we analyzed offspring of a cross between mice carrying a nestin promoter/enhancer-driven cre-recombinase (Nestin-cre) and C57BL/6J-Gtrosa26(tm1Sor) mice that carry a loxP-disrupted beta-galactosidase gene (Rosa26). In nestin-cre(+/tg);R26R(loxP/+) embryos, cre-recombinase was detected in association with nestin-positive cells in the pancreatic mesenchyme with some of the nestin-positive cells lining vascular channels. In postnatal mice, pancreatic beta-galactosidase expression was restricted to vascular endothelial cells of the islet and a subset of cells in the muscularis of arteries in a distribution identical to endogenous nestin expression. Ex vivo explants of mouse pancreatic ducts grew dense cultures that costained for nestin and beta-galactosidase, demonstrating recombination in vitro. The cultures could be differentiated into complex stereotypic structures that contain nestin- and insulin-expressing cells. Nestin-cre(+/tg);R26R(loxP/+)-derived duct cultures showed that insulin-positive cells were negative for beta-galactosidase. These results indicate that both in vivo and in vitro pancreatic endocrine cells arise independently of nestin-positive precursors. The apparent vascular nature of the nestin-positive cell population and the close association with endocrine cells suggest that nestin-positive cells play an important role in the growth and maintenance of the islet.  相似文献   

20.
BACKGROUND: Proliferative lesions of the bone surface, such as subungual (Dupuytren) exostosis and bizarre parosteal osteochondromatous proliferation (BPOP, Nora lesion) are currently classified as reactive, proliferative processes that mimic primary neoplasms of bone. METHODS: Cytogenetic analysis was performed on 3 subungual exostoses of the great toe and 2 BPOP lesions of the radius and ulna. RESULTS: A balanced translocation t(X;6) was identified in all cases of subungual exostoses. The chromosomal rearrangements observed in 1 case of BPOP differed from those seen in subungual exostosis. CONCLUSIONS: The presence of chromosomal abnormalities in subungual exostosis and BPOP suggests that these lesions are neoplastic, with a different molecular pathogenesis, and that each is a distinct clinicopathologic entity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号