首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MyD88 and IL-1R-associated kinase 1 (IRAK-1) play crucial roles as adaptor molecules in signal transduction of the TLR/IL-1R superfamily, and it is known that expression of these proteins leads to the activation of NF-kappaB in a TNFR-associated factor 6 (TRAF6)-dependent manner. We found in this study, however, that a dominant-negative mutant of TRAF6, lacking the N-terminal RING and zinc-finger domain, did not inhibit IRAK-1-induced activation of NF-kappaB in human embryonic kidney 293 cells, although the TRAF6 mutant strongly suppressed the MyD88-induced activation. The dominant-negative mutant of TRAF6 did not affect the IRAK-1-induced activation, regardless of the expression level of IRAK-1. In contrast, small interfering RNA silencing of TRAF6 expression inhibited MyD88-induced and IRAK-1-induced activation, and supplementation with the TRAF6 dominant-negative mutant did not restore the IRAK-1-induced activation. Expression of IRAK-1, but not MyD88, induced the oligomerization of TRAF6, and IRAK-1 and the TRAF6 dominant-negative mutant were associated with TRAF6. These results indicate that TRAF6 is involved but with different mechanisms in MyD88-induced and IRAK-induced activation of NF-kappaB and suggest that TRAF6 uses a distinctive mechanism to activate NF-kappaB depending on signals.  相似文献   

2.
Interleukin 1 receptor (IL-1R) and Toll-like receptors (TLRs) induce inflammatory genes through the complex of MyD88, IL-1R-associated protein kinase (IRAK) and tumor necrosis factor receptor-associated factor 6 (TRAF6), which is believed to function 'upstream' of the cascades of IkappaB kinase (IKK) and nuclear factor-kappaB (NF-kappaB); extracellular signal-regulated protein kinase (ERK); c-Jun N-terminal kinase (JNK); and p38 mitogen-activated protein kinase (MAPK). Here we show that MAPK-ERK kinase kinase (MEKK3) is an essential signal transducer of the MyD88-IRAK-TRAF6 complex in IL-1R-TLR4 signaling. MEKK3 forms a complex with TRAF6 in response to IL-1 and lipopolysaccharide (LPS) but not CpG, and is required for IL-1R- and TLR4-induced IL-6 production. Furthermore, MEKK3 is crucial for IL-1- and LPS-induced activation of NF-kappaB and JNK-p38 but not ERK, indicating that MAPKs are differentially activated during IL-1R-TLR4 signaling. These data demonstrate that MEKK3 is crucial for IL-1R and TLR4 signaling through the IKK-NF-kappaB and JNK-p38 MAPK pathways.*Note: In the version of this article originally published online, the third author's name was incorrect. The correct author name should be Yong Lin. This error has been corrected for the HTML and print versions of this article.  相似文献   

3.
4.
TLR signal transduction involves a MyD88-mediated pathway, which leads to recruitment of the IL-1 receptor (IL-1R)-associated kinase 4 (IRAK4) and Toll/IL-1R translation initiation region domain-containing adaptor-inducing IFN-beta-mediated pathway, resulting in the activation of IFN regulatory factor (IRF)3. Both pathways can lead to expression of IFN-beta. TLR-dependent and -independent signals converge in the TNF receptor-associated factor 6 (TRAF6) adaptor, which mediates the activation of NF-kappaBeta. Infection of murine bone marrow-derived macrophages (BMM) with Chlamydia pneumoniae induces IFN-alpha/beta- and NF-kappaBeta-dependent expression of IFN-gamma, which in turn, will control bacterial growth. The role of IRAK4 and IRF3 in the regulation of IFN-alpha/beta expression and NF-kappaBeta activation was studied in C. pneumoniae-infected BMM. We found that levels of IFN-alpha, IFN-beta, and IFN-gamma mRNA were reduced in infected IRAK4(-/-) BMM compared with wild-type (WT) controls. BMM also showed an IRAK4-dependent growth control of C. pneumoniae. No increased IRF3 activation was detected in C. pneumoniae-infected BMM. Similar numbers of intracellular bacteria, IFN-alpha, and IFN-gamma mRNA titers were observed in C. pneumoniae-infected IRF3(-/-) BMM. On the contrary, IFN-beta(-/-) BMM showed lower IFN-alpha and IFN-gamma mRNA levels and higher bacterial titers compared with WT controls. C. pneumoniae infection-induced activation of NF-kappaBeta and expression of proinflammatory cytokines were shown to be TRAF6-dependent but did not require IRAK4 or IRF3. Thus, our data indicate that IRAK4, but not IRF3, controls C. pneumoniae-induced IFN-alpha and IFN-gamma secretion and bacterial growth. IRAK4 and IRF3 are redundant for infection-induced NF-kappaB activation, which is regulated by TRAF6.  相似文献   

5.
Interleukin 1 (IL-1) receptor-associated kinase (IRAK) family members are crucial signal transducer in the Toll-like receptor/IL-1R signal pathway, which mediates downstream signal cascades involved in the innate and adaptive immune responses. In this study, we identified an IRAK-4 protein (EcIRAK-4) in the orange-spotted grouper (Epinephelus coioides), with an N-terminal death domain, a proST domain, and a central kinase domain, similar to that of other fishes and mammals. A sequence alignment and phylogenic analysis demonstrated that full-length EcIRAK-4 shares a high degree of sequence identity with those of other fishes, especially the roughskin sculpin, and their death domains and kinase domains share greater identity than their proST domains. A conservation analysis indicated that most of the functional sites in mammalian IRAK-4 are conserved in IRAK-4 of the grouper and other fishes, with the exception of the sites of interaction with IRAK-2 and one autophosphorylation site within the activation loop. EcIRAK-4 is broadly expressed in all the tissues examined, with highest expression in the head kidney and liver. After infection with Cryptocaryon irritans, EcIRAK-4 expression was significantly upregulated, especially in the skin, which suggests that this molecule is involved in the host’s defense against parasitic infection. Surprisingly, after cotransfection with grouper MyD88, EcIRAK-4 significantly impaired the NF-κB activity induced by MyD88. EcIRAK-4 was uniformly distributed throughout the cytoplasm in HeLa cells. These findings suggest that although IRAK-4 is evolutionarily conserved between fish and mammals, its signal transduction function is markedly different.  相似文献   

6.
7.
IRAK家族中TIR信号通路的关键因子   总被引:1,自引:0,他引:1  
IRAKs(Interleukin-1 receptor associated kinases,IRAKs)作为TIR信号通路的重要连接体,在调节机体的自身免疫中起着重要的枢纽作用.家族成员包括IRAK1、IRAK2、IRAKM和IRAK4,目前还鉴定出8个剪接异构体.其中IRAK1和IRAK4有激酶活性,通过与MyD88和TRAF-6连接成复合物启动TLRs/IL-1介导的信号途径;而IRAK2和IRAKM则无激酶活性,对通路起着负调节作用.本文从IRAK的分子特点、作用和机制、与其它因子间联系及相应剪接异构体作一综述.  相似文献   

8.
Toll-like receptors (TLRs) sense microbial products and play an important role in innate immunity. Currently, 11 members of TLRs have been identified in humans, with important function in host defense in early steps of the inflammatory response. TLRs are present in the plasma membrane (TLR1, TLR2, TLR4, TLR5, TLR6) and endosome (TLR3, TLR7, TLR8, TLR9) of leukocytes. TLRs and IL-1R are a family of receptors related to the innate immune response that contain an intracellular domain known as the Toll-IL-1R (TIR) domain that recruits the TIR-containing cytosolic adapters MyD88, TRIF, TIRAP and TRAM. The classical pathway results in the activation of both nuclear factor κB and MAPKs via the IRAK complex, with two active kinases (IRAK-1 and IRAK-4) and two non-catalytic subunits (IRAK-2 and IRAK-3/M). The classical pro-inflammatory TLR signaling pathway leads to the synthesis of inflammatory cytokines and chemokines, such as IL-1β, IL-6, IL-8, IL-12 and TNF-α. In humans, genetic defects have been identified that impair signaling of the TLR pathway and this may result in recurrent pyogenic infections, as well as virus and fungi infections. In this review, we discuss the main mechanisms of microbial recognition and the defects involving TLRs.  相似文献   

9.
Human interleukin-1 receptor-associated kinase 4 (IRAK4) deficiency and myeloid differentiating factor 88 (MyD88) deficiency syndromes are two primary immune-deficiency disorders with innate immune defects. Although new genetic variations of IRAK4 and MyD88 have recently been deposited in the single nucleotide polymorphism (SNP) database, the clinical significance of these variants has not yet been established. Therefore, it is important to establish methods for assessing the association of each gene variation with human diseases. Because cell-based assays, western blotting and an NF-κB reporter gene assay, showed no difference in protein expression and NF-κB activity between R12C and wild-type IRAK4, we examined protein–protein interactions of purified recombinant IRAK4 and MyD88 proteins by analytical gel filtration and NMR titration. We found that the variant of IRAK4, R12C, as well as R20W, located in the death domain of IRAK4 and regarded as a SNP, caused a loss of interaction with MyD88. Our studies suggest that not only the loss of protein expression but also the defect of Myddosome formation could cause IRAK4 and MyD88 deficiency syndromes. Moreover a combination of in vitro functional assays is effective for confirming the pathogenicity of mutants found in IRAK4 and MyD88-deficiency patients.  相似文献   

10.
11.
Synergy between Toll-like receptor (TLR) and adenosine A2A receptor (A2AR) signaling switches macrophages from production of inflammatory cytokines such as tumor necrosis factor-alpha to production of the angiogenic growth factor vascular endothelial growth factor (VEGF). We show in this study that this switch critically requires signaling through MyD88, IRAK4, and TRAF6. Macrophages from mice lacking MyD88 (MyD88(-/-)) or IRAK4 (IRAK4(-/-)) lacked responsiveness to TLR agonists and did not respond to A2AR agonists by expressing VEGF. Suppression of TRAF6 expression with siRNA in RAW264.7 macrophages also blocked their response to TLR and A2AR agonists. Excisional skin wounds in MyD88(-/-) mice healed at a markedly slower rate than wounds in wild-type MyD88(+/+) mice, showing delayed contraction, decreased and delayed granulation tissue formation, and reduced new blood vessel density. Although macrophages accumulated to higher levels in MyD88(-/-) wounds than in controls, expression of VEGF and HIF1-alpha mRNAs was elevated in MyD88(+/+) wounds. CGS21680, an A2AR agonist, promoted repair in MyD88(+/+) wounds and stimulated angiogenesis but had no significant effect on healing of MyD88(-/-) wounds. These results suggest that the synergistic interaction between TLR and A(2A)R signaling observed in vitro that switches macrophages from an inflammatory to an angiogenic phenotype also plays a role in wound healing in vivo.  相似文献   

12.
Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. Recent studies have revealed that Toll-like receptor (TLR)-initiated immune response to Brucella spp. depends on myeloid differentiation factor 88 (MyD88) signaling. Therefore, we decided to study the role of the interleukin-1 receptor-associated kinase 4 (IRAK-4) in host innate immune response against B. abortus. After Brucella infection, it was shown that the number of CFU in IRAK-4(-/-) mice was high compared to that in IRAK-4(+/-) animals only at 1 week postinfection. At 3 and 6 weeks postinfection, IRAK-4(-/-) mice were able to control the infection similarly to heterozygous animals. Furthermore, the type 1 cytokine profile was evaluated. IRAK-4(-/-) mice showed lower production of systemic interleukin-12 (IL-12) and gamma interferon (IFN-γ). Additionally, a reduced percentage of CD4(+) and CD8(+) T cells expressing IFN-γ was observed compared to IRAK-4(+/-). Further, the production of IL-12 and tumor necrosis factor alpha (TNF-α) by macrophages and dendritic cells from IRAK-4(-/-) mice was abolished at 24 h after stimulation with B. abortus. To investigate the role of IRAK-4 in mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways, macrophages were stimulated with B. abortus, and the signaling components were analyzed by protein phosphorylation. Extracellular signal-regulated kinase 1 (ERK1) and ERK2 and p38 as well as p65 NF-κB phosphorylation was profoundly impaired in IRAK-4(-/-) and MyD88(-/-) macrophages activated by Brucella. In summary, the results shown in this study demonstrated that IRAK-4 is critical to trigger the initial immune response against B. abortus but not at later phases of infection.  相似文献   

13.
Interleukin (IL)-32 is a recently described cytokine that appears to play a critical role in a variety of inflammatory diseases including chronic obstructive pulmonary disease (COPD). However, thus far, the regulation of IL-32 production has not been fully established. Here, we report on signaling pathways that regulate the production of IL-32α, the most abundant isoform, in the human alveolar epithelial cell line, A549. IL-32α was expressed and secreted by IL-1β. The IL-32 expression was attenuated by PP2 (a Src-family kinase [SFK] inhibitor), rottlerin (a protein kinase [PK] Cδ inhibitor), and LY294002 (a phosphatidylinositol 3-kinase [PI3K] inhibitor). Furthermore, the overexpression of Fgr rather than other SFKs upregulated IL-32α expression, while Fgr small interfering RNA (siRNA) transfection downregulated it. The suppression of Fgr with PP2 and Fgr siRNA inhibited activating phosphorylation of PKCδ and PI3K/Akt, but not IL-1 receptor-associated kinase (IRAK)1, a well-known MyD88-dependent signaling molecule, and Erk1/2, p38, and JNK. Rottlerin and PKCδ siRNA also inhibited expression of IL-32α and activation of PI3K/Akt, but not of IRAK1 and mitogen activation protein (MAP) kinases. MyD88 siRNA suppressed the expression of IL-32α and the phosphorylation of IRAK1, PI3K, and MAP kinases, but not of PKCδ. Of interest, both Fgr/PKCδ and MyD88-dependent signals regulated PI3K/Akt, suggesting that it is a crosstalk molecule. Among MyD88-dependent MAP kinases, only p38 regulated IL-32α expression and PI3K/Akt activation. With these results, we demonstrated that the expression and secretion of IL-32α are regulated by MyD88-dependent IRAK1/p38/PI3K and independent Fgr/PKCδ/PI3K pathways, and that Fgr and PKCδ are critical for the MyD88-independent IL-32α production.  相似文献   

14.
15.
Ligand binding in the TLR/IL-1R family results in the transient formation of an intracellular signaling complex, which contains, amongst others, the serine/threonine-specific kinase IL-1R-associated kinase 1 (IRAK-1). Concomitantly, the kinase function of IRAK-1 becomes activated, resulting in massive autophosphorylation and finally in the dissociation of the initially constituted signaling complex. The death domain (DD) of IRAK-1 mediates the interaction with other molecules of the signaling complex, e.g., the adaptor MyD88, the silencer Tollip, and the activator kinase IRAK-4. The conserved threonine at position 66 (T66), located within the DD, is a putative autophosphorylation target site. Here, we provide evidence that T66 critically impacts the secondary structure of the IRAK-1 DD. Thereby, it ensures the transient manner of interactions between IRAK-1 and the other signaling molecules. This essential role, however, is not regulated by phosphorylation of T66 itself.  相似文献   

16.
17.
Mallory–Denk body (MDB) formation is a component of alcoholic and non alcoholic hepatitis. In the present study, the role of the toll-like receptor (TLR) signaling pathway was investigated in the mechanism of MDB formation in the DDC-fed mouse model. Microarray analysis data mining, performed on the livers of drug-primed mice refed DDC, showed that TLR2/4 gene expression was significantly up regulated by DDC refeeding. SAMe supplementation prevented this up regulation and prevented the formation of MDBs. qRT-PCR analysis confirmed these results. TLR2/4 activates the adapter protein MyD88. The levels of MyD88 were increased by DDC refeeding. The increase of MyD88 was also prevented by SAMe supplementation. Results showed that MyD88-independent TLR3/4-TRIF-IRF3 pathway was not up regulated in the liver of DDC refed mice. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is the downstream protein recruited by the MyD88/IRAK protein complex, and is involved in the regulation of innate immune responses. Results showed a significant increase in the levels of TRAF-6. TRAF-6 activation leads to activation of NFkB and the mitogen-activated protein kinase (MAPK) cascade. The TRAF-6 increase was ameliorated by SAMe supplementation. These results suggest that DDC induces MDB formation through the TLR2/4 and MyD88-dependent signaling pathway. In conclusion, SAMe blocked the over-expression of TLR2/4, and their downstream signaling components MyD88 and TRAF-6. SAMe prevented the DDC-induced up regulation of the TLR signaling pathways, probably by preventing the up regulation of INF-γ receptors by DDC feeding. INFγ stimulates the up regulation of TLR2. The ability of SAMe feeding to prevent TLR signaling up regulation has not been previously described.  相似文献   

18.
Toll-like receptors (TLRs) in innate immune cells are the prime cellular sensors for microbial components. TLR activation leads to the production of proinflammatory mediators and thus TLR signaling must be properly regulated by various mechanisms to maintain homeostasis. TLR4-ligand lipopolysaccharide (LPS)-induced tolerance or cross-tolerance is one such mechanism, and it plays an important role in innate immunity. Tolerance is established and sustained by the activity of the microRNA miR-146a, which is known to target key elements of the myeloid differentiation factor 88 (MyD88) signaling pathway, including IL-1 receptor-associated kinase (IRAK1), IRAK2 and tumor-necrosis factor (TNF) receptor-associated factor 6 (TRAF6). In this review, we comprehensively examine the TLR signaling involved in innate immunity, with special focus on LPS-induced tolerance. The function of TLR ligand-induced microRNAs, including miR-146a, miR-155 and miR-132, in regulating inflammatory mediators, and their impact on the immune system and human diseases, are discussed. Modulation of these microRNAs may affect TLR pathway activation and help to develop therapeutics against inflammatory diseases.  相似文献   

19.
A member of the IL-1 receptor (IL-1R)-associated kinase (IRAK) family, IRAK4, has been shown to play an essential role in Toll-like receptor (TLR)-mediated signaling. IRAK4 kinase-inactive knockin mice have been shown to be completely resistant to LPS- and CpG-induced shock, due to impaired TLR-mediated induction of pro-inflammatory cytokines and chemokines. A reduction of LPS-, R848- and IL-1-mediated mRNA stability contributes to the reduced cytokine and chemokine production in bone marrow (BM)-derived macrophages from IRAK4 kinase-inactive knockin mice: however, not all of the TLR/IL-1R signaling events are ablated in IRAK4 kinase-inactive knockin mice. A paper in this issue of the European Journal of Immunology shows that, while JNK activation is significantly impaired, NF-kappaB and IRF3 activation are retained in the absence of IRAK4 kinase activity. These residual TLR/IL-1R-induced signaling events allow the production of some cytokines and chemokines (including TNFalpha and CXCL1); at early times after the stimulation and induction of a group of TLR-mediated MyD88/IRAK4-independent genes in IRAK4 kinase-inactive knockin cells. Therefore, pharmacological blocking of IRAK4 kinase activity will retain some levels of host defence, while reducing the levels and duration of inflammatory responses, which should provide beneficial therapies for sepsis and chronic inflammatory diseases.  相似文献   

20.
Autosomal recessive IRAK-4 and MyD88 deficiencies predispose affected patients to recurrent invasive pyogenic bacterial infection. Both defects result in the selective impairment of cellular responses to Toll-like receptors (TLRs) other than TLR3 and of cellular responses to most interleukin-1 receptors (IL-1Rs), including IL-1R, IL-18R, and IL-33R. Hypomorphic mutations in the X-linked NEMO gene and hypermorphic mutations in the autosomal IKBA gene cause X-linked recessive and autosomal dominant anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) syndromes. Both of these defects impair NF-κB-mediated cellular responses to multiple receptors, including TLRs, IL-1Rs, and tumor necrosis factor receptors (TNF-Rs). They therefore confer a much broader predisposition to infections than that for IRAK-4 and MyD88 deficiencies. These disorders were initially thought to be rare but have now been diagnosed in over 170 patients worldwide. We review here the infectious diseases affecting patients with inborn errors of NF-κB-dependent TLR and IL-1R immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号