首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The free intracellular calcium ion concentration ([Ca2+]i) was measured simultaneously with isometric force in strips of guinea-pig mesotubarium using the Fura-2 technique. During the relaxed period (5–15 min) between spontaneous contractions [Ca2+]i continues to decrease after full mechanical relaxation to reach a minimal level of 86±8 nM (n=9) just before the start of the next contraction. During the spontaneous contractions (5–15 min) [Ca2+]i reached a maximum of 211±19 nM and then oscillated between 155±16 nM and 194±9 nM. Increased extracellular Ca2+ concentration to 10 mM from the standard concentration of 1.5 mM caused a decreased frequency of spontaneous contractions and an increase in [Ca2+]i both in the relaxed and contracted states. In 10 mM extracellular Ca2+, addition of AlF4 , as 1 mM NaF + 10 M AlCl3, caused a sustained increase in [Ca2+]i and maintained force. Addition of verapamil (10 M) in this situation decreased [Ca2+]i to the resting level. The results suggest that the cyclic appearance of trains of action potentials is related to variation in [Ca2+]i, possibly via inactivation of Ca2+-dependent K+ channels.  相似文献   

2.
Effects of 5-hydroxytryptamine (5-HT) and forskolin on intracellular free calcium concentration ([Ca2+]i) were studied in suspensions of fura-2 loaded smooth-muscle cells from the anterior byssus retractor catch muscle ofMytilus edulis. The successive addition of 5 mM carbachol (CCh) and 100 mM KCl to the suspension evoked a transient elevation of [Ca2+]i from the resting value of 124±2.7 nM (mean ± SE,n=18) to 300–400 nM, which was associated with contraction. The change in [Ca2+]i induced CCh was concentration-dependent with the EC50 of 10–5 M. The resting [Ca2+]i was unaffected by 10 M 5-HT. The change in [Ca2+]i induced by 5 mM CCh was suppressed by 5-HT from 167±14.0 (n=11) to 124±14.9 (n=8) nM whereas that induced by 100 mM KCl was enhanced from 321±31.9 to 405±17.6 nM (n=8). 5-HT applied during the decaying phase of the CCh response caused a rapid decline in [Ca2+]i. In both the responses to CCh and KCl, the falling phase was accelerated by 5-HT. 10 M forskolin, a potent activator of adenylate cyclase, mimicked the effects of 5-HT as did a membrane-permeant cyclic AMP analogue, 8-parachlorophenylthio cyclic AMP (cpt-cAMP). Application of 100 M cpt-cAMP partially suppressed the Ca2+ i response to CCh and enhanced that to KCl.d-Tubocurarine (500 M) added during the decaying phase of the response induced by 100 M CCh, caused a rapid decline in [Ca2+]i similar to that caused by both 5-HT and forskolin. In essentially Ca2+-free sea water, or in the presence of 10 M D600 in seawater containing 4 mM, Ca2+, the response to CCh was partially suppressed, whereas that to KCl was completely abolished, demonstrating a CCh-induced release of intracellularly stored Ca2+. The remaining component of the response to CCh, in either Ca2+-free sea water or in the presence of D600, was abolished by both 5-HT and forskolin. The results suggest that 5-HT has multiple effects on [Ca2+]i in the ABRM, and implicate cyclic AMP in this effect, and that one of the mechanisms underlying these responses is the inhibition of an agonist-induced release of stored Ca2+. In addition, that Ca2+ i is at, or close to resting values during the catch state.  相似文献   

3.
Single pieces of fura-2-loaded cortical collecting tubule (CCT) isolated either from normal or adrenalectomized (ADX) rats were superfused in vitro, and the cytosolic calcium concentration ([Ca2+]i) was calculated from fluorescence recordings. The effects of altering the sodium gradient across cell membranes were investigated. Switching external sodium from 164 mM to 27 mM (low [Na+]o) had little effect on [Ca2+]i in normal tubules (106±9 versus 101±9 nM, n=15) whereas it resulted in a large peak of [Ca2+]i in CCT from ADX-rats (270±32 versus 135±11 nM, n=21). Since CCT from ADX rats are known to have a reduced Na-pump activity, the effect of ouabain treatment on CCT from normal rats was also tested. When CCT from normal rats were exposed to 1 mM of ouabain in the presence of 164 mM of [Na+]o, [Ca2+]i increased only moderately (123±15 versus 111±11 nM, n=13); when the low [Na+]o solution was applied to these ouabain-treated tubules, a large and transient increase in [Ca2+]i was obtained (287±38 versus 123±15 nM, n=13). This response was absent with [Ca2+]o=0. The data suggest the presence of 3 Na+/1 Ca2+ exchangers in cell membranes of rat CCT. The calcium flux equation derived by Läuger for the exchanger indicates a non-linear relationship between net calcium flux and driving force which could account for the difference observed here between the poor effect of applying either low [Na+]o or ouabain alone and the large peak of [Ca2+]i induced by combining these two conditions.  相似文献   

4.
The variations of intracellular free calcium concentration ([Ca2+]i) were recorded on-line from guinea-pig isolated vestibular sensory cells using a fura-2 fast fluorescent photometry system, during mechanical displacements of the hair bundle. Repetitive displacements of the hair bundle towards the kinocilium (positive stimulation 7°, 300 ms, 2Hz for 10 s), revealed [Ca2+]i variations detectable only in the cuticular plate. [Ca2+]i increased from 105 to 145 nM. Single mechanical displacements of the hair bundle (7°, 200 ms, 0.5Hz) evoked increases of [Ca2+]ifrom 50±23 nM to 139±79 (n=12). In the opposite direction, the mechanical stimulations (8°, 400ms, 0.5Hz) evoked a decrease of [Ca2+]i from 68±17 nM to 37±12 nM (n= 8). The variations of [Ca2+]i detected in the cuticular plate during positive displacements of the hair bundle were reversibly abolished in the presence of 100 M gentamicin and they could not be evoked in 0.1 mM calcium in the external medium. From these experiments, it has been concluded that the [Ca2+]i variations recorded in the cuticular plate were due to a limited entry of calcium ions through transduction channels localized in the hair bundle. The typical kinetics of variations of [Ca2+]i evoked during positive displacements of the hair bundle should account for the presence of strong calcium regulation systems in the hair bundle and cuticular plate.  相似文献   

5.
The outer hair cell isolated from the guinea-pig was superfused in vitro and the cytosolic calcium concentration ([Ca2+]i) and sodium concentration ([Na+]i) were measured using fluorescence indicators. Under the resting condition, [Ca2+]i and [Na+]i were 91±9 nM (n = 51) and 110±5 mM (n = 12), respectively. Removal of external Na+ by replacing with N-methyl-D-glucamine (NMDG+) increased [Ca2+]i by 270±79% (n = 27) and decreased [Na+]i by 23±4 mM (n = 6). Both changes in [Ca2+]i and [Na+]i were totally reversible on returning external Na+ to the initial value and were inhibited by addition of 0.1 mM La3+ or 100 M amiloride 5-(N,N-dimethyl) hydrochloride. Elevation of external Ca2+ ions to 20 mM reversibly decreased [Na+]i by 8±6 mM (n = 5). Moreover, the chelation of the intracellular Ca2+ with 1,2-bis (2-aminophenoxy) ethane-N,N,N,N-tetraacetic acid (BAPTA) exerted an inhibitory action on the NMDG+-induced reduction in [Na+]i. Exposure to 5 mM NaCN for 2 min significantly and reversibly increased [Ca2+]i by 290±37% (n = 5), but did not affect the [Ca2+]i elevation induced by the NMDG+ solution. The rise in [Ca2+]i induced by the NMDG+ solution was not enhanced by ouabain pretreatment. Addition of ouabain did not alter the [Na+]i. The present results are best explained by the presence of an Na+-Ca2+ exchanger in cell membrane and indicate that the activity of Na+/K+ pump is poor in outer hair cells.  相似文献   

6.
Microelectrodes filled with neutral carrier selective to Ca2+ were used to measure the free intracellular Ca2+ concentration ([Ca2+]i) in sheep cardiac tissue and frog skeletal muscle. Calibration of the electrodes was performed in the presence of a solution resembling the cationic composition of the cytoplasm. [Ca2+]i at rest in normal physiological saline (20–22° C) was 240 nM in Purkinje fibres, 270 nM in ventricular muscle, and 52 nM in skeletal muscle. In Purkinje fibres, elevation of [Ca2+]o from 1.8 mM to 5.4 mM produced a 1.7-fold increase in [Ca2+]i. Elevation of [Ca2+]o from 1.8 mM to 18 mM induced a 2.6-fold increase in [Ca2+]i. Exposure to Na+-free solution (Li+-substituted) gave rise to elevation of [Ca2+]i by factors of 5.8 and 14 in ventricular muscle and Purkinje fibres, respectively. These latter changes in [Ca2+]i were associated with the development of contractures which reached 34% and 172% of the corresponding twitch tension.  相似文献   

7.
Cytosolic calcium transients were recorded from spontaneously beating chick embryonic myocardial cell aggregates loaded with the fluorescent [Ca2+]i indicator, indo-1. Calcium transients rose rapidly from an end-diastolic [Ca2+]i of 230±18 nM to a peak systolic [Ca2+]i of 619±34 nM (n=21). Relaxation of the transients was slow, and continued throughout diastole. Bay K8644 (0.5 M) markedly prolonged the action potential and caused similar prolongation of the calcium transients. Calcium transients in the presence of Bay K8644 had an inflection on their rising phase, which was followed by a more gradual increase that continued until the membrane had repolarized to a negative potential of –15 to –30 mV. Bay K8644 caused marked elevation of peak systolic [Ca2+]i to 955±56 nM (P<0.002), with concomitant elevation of end-diastolic [Ca2+]i to 400±36 nM (P<0.002). Optical recordings of contraction showed changes similar to those in the calcium transient: the initial upstroke of the contraction was followed by a more gradual second component, which gave the contraction a half-dome appearance. The time to peak [Ca2+]i and the time to peak contraction increased linearly with action potential duration (APD50). The effects of Bay K8644 were simulated, in part, by CsCl (7.5 mM), which produced equivalent prolongation of the action potential and calcium transients. However, CsCl did not elevate diastolic [Ca2+]i. To determine the mechanism of the diastolic [Ca2+]i, increase, Bay K8644 was applied to aggreagates rendered quiescent by tetrodotoxin. Bay K8644 caused a graded increase in [Ca2+]i, which was followed by resumption of spontaneous beating. Bay K8644 can therefore increase [Ca2+]i in the absence of action potentials. We conclude that the duration of the calcium transient and its companion contraction are tightly coupled to the duration of the action potential in chick embryonic myocardial cells. Besides increasing action potential duration, Bay K8644 has the further effect of elevating diastolic [Ca2+]i, which appears to contribute to the positive inotropic effect.  相似文献   

8.
Cytosolic free Ca2+ concentration ([Ca2+]i) was measured in freshly isolated rat ventricular cardiomyocytes during substrate-free anoxia. Cardiomyocytes were loaded with fura-2 and incubated in an anoxic chamber in which a pO2 equal to 0 mmHg was realized by inclusion of Oxyrase. [Ca2+]i was measured in individual cells using digital imaging fluorescence microscopy. During anoxia, the shape of cardiomyocytes changed from a relaxed-elongated form into a rigor configuration within 15 min after the onset of anoxia. After the cells had developed the rigor state, a delayed rise in [Ca2+]i reached a stable maximal level within 45 min. The mean values for the pre-anoxic and maximal anoxic [Ca2+ i were 52±3 nM (N=42) and 2115±59 nM (N=45), respectively. The purported Na+ overload blocker R 56865, significantly reduced maximal anoxic [Ca2+]i to 553±56 nM (P<0.05), implicating a role of elevated intracellular Na+ in the anoxia-induced increase in [Ca2+]i. Veratridine (30 M), which induces Na+ overload, increased [Ca2+]i to 787±39 nM. The compound R 56865 reduced veratridine-induced increases in [Ca2+]i to 152±38 nM. Upon reperfusion, after 45 min of anoxia, two distinct responses were observed. Most often, [Ca2+]i decreased upon reperfusion without a change in morphology or viability, while in the minority of cases, [Ca2+]i increased further followed by hypercontraction and loss of cell viability. The mean value for [Ca2+]i 10 min after reperfusion of the former group, was 752±46 nM (N=38). The cardiomyocyte cell shape could be followed by monitoring changes in the total fura-2 fluorescence (340+380 nm signal). Within 15 min after the onset of anoxia, the total fluorescence signal increased suddenly, before [Ca2+]i started to rise, coinciding with the onset of rigor contraction induced by ATP depletion.  相似文献   

9.
The pancreatic duct has been regarded as a typical cAMP-regulated epithelium, and our knowledge about its Ca2+ homeostasis is limited. Hence, we studied the regulation of intracellular calcium, [Ca2+]i, in perfused rat pancreatic ducts using the Ca2+-sensitive probe fura-2. In some experiments we also measured the basolateral membrane voltage, V bl, of individual cells. The resting basal [Ca2+]i was relatively high, corresponding to 263±28 nmol/l, and it decreased rapidly to 106±28 nmol/l after removal of Ca2+ from the bathing medium (n=31). Carbachol increased [Ca2+]i in a concentration-dependent manner. At 10 mol/l the fura-2 fluorescence ratio increased by 0.49±0.06 (n=24), corresponding to an increase in [Ca2+]i by 111±15 nmol/l (n=17). ATP, added to the basolateral side at 0.1 mmol/l and 1 mmol/l, increased the fluorescence ratio by 0.67±0.06 and 1.01±14 (n=46; 12), corresponding to a [Ca2+]i increase of 136±22 nmol/l and 294±73 nmol/l respectively (n= 15; 10). Microelectrode measurements showed that ATP (0.1 mmol/l) hyperpolarized V bl from –62±3 mV to-70±3 mV, an effect which was in some cases only transient (n=7). This effect of ATP was different from that of carbachol, which depolarized Vbl. Applied together with secretin, ATP delayed the secretin-induced depolarization and prolonged the initial hyperpolarization of V bl (n=4). Several other putative agonists of pancreatic HCO 3 secretion were also tested for their effects on [Ca2+]i. Bombesin (10 nmol/l) increased the fura-2 fluorescence ratio by 0.24±0.04 (n=8), neurotensin (10 nmol/l) by 0.25±0.04 (n=6), substance P (0.1 mol/l) by 0.22±0.06 (n=6), and cholecystokinin (10 nmol/l) by 0.14±0.03 (n=7). Taken together, our studies show that Ca2+ homeostasis plays a role in pancreatic ducts. The most important finding is that carbachol and ATP markedly increase [Ca2+]i, but their different electrophysiological responses indicate that intracellular signalling pathways may differ.Preliminary reports of the present study have been presented at the 72nd Meeting of the German Physiological Society, March 1993  相似文献   

10.
To study the essential features of acetylcholine (ACh)-and caffeine-sensitive cellular Ca2+ storage sites in single vascular smooth muscle cells of the porcine coronary artery, the effects of ryanodine on both ACh- and caffeine-induced Ca2+ mobilization were investigated by measuring intracellular Ca2+ concentration ([Ca2+]i) using Fura 2 in Ca2+-containing or Ca2+-free solution. The resting [Ca2+]i of the cells was 122 nM in normal physiological solution and no spontaneous activity was observed. In a solution containing 2.6 mM Ca2+, 10 M ACh or 128 mM K+ produced a phasic, followed by a tonic, increase in [Ca2+]i but 20 mM caffeine produced only a phasic increase. In Ca2+-free solution containing 0.5 mM ethylenebis(oxonitrilo)tetraacetate (EGTA), the resting [Ca2+]i rapidly decreased to 102 nM within 5 min, and 10 M ACh or 20 mM caffeine (but not 128 mM K+) transiently increased [Ca2+]i. Ryanodine (50 M) greatly inhibited the phasic increase in [Ca2+]i induced by 10 M ACh or 5 mM caffeine and increased the time to peak and to the half decay after the peak in the presence or absence of extracellular Ca2+. By contrast, ryanodine (50 M) enhanced the tonic increase in [Ca2+]i induced by 128 mM K+ and also by 10 M ACh in Ca2+-containing solution. In Ca2+-free solution containing 0.5 mM EGTA, ACh (10 M) failed to increase [Ca2+]i following application of 20 mM caffeine. The level of [Ca2+]i induced by 20 mM caffeine was greatly reduced, but not abolished, following application of 10 M ACh in Ca2+-free solution. These results suggest that both ACh and caffeine release Ca2+ from the ryanodine-sensitive sarcoplasmic reticulum (SR) in smooth muscle cells of the porcine coronary artery. The finding that ryanodine significantly increased the resting [Ca2+]i and inhibited the rate of decline of [Ca2+]i following wasthout of high K+ or ACh in Ca2+-containing solution suggests that SR may negatively regulate the resting [Ca2+]i in smooth muscle cells of the porcine coronary artery.  相似文献   

11.
We have measured the effects of thapsigargin, a specific inhibitor of endoplasmic Ca2+-adenosine 5-triphosphatase (Ca2+-ATPase), on membrane currents and on the intracellular Ca2+ concentration ([Ca2+]i) in single endothelial cells from the human umbilical cord vein. Currents were recorded by means of the patchclamp technique in the whole-cell mode and [Ca2+]i was measured using Fura II. Application of thapsigargin at concentrations between 0.2 and 2 mol/l induced a slow increase in [Ca2+]i to a peak value of 400±110 nmol/l above a resting level of 120±35 nmol/l, and then slowly declined to a new steady-state level of 315±90 nmol/l (n=33). The thapsigargin-induced increase in [Ca2+]i depended on the extracellular Ca2+ concentration ([Ca2+]o: it declined after removal of extracellular Ca2+, but increased again when [Ca2+]o was augmented, indicating that the response depends on a transmembrane influx of Ca2+ ions. The peak amplitude of the histamine-induced Ca2+ transient was reduced in the presence of thapsigargin. This reduction was more pronounced when histamine was applied at the peak of the increase in [Ca2+]i induced by thapsigargin than during the rising phase of the changes in [Ca2+]i. The decline of the Ca2+ transient induced by histamine after washing out the agonist was also affected by thapsigargin. Before application of thapsigargin, this decline could be described by a single exponential with a time constant equal to 24.5±5 s (n=7). In the presence of thapsigargin, the decline was much slower (n =8 cells), although in four cells a fraction of about 23% still exchanged with a similar fast value of 29.4±4 s. Thapsigargin also induced a slowly developing inward current in endothelial cells at a holding potential of –40 mV. Voltage ramps applied before and during the development of this current indicated that a non-selective cation channel with a reversal potential near 0 mV was activated. In contrast with the Ca2+ transients, these currents did not show a declining phase. These results indicate that inhibition of the endoplasmic Ca2+ pump in endothelial cells increases [Ca2+]i. The tonic component of this increase might be partly due to opening of non-selective Ca2+-permeable cation channels activated by depletion of intracellular stores.  相似文献   

12.
Effects of exogenous adenosine 5-triphosphate (ATP) were studied by measurements of intracellular Ca2+ concentration ([Ca2+]i) and membrane currents in myocytes freshly isolated from the human saphenous vein. At a holding potential of –60 mV, ATP (10 M) elicited a transient inward current and increased [Ca2+]i. These effects of ATP were inhibited by ,-methylene adenosine 5-triphosphate (AMPCPP, 10 M). The ATP-gated current corresponded to a non-selective cation conductance allowing Ca2+ entry. The ATP-induced [Ca2+]i rise was abolished in Ca2+-free solution and was reduced to 30.1±5.5% (n=14) of the control response when ATP was applied immediately after caffeine, and to 23.7±3.8% (n=11) in the presence of thapsigargin. The Ca2+-induced Ca2+ release blocker tetracaine inhibited the rise in [Ca2+]i induced by both caffeine and ATP, with apparent inhibitory constants of 70 M and 100 M, respectively. Of the ATP-induced increase in [Ca2+]i 29.3±3.9% (n=8) was tetracaine resistant. It is concluded that the effects of ATP in human saphenous vein myocytes are only mediated by activation of P2x receptor channels. The ATP-induced [Ca2+]i rise is due to both Ca2+ entry and Ca2+ release activated by Ca2+ ions that enter the cell through P2x receptor channels.  相似文献   

13.
Ca2+ channel blockers (CCB) have been shown to be protective against ischaemic damage of the kidney, suggesting an important role for intracellular Ca2+ ([Ca2+]i) in generating cell damage. To delineate the mechanism behind this protective effect, we studied [Ca2+]i in cultured proximal tubule (PT) cells during anoxia in the absence of glycolysis and the effect of methoxyverapamil (D600) and felodipine on [Ca2+]i during anoxia. A method was developed whereby [Ca2+]i in cultured PT cells could be measured continuously with a fura-2 imaging technique during anoxic periods up to 60 min. Complete absence of O2 was realised by inclusion of a mixture of oxygenases in an anoxic chamber. [Ca2+]i in PT cells started to rise after 10 min of anoxia and reached maximal levels at 30 min, which remained stable up to 60 min. The onset of this increase and the maximal levels reached varied markedly among individual cells. The mean values for normoxic and anoxic [Ca2+]i were 118±2 (n=98) and 662±22 (n=160) nM, respectively. D600 (1 M), but not felodipine (10 M), significantly reduced basal [Ca2+]i in normoxic incubations. During anoxia 1 M and 100 M D 600 significantly decreased anoxic [Ca2+]i levels by 22 and 63% respectively. Felodipine at 10 M was as effective as 1 M D600. Removal of extracellular Ca2+ and addition of 0.1 mM La3+ completely abolished anoxia-induced increases in [Ca2+]i. We conclude that anoxia induces increases in [Ca2+]i in rabbit PT cells in primary culture, which results from Ca2+ influx. Since this Ca2+ influx is partially inhibited by low doses of CCBs, Ltype Ca2+ channels may be involved.  相似文献   

14.
In this study on decapod crustaceans, we examined the Ca2+- and Sr2+-activation properties of skeletal muscle fibres from an identified proprioceptor, the thoracic coxal muscle receptor organ (TCMRO) and its extrafusal promotor muscle fibres. Proprioceptors and extrafusal muscles were isolated from a walking leg from the crayfish (Cherax destructor) and the rear swimming leg of the mud crab (Scylla serrata). The crayfish and mud crab TCMROs had very low Hill coefficient (n Ca) values (1.86 ± 0.08 and 1.64 ± 0.03, respectively). In comparison to other skeletal muscle fibre types these low Hill coefficients would enable the length of the receptor muscles to be finely controlled over a wide range of [Ca2+]. Maximum force was found to be significantly lower in the TCMROs (crayfish: 5.76 ± 0.98; crab: 4.80 ± 0.56 Ncm–2), compared to their associated extrafusal promotor muscle fibres (crayfish: 10.69 ± 1.63; crab: 20.07 ± 1.98 Ncm–2), which is consistent with their sensory role. The muscle fibres of the crayfish TCMRO had faster contractile properties than the mud crab TCMRO, we discuss how these contractile properties relate to the type of locomotion undergone by each leg. The mud crab red promotor and all crayfish promotor fibres were characterised as slow with low Hill coefficients (n Ca: crayfish: 3.22 ± 0.29; crab: 3.34 ± 0.29) and a contractile apparatus with a high sensitivity to Ca2+ (pCa50: crayfish: 6.42 ± 0.03; crab: 6.18 ± 0.03). In contrast the white mud crab promotor fibres from the swimming leg had contractile properties that were characteristic of fast fibres with a high mean Hill coefficient (n Ca: 5.27 ± 0.76) and a lower Ca2+ sensitivity (pCa50: 6.03 ± 0.03). The sensitivity of the contractile apparatus to Sr2+ was very low (range of mean pSr50: 4.23 ± 0.03–3.48 ± 0.06) and low force levels were produced in comparison to that produced with Ca2+. The results of this study show that the muscle fibres of the sensory receptor, produce less force and have been adapted to enable the length of the receptor to be finely set in relation to the length of the extrafusal muscle. We discuss how the striated fibres of the receptor have been adapted to perform a sensory role and how this is related to the type of locomotion undergone by the legs. We also discuss how the fibre types of the extrafusal muscle have adapted to the mode of locomotion.  相似文献   

15.
The effect of antidiuretic hormone ([Arg]vasopressin, ADH) on intracellular calcium activity [Ca2+]i of isolated perfused rabbit cortical thick ascending limb (cTAL) segments was investigated with the calcium fluorescent dye fura-2. The fluorescence emission ratio at 500–530 nm (R) was monitored as a measure of [Ca2+]i after excitation at 335 nm and 380 nm. In addition the transepithelial potential difference (PD te) and transepithelial resistance (R te) of the tubule were measured simultaneously. After addition of ADH (1–4 nmol/l) to the basolateral side of the cTAL R increased rapidly, but transiently, from 0.84±0.05 to 1.36±0.08 (n = 46). Subsequently, within 7–12 min R fell to control values even in the continued presence of ADH. The increase in R evoked by the ADH application corresponded to a rise of [Ca2+]i from a basal level of 155±23 nmol/l [Ca2+]i up to 429±53 nmol/l [Ca2+]i at the peak of the transient, as estimated by intra- or extracellular calibration procedures. The electrical parameters (PD te and R te) of the tubules were not changed by ADH. The ADH-induced Ca2+ transient was dependent on the presence of Ca2+ on the basolateral side, whereas luminal Ca2+ had no effect. d(CH2)5[Tyr(Me)2]2,Arg8vasopressin, a V1 antagonist (Manning compound, 10 nmol/l), blocked the ADH effect on [Ca2+]i completely (n = 5). The V2 agonist 1-desamino-[d-Arg8]vasopressin (10 nmol/l, n=4), and the cAMP analogues, dibutyryl-cAMP (400 mol/l, n = 4), 8-(4-chlorophenylthio)-cAMP (100 mol/l, n = 1) or 8-bromo-cAMP (200 mol/1, n = 4) had no influence on [Ca2+]i. The ADH-induced [Ca2+]i increase was not sensitive to the calcium-channel blockers nifedipine and verapamil (100 mol/l, n = 4). We conclude that ADH acts via V1 receptors to increase cytosolic calcium activity transiently in rabbit cortical thick ascending limb segments, possibly by an initial Ca2+ release from intracellular stores and by further Ca2+ influx through Ca2+ channels in the basolateral membrane. These channels are insensitive to L-type Ca2+ channel blockers, e.g. nifedipine and verapamil.Supported by DFG GR 480/10  相似文献   

16.
Mechanisms of fatigue were studied in single muscle fibres of the cane toad (Bufo marinus) in which force, intracellular calcium ([Ca2+]i), [Mg2+]i, glycogen and the rapidly releasable Ca2+ from the sarcoplasmic reticulum (SR) were measured. Fatigue was produced by repeated tetani continued until force had fallen to 50%. Two patterns of fatigue in the absence of glucose were studied. In the first fatigue run force fell to 50% in 8–10 min. Fatigue runs were then repeated until force fell to 50% in <3 min in the final fatigue run. Addition of extracellular glucose after the final fatigue run prolonged a subsequent fatigue run. In the first fatigue run peak tetanic [Ca2+]i initially increased and then declined and at the time when force had fallen to 50% tetanic [Ca2+]i was 54 ± 5% of initial value. In the final fatigue run force and peak tetanic [Ca2+]i declined more rapidly but to the same level as in first fatigue runs. At the end of the first fatigue run, the rapidly releasable SR Ca2+ store fell to 46 ± 6% of the pre-fatigue value. At the end of the final fatigue run the rapidly releasable SR Ca2+ store was 109 ± 16% of the pre-fatigue value. In unstimulated fibres the nonwashable glycogen content was 176 ± 30 mmol glycosyl units/l fibre. After one fatigue run the glycogen content was 117 ± 17 mmol glycosyl units/l fibre; at the end of the final fatigue run the glycogen content was reduced to 85 ± 9 mmol glycosyl units/l fibre. [Mg2+]i did not change significantly at the end of fatigue in either the first or the final fatigue run suggesting that globally-averaged ATP does not decline substantially in either pattern of fatigue. These results suggest that different mechanisms are involved in the decline of tetanic [Ca2+]i in first compared to final fatigue runs. The SR Ca2+ store is reduced in first fatigue runs; this is not the case for the final fatigue run which is associated with a decline in glycogen and possibly related to either a non-metabolic effect of glycogen or a spatially-localised metabolic decline.  相似文献   

17.
The effects of changing the intracellular concentrations of Ca2+ or Mg2+ ([Ca2+]i, [Mg2+]i) on Ca current (I Ca) was studied in frog ventricular myocytes using the whole-cell and cell-attached patch clamp techniques. In the physiological range of [Mg2+]i an increase in [Ca2+]i enhancedI Ca whereas at lower [Mg2+]i I Ca was suppressed. The increase inI Ca caused by Ca2+ loading was not mediated by phosphorylation since the kinase inhibitors H-8 {N-[2-(methylamino)-ethyl]-5-isoquinolinesulphonamide dihydrochloride}, staurosporine and KN-62 {1-[N,O-bis(5-isoquinoline-sulphonyl)-N-methyl-1-tyrosyl]-4-phenylpiperazine} and a non-hydrolysable adenosine 5-triphosphate analogue ,-methyleneadenosine 5-triphosphate did not prevent the Ca2+-inducedI Ca increase.I Ca was dramatically increased from 10 ± 6 (n = 4) to 71 ± 7 nA/nF (n = 4) when [Mg2+]i was lowered from 1.0 × 10–3 to 1.0 × 10–6 M at a [Ca2+]i of 10–8 M. The concentration response relation for inhibition of Ca channels by [Mg2+]i is modulated by [Ca2+]i. To account for the experimental results it is postulated that competitive binding of Ca2+ or Mg2+ to the Ca channel accelerates the transition of the channel from an active to a silent mode. Single-channel recordings support this hypothesis. The regulation may have clinical relevance in cytoprotection during cardiac ischaemia.  相似文献   

18.
Isolated smooth muscle cells (SMC) from guinea pig taenia coli were employed. Suspension of cells were externally loaded in saline with the fluorescent calcium indicators quin-2/AM or fura-2/AM at 20–40 M or 4 M respectively, resulting in an estimated intracellular concentration of 100–200 M for quin-2 or 10–20 M fura-2 (free acid). On addition of 100 M carbachol or high K o + (80 mM) depolarization, fura-2 loaded cells contracted (104±47 m,n=121 rest: 39±13 m,n=59 contracted) identically to control (103±35 m,n=232 rest: 39±16 m,n=89 contracted) cells, whereas quin-2 loaded cells were unresponsive to these protocols and there was no significant length change. The Ca i 2+ of fura-2 loaded cells was 100±18 nM (mean±SD,n=15) and was not significantly different from quin-2 loaded cells 107±26 nM (n=13). Treatment of fura-2 loaded cells with 100 M ouabain saline for 10–60 min progressively elevated the Ca i 2+ to a mean of 266±83 nM (n=15). Reduction of Na p + (96% Li+ replaced) significantly increased Ca i 2+ to 317±77 nM (n=8). After pretreatment with ouabain (100 M), Na o + replacement (Li+) increased Ca i 2+ at a significantly faster rate [3.6 nM min–1 (control) cf. 19.8 nM min–1 (ouabain)].  相似文献   

19.
Cell swelling induced by hypotonic solution led to an osmolality-dependent increase in intracellular Ca2+ activity ([Ca2+]i) in HT29 cells. At moderate reductions in osmolality from 290 to 240 or 225 mosmol/l in most cases only a small monophasic increase of [Ca2+]i to a stable plateau of 10–20 nmol/l above resting [Ca2+]i was observed. Lower osmolalities resulted in a triphasic increase of [Ca2+]i to a peak value. In a first phase after the volume change, lasting 20–40 s, [Ca2+]i increased slowly by about 30 nmol/l. Thereafter [Ca2+]i increased more rapidly within 20–30 s to a peak value. This peak was 189±45 nmol/l (190 mosmol/l, n=9) and 243±41 nmol/l (160 mosmol/l, n=20) above resting [Ca2+]i. The peak was then followed by a decline of [Ca2+]i over the next 2–3 min to a stable plateau value of 28±6 (n=6) and 32±11 nmol/l (n=11) above resting [Ca2+]i at 190 and 160 mosmol/l, respectively. The plateau lasted as long as the hypotonic solution was present. Under Ca2+-free bath conditions the peak value for the cell-swelling-induced [Ca2+]i transient was reached significantly later (60–100 s, compared to 40–60 s under control conditions). The peak values under Ca2+-free conditions were not significantly lower. This indicates that the [Ca2+]i peak was mostly of intracellular origin. No [Ca2+]i plateau phase was observed under Ca2+-free bath conditions. With the use of the fura-2-Mn 2+ quenching technique an increased Ca2+ influx induced by hypotonic cell swelling was shown (160 mosmol/l; n=4). This influx started immediately after or simultaneously with the cell swelling and preceded the [Ca2+]i peak for more than 50 s.This study was supported by DFG grant Gr 480/10.  相似文献   

20.
Regulation of intracellular pH (pHi) and the relationship between H+ and Ca2+ may vary during activity. Ion-selective microelectrodes were used to record pHi during action potentials of sheep Purkinje fibres prolonged by low temperature (21°C) and elevated CO2 content. Intracellular pH also was measured during changes in extracellular calcium concentration, [Ca2+]o. Cytosolic alkalinization (peak pHi change, 0.03–0.05) was observed during the long action-potential plateau and transient acidification (0.01–0.02 units) upon repolarization. Potassium-induced depolarization to plateau potentials (i.e. to –15±2 mV) simulated the peak magnitude of the alkalinization. However, compensation for the alkalinization occurred at a faster rate during the action potential (8.9±4.3 nM/min) than during K+ depolarization (1.2±0.5 nM/min). In comparison, the cytoplasm acidified in resting fibres (0.06–0.07 log units) during changes of [Ca2+]o thought to increase intracellular calcium concentration. Alterations of pHi were translated into changes of proton concentration ([H+]i). Ten-to twenty-fold elevation of [Ca2+]o evoked a comparable change in [H+]i (mean increase, 5.7 nM) but oppositely directed from that during the plateau (mean decrease, 8.8 nM). The findings in resting fibres seem consistent with displacement of bound protons by Ca2+. In contrast, the initial change in pHi during the plateau is proposed to be consequent to Ca2+-release from sarcoplasmic reticulum and/or phosphocreatine hydrolysis coupled to ATP regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号