首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨全反式维甲酸(ATRA)对甲状腺癌细胞株钠/碘同向转运体(NIS)基因表达、吸碘能力的影响,为ATRA用于放射性碘治疗甲状腺癌提供理论依据。方法:分别以不同浓度(10^-7mol/L、10^-6mol/L、10^-5mol/L、10^-4mol/L)的ATRA处理体外培养的甲状腺癌细胞株(FTC-133),48h后利用半定量RT-PCR检测细胞NISmRNA表达,γ-计数仪检测细胞吸碘能力。结果:ARTA浓度在(0~10%-5)mol/L范围内,细胞NIS基因表达及吸碘能力随ARTA剂量的增加而增加(P〈0.05)。当ARTA浓度达10%-4mol/L时,增加与前一浓度相比无统计学意义(P〉0.05)。结论:ATRA可上调甲状腺癌FTC-133细胞NIS基因表达,增强其吸碘能力,而且这种作用在一定浓度范围内具有剂量依赖性。  相似文献   

2.
Expression of the sodium iodide symporter (NIS) gene in tumor cells may provide a novel mechanism for treating cancer. The NIS mediates the normal physiological transport of iodide across the thyroid cell membrane. This mechanism of iodide uptake has been used to both diagnose and treat thyroid cancer. Tissue expression of the NIS is largely limited to the thyroid; therefore, expression of the NIS gene in cancer cells would allow for specific iodine uptake, radioisotope accumulation, and treatment. In this study, we directly compared the human and rat NIS (rNIS) for their ability to concentrate radioisotope into human and rodent cancer cells. Perchlorate-sensitive (125)I uptake in multiple cell lines was demonstrated following transduction with retroviral vectors expressing either the human or rNIS gene. Surprisingly, iodine uptake was consistently higher with the rNIS gene, up to 5-fold greater, when compared to the human gene, even within a variety of human tumor cell lines. This iodine uptake allowed for cell killing following (131)I treatment in NIS-transduced cells when assayed by in vitro clonogenic assays. These results demonstrate that the rNIS gene provides superior iodine uptake ability, and may be preferable for use in designing anticancer gene therapy approaches.  相似文献   

3.
4.
Biology and clinical application of the NIS gene   总被引:1,自引:0,他引:1  
Elisei R  Vivaldi A  Pacini F 《Tumori》2003,89(5):523-528
The sodium iodide symporter (NIS) is a plasma basolateral membrane protein that actively transports iodide to the thyroid follicular cells as the first step of thyroid hormone biosynthesis. NIS also mediates active iodide transport in other human tissues including the salivary glands, lactating mammary gland and gastric mucosa. NIS expression has been recently reported also in several other human tissues but its physiological role is still unclear. Cloning of the NIS gene and the development of specific NIS antibodies have allowed the characterization of the pathogenic role of NIS in thyroid cancer, thyroid autoimmune diseases, congenital hypothyroidism and other, non-thyroidal human diseases. The possibility to increase its levels of expression or to reinduce its expression in thyroid carcinomas that have lost the ability to take up radioiodine is one of the most promising clinically related fields of research. The recent discovery that more than 80% of human breast carcinomas endogenously express NIS protein has opened a very interesting new area of research into the possibility of using radioiodide in the diagnosis and treatment of breast cancer. In an attempt to make tumor cells susceptible to radioiodide destruction, several types of cancer cells have been transfected with the NIS gene. This has demonstrated the feasibility of the in vitro technique but also raised the problem of the absence of the iodide organification machinery in non-thyroidal cells, which, at the moment, represents the major limit of this strategy.  相似文献   

5.
We assessed a nonradioactive approach to induce apoptosis in non-small cell lung cancer by a novel iodide uptake and retention mechanism. To enhance tumor apoptosis, we transduced non-small cell lung cancer cells with retroviral vectors containing the sodium iodide symporter (NIS) and thyroperoxidase (TPO) genes. Expression of NIS and TPO facilitated concentration of iodide in tumors. As a consequence of the marked increase in intracellular levels of iodide, apoptosis was seen in >95% of NIS/TPO-modified lung cancer cells. Intraperitoneal injection of potassium iodide resulted in significant tumor volume reduction in NIS/TPO-modified tumor xenografts without apparent adverse effects in SCID mice. Iodide induced an increase in the level of reactive oxygen species. Iodide-induced apoptosis is sensitive to N-acetylcysteine inhibition, suggesting an important role by reactive oxygen species in this apoptotic process. In addition, iodide-induced apoptosis is associated with overexpression of CDKN1A (p21/Waf1)and down-regulation of survivin at both mRNA and protein levels. This is the first report demonstrating that a therapeutic dose of nonradioactive iodide has potent efficacy and high selectivity against lung cancer when used in combination with genetic modification of cancer cells to express the NIS/TPO genes.  相似文献   

6.
Lee WW  Lee B  Kim SJ  Jin J  Moon DH  Lee H 《Oncology reports》2003,10(4):845-849
We evaluated the potential of radioiodide therapy in human sodium iodide symporter (hNIS)-defective thyroid cancer cells via exogenous hNIS expression. Three human thyroid cancer cells (ARO, FRO and NPA) of different origin were transduced by a recombinant adenovirus encoding hNIS expression cassette (Rad-hNIS). The cells were efficiently transduced by a recombinant adenovirus in a virus dose-dependent manner. Consequently, the hNIS protein could be readily detected by Western blot analysis 48-h post-infection at 10 infectious virus particles per cell. These hNIS-transduced cells actively transported iodide into the cytoplasm at the level of 11635.3, 61571.6, and 19367.5 pmoles/10(6) cells in ARO, FRO, and NPA, respectively. However, a significant amount of iodide was eluted to an iodide-free media within 60 min in all the cell lines. RT-PCR analysis revealed that the expression of genes related to iodide trapping (Tg, TSHR and TPO) was dramatically downregulated in these cells. The present study indicates that functional hNIS can be efficiently expressed and is responsible for active transport of iodide in hNIS-negative human thyroid cancer cells by a recombinant adenovirus. However, the human thyroid cancer cells, along with downregulation of iodide metabolism-related gene expression, lose the ability to maintain iodide. Therefore, these kinetic characteristics of iodide uptake and efflux may limit the therapeutic potential of hNIS/radioiodide-based treatment following exogenous hNIS expression in human thyroid cancer.  相似文献   

7.
The Na+/I- symporter (NIS) present in the membranes of thyroid cells is responsible for the capacity of the thyroid to concentrate iodide. This allows treatment of thyroid cancers with 131I. We propose to enlarge this therapeutic strategy to nonthyroid tumors by using an adenoviral vector to deliver the NIS gene into the tumor cells. We constructed a recombinant adenovirus encoding the rat NIS gene under the control of the cytomegalovirus promoter (AdNIS). Infection of SiHa cells (human cervix tumor cells) with AdNIS resulted in perchlorate-sensitive 125I uptake by these cells to a level 125-225 times higher than that in noninfected cells. Similar results were obtained for other human tumor cell lines, including MCF7 and T-47D (mammary gland), DU 145 and PC-3 (prostate), A549 (lung), and HT-29 (colon), demonstrating that the AdNIS vector can function in tumor cells of various origins. In addition, AdNIS-infected tumor cells were selectively killed by exposure to 131I, as revealed by clonogenic assays. To assess the efficiency of this cancer gene therapy strategy in vivo, we injected the AdNIS vector in human tumors (SiHa or MCF7 cells) established s.c. in nude mice. Immunohistological analysis confirmed the expression of the NIS protein in the tumor. Three days after intratumoral injection, AdNIS-treated tumors could specifically accumulate 125I or 123I, as revealed by kinetics and imaging experiments. A quantitative analysis demonstrated that the uptake in AdNIS-injected tumors was 4-25 times higher than that in nontreated tumors. On average, 11% of the total amount of injected 125I could be recovered per gram of AdNIS-treated tumor tissue. Altogether, these data indicate that AdNIS is very efficient in triggering significant iodide uptake by a tumor, outlining the potential of this novel cancer gene therapy approach for a targeted radiotherapy.  相似文献   

8.
While external ionizing radiation has been used for treating non-small cell lung cancer (NSCLC), improved efficacy of this modality would be an important advance. Ectopic expression of the sodium iodide symporter (NIS) and thyroperoxidase (TPO) genes in NSCLC cells facilitated concentration of iodide in NSCLC cells, which markedly induced apoptosis in vitro and in vivo. Pre-incubation of the NIS/TPO-modified NSCLC cells in iodide followed by ionizing radiation generates bystander tumoricidal effects and potently enhances tumor cell killing. This iodide-induced bystander effect is associated with enhanced gap junction intercellular communication (GJIC) activity and increased connexin-43 (Cx43) expression. Thus, iodide may serve as an enhancer to markedly improve the efficacy of radiation therapy in combined therapeutic modalities.  相似文献   

9.
PURPOSE: Expression of the sodium iodide symporter (NIS) in the thyroid gland provides for effective imaging and treatment of thyroid cancer using radiolabeled iodide. Transfer of NIS into other tumors would expand the utility of this treatment to tumors of nonthyroid origin. MUC1 is a transmembrane glycoprotein that is overexpressed in many tumor types, including breast, pancreatic, and ovarian. The aim of this study was to create a construct containing NIS under the control of the MUC1 promoter to target expression specifically to MUC1-positive breast cancer cells. EXPERIMENTAL DESIGN: A replication-deficient adenoviral construct was created containing the MUC1 promoter followed by the human NIS gene. Iodide uptake assays, Western blot, and immunohistochemistry were used to confirm NIS expression and function. Breast cancer xenografts in mice were infected with Ad5/MUC1/NIS and then imaged and treated using radioiodide. RESULTS: A 58-fold increase in iodide uptake was observed in infected MUC1-positive T47D cells with no significant increase observed in MUC1-negative MDA-MB-231 cells or in cells infected with the control virus. The in vivo study yielded clear images of Ad/MUC1/NIS-infected tumor xenografts using (123)I. Administration of a therapeutic dose of (131)I resulted in an 83% reduction in tumor volume, whereas control tumors continued to increase in size (P < 0.01). CONCLUSIONS: These results show that the MUC1 promoter is capable of directing efficient and selective expression of the NIS gene in MUC1-positive breast tumor cells. This could potentially have applications for both imaging and therapy in a range of MUC1-positive tumor types.  相似文献   

10.
碘化钠同向转运蛋白(NIS)是一种调控甲状腺滤泡细胞碘吸收的跨膜糖蛋白。NIS调控甲状腺细胞碘吸收是甲状腺及其转移癌放射碘治疗的基础。然而研究证实,NIS除表达于哺乳期乳腺细胞上外,还表达于多数乳腺癌细胞,提示放射碘治疗也可能成为乳腺癌一种可行的治疗方法,尤其是对三阴性乳腺癌及乳腺癌脑转移患者。然而,乳腺癌细胞表面NIS蛋白表达通常都较低,且只有表达于细胞表面的NIS方具备放射碘吸收能力。因此揭示不同水平上NIS表达的调控机制就显得格外重要。本文就NIS在乳腺癌中的表达及其诱导与乳腺癌放射碘治疗的研究进展作一综述。  相似文献   

11.
Currently, no curative therapy for metastatic prostate cancer exists. Causing prostate cancer cells to express functionally active sodium iodide symporter (NIS) would enable those cells to concentrate iodide from plasma and might offer the ability to treat prostate cancer with radioiodine. Therefore, the aim of our study was to achieve tissue-specific expression of full-length human NIS (hNIS) cDNA in the androgen-sensitive human prostatic adenocarcinoma cell line LNCaP and in subcell lines C4, C4-2, and C4-2b in vitro. For this purpose, an expression vector was generated in which full-length hNIS cDNA coupled to the prostate-specific antigen (PSA) promoter has been ligated into the pEGFP-1 vector (NIS/PSA-pEGFP-1). The PSA promoter is responsible for androgen-dependent expression of PSA in benign and malignant prostate cells and was therefore used to mediate androgen-dependent prostate-specific expression of NIS. In addition, two control vectors were designed, which consist of the pEGFP-1 vector containing the PSA promoter without NIS cDNA (PSA-pEGFP-1) and NIS cDNA without the PSA promoter (NIS-pEGFP-1). Prostate cancer cells were transiently transfected with each of the above-described expression vectors, incubated with or without androgen (mibolerone) for 48 h, and monitored for iodide uptake activity. In addition, stably transfected LNCaP cell lines were established for each vector. Prostate cells transfected with NIS/PSA-pEGFP-1 showed perchlorate-sensitive, androgen-dependent iodide uptake in a range comparable to that observed in control cell lines transfected with hNIS cDNA. Perchlorate-sensitive iodide uptake was not observed in cells transfected with NIS/PSA-pEGFP-1 and treated without androgen or in cells transfected with the control vectors. In addition, prostate cancer cell lines without PSA expression (PC-3 and DU-145) did not show iodide uptake activity when transfected with NIS/PSA-pEGFP-1. Western blotting of LNCaP and C4-2b cell membranes transfected with NIS/PSA-pEGFP-1 using a monoclonal antibody that recognizes the COOH-terminus of hNIS revealed a band with a molecular weight of 90,000 that was not detected in androgen-deprived cells or in cells transfected with the control vectors, as well as a minor band at Mr 150,000 in transiently transfected LNCaP cell membranes. In conclusion, tissue-specific androgen-dependent iodide uptake activity has been induced in prostate cancer cells by PSA promoter-directed NIS expression. This study represents an initial step toward therapy of prostate cancer with radioiodine.  相似文献   

12.
The sodium iodide symporter (NIS) mediates iodide uptake into the thyroid. Because of this mechanism, differentiated thyroid cancer is susceptible for radioiodine therapy. Functional NIS expression in extrathyroidal tumors has been reported mainly in breast cancer. We screened colorectal tumors for NIS expression and investigated the mechanisms regulating NIS activity. Cell lines were screened for iodide uptake in vitro and NIS expression was evaluated by real‐time RT‐PCR, immunocytochemistry and immunoblotting. Iodide and pertechnetate uptake were evaluated in allograft tumors by biodistribution studies and scintigraphy. Tumors of transgenic mouse models for colorectal cancer harboring mutations in the oncogenes KRAS, β‐catenin or the tumor‐suppressor gene adenomatous‐polyposis coli (APC) were screened for NIS expression by RT‐PCR. In vitro, functional NIS activity was detected in murine CMT93 rectal carcinoma cells and NIS expression was verified on mRNA and protein level. Inhibition of tyrosine kinases increased iodide uptake. Inhibition of tyrosine phosphatases decreased iodide uptake. In vivo, functional NIS expression was preserved in CMT93 tumors and tumor uptake could be enhanced by treatment of mice with tyrosine kinase inhibitors. In transgenic murine models of colorectal cancer, 14% of endogenous tumors expressed elevated levels of NIS mRNA. We conclude that NIS is functionally expressed in a subset of murine colorectal tumors and its activity is regulated by tyrosine phosphorylation. Therefore, with specific tyrosine kinase inhibition, these tumors might be susceptible for radioiodine treatment. Further studies are justified to identify the specific pathways regulating NIS activity and to transfer these findings to human cell lines and tissues. © 2009 UICC  相似文献   

13.
PURPOSE: To assess the effects of external beam radiotherapy (EBRT) on adenoviral-mediated transgene expression in vitro and in vivo and to define an optimal strategy for combining sodium iodide symporter (NIS)-mediated (131)I therapy with EBRT. EXPERIMENTAL DESIGN: Expression of reporter genes [NIS, green fluorescent protein (GFP), beta-galactosidase (lacZ), and luciferase (Luc)] from replication-deficient adenoviruses was assessed in tumor cell lines under basal conditions and following irradiation. The effects of viral multiplicity of infection (MOI) and EBRT dose on the magnitude and duration of gene expression were determined. In vivo studies were done with Ad-CMV-GFP and Ad-RSV-Luc. RESULTS: EBRT increased NIS, GFP, and beta-galactosidase expression in colorectal, head and neck, and lung cancer cells. Radiation dose and MOI were important determinants of response to EBRT, with greatest effects at higher EBRT doses and lower MOIs. Radiation exerted both transductional (through increased coxsackie-adenoviral receptor and integrin alpha(v)) and nontransductional effects, irrespective of promoter sequence (CMV, RSV, hTR, or hTERT). Analysis of the schedule of EBRT followed by viral infection revealed maximal transduction at 24 hours. Radiation maintained increasing radioiodide uptake from Ad-hTR-NIS over 6 days, in direct contrast to reducing levels in unirradiated cells. The effects of EBRT in increasing and maintaining adenovirus-mediated transgene expression were also seen in vivo using GFP- and luciferase-expressing adenoviral vectors. CONCLUSIONS: Radiation increased the magnitude and duration of NIS gene expression from replication-deficient adenoviruses. The transductional effect is maximal at 24 hours, but radioiodide uptake is maintained at an elevated level over 6 days after infection.  相似文献   

14.
Huang R  Zhao Z  Ma X  Li S  Gong R  Kuang A 《Cancer gene therapy》2011,18(2):144-152
To test the feasibility of using the survivin promoter to induce specific expression of sodium/iodide symporter (NIS) in cancer cell lines and tumors for targeted use of radionuclide therapy, a recombinant adenovirus, Ad-SUR-NIS, that expressed the NIS gene under control of the survivin promoter was constructed. Ad-SUR-NIS mediating iodide uptake and cytotoxicity was performed in vitro. Scintigraphic, biodistribution and radioiodine therapy studies were performed in vivo. PC-3 (prostate); HepG2 (hepatoma) and A375 (melanoma) cancer cells all exhibited perchlorate-sensitive iodide uptake after infection with Ad-SUR-NIS, approximately 50 times higher than that of negative control Ad-CMV-GFP-infected cells. No significant iodide uptake was observed in normal human dental pulp fibroblast (DPF) cells after infection with Ad-SUR-NIS. Clonogenic assays demonstrated that Ad-SUR-NIS-infected cancer cells were selectively killed by exposure to (131)I. Ad-SUR-NIS-infected tumors show significant radioiodine accumulation (13.3 ± 2.85% ID per g at 2 h post-injection), and the effective half-life was 3.1 h. Moreover, infection with Ad-SUR-NIS in combination with (131)I suppressed tumor growth. These results indicate that expression of NIS under control of the survivin promoter can likely be used to achieve cancer-specific expression of NIS in many types of cancers. In combination with radioiodine therapy, this strategy is a possible method of cancer gene therapy.  相似文献   

15.
Prostate cancer is one of the most promising candidates for sodium iodide symporter (NIS)-mediated gene therapy. Adenovirus-mediated expression of NIS that is driven by prostate-specific promoters induces generous radioiodine accumulation in prostate cancer cells that may be used for therapy with (131)I. We have recently developed a replication-deficient adenovirus carrying the human NIS cDNA linked to a composite probasin promoter, ARR(2)PB, aiming toward specific expression of the human NIS gene (h-NIS) in prostate tissue for targeted radioactive iodide therapy of prostate cancer (Ad-ARR(2)PB/hNIS). The ability of Ad-ARR(2)PB/hNIS to cause NIS expression in tumor cells was characterized by iodide uptake assay and compared with Ad-CMV/hNIS in which the h-NIS expression is driven by the cytomegalovirus (CMV) promoter. Androgen-dependent prostate cancer cell lines (LNCaP) and non-prostate origin tumor cell lines (SNU449, MCF-7, HCT116, OVCAR-3, and Panc-1) were infected with the viral constructs, and perchlorate-sensitive (125)I uptake and NIS protein expression were measured. Ad-ARR(2)PB/hNIS-infected LNCaP cells showed androgen-dependent and perchlorate-sensitive iodide uptake. Iodide accumulation in LNCaP cells infected with Ad-ARR(2)PB/hNIS, followed by incubation with synthetic androgen, was 5.3-fold increased compared with those coincubated with perchlorate (15,184 +/- 1,173 cpm versus 2,837 +/- 187 cpm). Ad-ARR(2)PB/hNIS-infected LNCaP cells revealed a 3.2-fold increase of iodide accumulation compared with those infected with Ad-CMV/hNIS (multiplicity of infection = 30). Iodide uptake in a panel of non-prostate tumor cell lines infected with Ad-ARR(2)PB/hNIS was no more than 2,500 cpm, demonstrating the tissue specificity of this construct. These results indicate that Ad-ARR(2)PB/hNIS can be used to achieve high-magnitude and tissue-specific expression of h-NIS in prostate tissue and is a promising candidate for cancer gene therapy of prostate cancer.  相似文献   

16.
柴文文  胡硕 《肿瘤学杂志》2013,19(12):914-918
恶性肿瘤的发生严重威胁着人类的生命健康。将基因治疗与靶向核素治疗相结合,即"基因靶向核素治疗"为肿瘤基因治疗开辟了一条崭新的途径。钠碘转运体(NIS)是存在于甲状腺滤泡细胞基底膜上的一种跨膜糖蛋白,介导碘的主动摄取,其摄碘功能是临床上治疗甲状腺疾病的基础。随着NIS基因的成功克隆以及基因治疗手段的发展,通过将NIS基因转染到甲状腺及非甲状腺肿瘤中,为131I靶向治疗恶性肿瘤的研究提供了新的思路。  相似文献   

17.
The aim of this study was to comparatively investigate the effects of 5-azacytidine-C (5-Aza), trichostatin-A (TSA), and all-trans retinoic acid (ATRA) on mRNA expressions of Na/I symporter (NIS), thyroglobulin (Tg), thyroid peroxidase (TPO), and thyroid stimulating hormone receptor (TSH-R), and radioiodine (RAI) uptake in cancer (B-CPAP) and normal (Nthy-ori 3-1) thyroid cell lines. Cell lines were treated with 10 ng/mL of TSA, 5 microM of 5-Aza, and 1 microM of ATRA, according to the MTT (methyl-thiazol-tetrazolium) test results. Additionally, recombinant thyroid stimulating hormone (rTSH) was also applied, with a selected dose of 100 ng/mL. Following the treatment, NIS, Tg, TPO, and TSH-R mRNA levels were detected by real-time-polymerase chain reaction (RT-PCR) and RAI uptakes were measured by using a well counter as the counts/cell number. 5-Aza increased TSH-R mRNA expression in both of the cell lines and decreased TPO, NIS, and Tg mRNA levels in the cancer cell line. In the normal thyroid cell line, 5-Aza increased TPO mRNA levels 2-fold and made no differences in NIS and Tg mRNA levels. TSA treatment repressed NIS and Tg mRNA levels, and made no differences on other thyroid specific genes investigated in the cancer cell line. In the normal thyroid cell line, TSA increased TSH-R mRNA levels in 72 hours and created no important differences in other genes. ATRA repressed the TSH-R mRNA levels in the normal thyroid cell line and increased the TPO and Tg mRNA levels slightly in both cell lines. Furthermore, in short-term treatment, ATRA repressed NIS gene expression slightly, but in the long term, this repression turned to basal levels. 5-Aza, TSA, and ATRA did not make any differences in RAI uptake in the cancer cell line, but rTSH increased RAI uptake significantly. In the normal thyroid cell line, TSA and ATRA decreased RAI uptake (to 1/10 and 1/2, respectively), but 5-Aza and rTSH increased RAI uptake significantly (2- and 4-fold, respectively). We have shown an increase in TSH-R gene expression and radioiodine uptake with 5-Aza. Further in vitro and in vivo studies are needed to support our findings and the potential clinical use of this agent.  相似文献   

18.
Causing prostate cancer cells to express functionally active sodium iodide symporter (NIS) by targeted NIS gene transfer might offer the possibility of radioiodine therapy of prostate cancer. Therefore, we investigated radioiodine accumulation and therapeutic effectiveness of 131I in NIS-transfected prostate cancer cells in vitro and in vivo. The human prostatic adenocarcinoma cell line LNCaP was stably transfected with NIS cDNA under the control of the prostate-specific antigen promoter. The stably transfected LNCaP cell line NP-1 showed perchlorate-sensitive, androgen-dependent iodide uptake in vitro that resulted in selective killing of these cells by 131I in an in vitro clonogenic assay. Xenografts were established in athymic nude mice and imaged using a gamma camera after i.p. injection of 500 microCi of 123I. In contrast to the NIS-negative control tumors (P-1) which showed no in vivo uptake of 123I, NP-1 tumors accumulated 25-30% of the total 123I administered with a biological half-life of 45 h. In addition, NIS protein expression in LNCaP cell xenografts was confirmed by Western blot analysis and immunohistochemistry. After a single i.p. application of a therapeutic 131I dose (3 mCi), significant tumor reduction was achieved in NP-1 tumors in the therapy group compared with P-1 tumors and tumors in the control group. In conclusion, a therapeutic effect of 131I has been demonstrated in prostate cancer cells after induction of tissue-specific iodide uptake activity by prostate-specific antigen promoter-directed NIS expression in vitro and in vivo. This study demonstrates the potential of NIS as a novel therapeutic gene for nonthyroidal cancers, in particular prostate cancer.  相似文献   

19.
The aim of this study was to comparatively investigate the effects of 5-azacytidine-C (5-Aza), trichostatin-A (TSA), and all-trans retinoic acid (ATRA) on the mRNA expressions of the sodium and iodine (Na/I) symporter (NIS), thyroglobulin (Tg), thyroid peroxidase (TPO), and the thyroid-stimulating hormone receptor (TSH-R), as well as radioiodine (RAI) uptake in cancer (B-CPAP) and normal (Nthy-ori 3-1) thyroid cell lines. Cell lines were treated with 10 ng/mL of TSA, 5 microM of 5-AZA, and 1 microM of ATRA, according to the MTT (methyl-thiazol-tetrazolium) test results. Additionally, recombinant thyroid-stimulating hormone (rTSH) was also applied, with a selected dose of 100 ng/mL. Following the treatment, NIS, Tg, TPO, and TSH-R mRNA levels were detected by real-time-polymerase chain reaction (RT-PCR) and RAI uptakes were measured by using a well counter as counts/cell number. 5-Aza increased TSH-R mRNA expression in both of the cell lines and decreased TPO, NIS, and Tg mRNA levels in the cancer cell line. In the normal thyroid cell line, 5-AZA increased TPO mRNA levels by 2-fold and made no differences in NIS and Tg mRNA levels. TSA treatment repressed NIS and Tg mRNA levels and made no change on other thyroid-specific genes that were investigated in the cancer cell line. In the normal thyroid cell line, TSA increased TSH-R mRNA levels in 72 hours and created no important difference in the other genes. ATRA repressed the TSH-R mRNA levels in the normal thyroid cell line and increased the TPO and Tg mRNA levels slightly in both the cell lines. Furthermore, in short-term treatment, ATRA repressed the NIS gene expression slightly, but in the long term, this repression turned to basal levels. 5-Aza, TSA, and ATRA did not make any changes in RAI uptake in the cancer cell line, but rTSH increased RAI uptake significantly. In the normal thyroid cell line, TSA and ATRA decreased RAI uptake (to 1/10 and 1/2, respectively), but 5-Aza and rTSH increased RAI uptake significantly (2- and 4-fold, respectively). In our study, we showed an increase in TSH-R gene expression and radioiodine uptake with 5-Aza. Further in vitro and in vivo studies are needed to support our findings and the potential clinical use of this agent.  相似文献   

20.

Background  

The sodium/iodide symporter (NIS) is a membrane glycoprotein mediating active iodide uptake in the thyroid gland and is the molecular basis for radioiodide imaging and therapeutic ablation of thyroid carcinomas. NIS is expressed in the lactating mammary gland and in many human breast tumors, raising interest in similar use for diagnosis and treatment. However, few human breast tumors have clinically evident iodide uptake ability. We previously identified PI3K signaling as important in NIS upregulation in transgenic mouse models of breast cancer, and the PI3K pathway is commonly activated in human breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号