首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat-sensitive suspended moxibustion has a neuroprotective effect against focal cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. The duration of heat-sensitive suspended moxibustion(usually from 30 minutes to 1 hour) is longer than traditional suspended moxibustion(usually 15 minutes). However, the effects of 15-and 35-minute suspended moxibustion in rats with cerebral ischemia/reperfusion injury are poorly understood. In this study, we performed 15-or 35-minute suspended moxibustion at acupoint Dazhui(GV14) in an adult rat model of focal cerebral ischemia/reperfusion injury. Infarct volume was evaluated with the 2,3,5-triphenyltetrazolium chloride assay. Histopathological changes and neuronal apoptosis at the injury site were assessed by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase d UTP nick end labeling assay. Caspase-9 and caspase-3 expression at the injury site was detected using immunofluorescent staining. Bax and Bcl-2 expression at the injury site was assessed using western blot assay. In the 35-minute moxibustion group, infarct volume was decreased, neuronal apoptosis was reduced, caspase-9, caspase-3 and Bax expression was lower, and Bcl-2 expression was increased, compared with the 15-minute moxibustion group. Our findings show that 35-minute moxibustion has a greater anti-apoptotic effect than 15-minute moxibustion after focal cerebral ischemia/reperfusion injury.  相似文献   

2.
This study examines the neuroprotective effects and mechanisms of action of total saponins from Rubus parvifolius L. (TSRP) on focal cerebral ischemia and reperfusion injury in rats. Focal cerebral ischemia and reperfusion injury was performed in rats using the suture method. The results indicate that intragastric injection of TSRP, at 5, 10 and 20 mg/kg, could decrease neurological impairment, reduce cerebral infarct volume, diminish pathological changes, and significantly inhibit the apoptosis of neurons surrounding the ischemic area. In addition, TSRP upregulated the expression of the anti-apoptotic factor Bcl-2, at the protein and mRNA levels, and it downregulated the expression of the pro-apoptotic factor Bax, at the protein and mRNA levels. These findings indicate that TSRP protects against cerebral ischemia/reperfusion injury, and that it may do so by regulating the expression of Bcl-2 and Bax.  相似文献   

3.
Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral ischemic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial. The aim of the present study was to evaluate the effects of pre-ischemia treadmill training on hippocampal CA1 neuronal damage after cerebral ischemia. Male adult rats were randomly divided into control, ischemia and exercise + ischemia groups. In the exercise + ischemia group, rats were subjected to running on a treadmill in a designated time schedule(5 days per week for 4 weeks). Then rats underwent cerebral ischemia induction th rough occlusion of common carotids followed by reperfusion. At 4 days after cerebral ischemia, rat learning and memory abilities were evaluated using passive avoidance memory test and rat hippocampal neuronal damage was detected using Nissl and TUNEL staining. Pre-ischemic exercise significantly reduced the number of TUNEL-positive cells and necrotic cell death in the hippocampal CA1 region as compared to the ischemia group. Moreover, pre-ischemic exercise significantly prevented ischemia-induced memory dysfunction. Pre-ischemic exercise mighct prevent memory deficits after cerebral ischemia through rescuing hippocampal CA1 neurons from ischemia-induced degeneration.  相似文献   

4.
Accumulating evidence indicates that resveratrol potently protects against cerebral ischemia damage due to its oxygen free radicals scavenging and antioxidant properties. However, cellular mechanisms that may underlie the neuroprotective effects of resveratrol in brain ischemia are not fully understood yet. This study aimed to investigate the potential association between the neuroprotective effect of resveratrol and the apoptosis/survival signaling pathways, in particular the glycogen synthase kinase 3 (GSK‐3β) and cAMP response element‐binding protein (CREB) through phosphatidylinositol 3‐kinase (PI3‐K)‐dependent pathway. An experimental model of global cerebral ischemia was induced in rats by the four‐vessel occlusion method for 10 min and followed by different periods of reperfusion. Nissl staining indicated extensive neuronal death at 7 days after ischemia/reperfusion. Administration of resveratrol by i.p. injections (30 mg/kg) for 7 days before ischemia significantly attenuated neuronal death. Both GSK‐3β and CREB appear to play a critical role in resveratrol neuroprotection through the PI3‐K/Akt pathway, as resveratrol pretreatment increased the phosphorylation of Akt, GSK‐3β and CREB in 1 h in the CA1 hippocampus after ischemia/reperfusion. Furthermore, administration of LY294002, an inhibitor of PI3‐K, compromised the neuroprotective effect of resveratrol and decreased the level of p‐Akt, p‐GSK‐3β and p‐CREB after ischemic injury. Taken together, the results suggest that resveratrol protects against delayed neuronal death in the hippocampal CA1 by maintaining the pro‐survival states of Akt, GSK‐3β and CREB pathways. These data suggest that the neuroprotective effect of resveratrol may be mediated through activation of the PI3‐K/Akt signaling pathway, subsequently downregulating expression of GSK‐3β and CREB, thereby leading to prevention of neuronal death after brain ischemia in rats.  相似文献   

5.
Quercetin(QE; 3,5,7,3′,4′-pentahydroxyflavone), a well-known flavonoid, has been shown to prevent against neurodegenerative disorders and ischemic insults. However, few studies are reported regarding the neuroprotective mechanisms of QE after ischemic insults. Therefore, in this study, we investigated the effects of QE on ischemic injury and the expression of antioxidant enzymes in the hippocampal CA1 region of gerbils subjected to 5 minutes of transient cerebral ischemia. QE was pre-treated once daily for 15 days before ischemia. Pretreatment with QE protected hippocampal CA1 pyramidal neurons from ischemic injury, which was confirmed by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. In addition, pretreatment with QE significantly increased the expression levels of endogenous antioxidant enzymes Cu/Zn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase in the hippocampal CA1 pyramidal neurons of animals with ischemic injury. These findings demonstrate that pretreated QE displayed strong neuroprotective effects against transient cerebral ischemia by increasing the expression of antioxidant enzymes.  相似文献   

6.
Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from injury in a diabetic model after cerebral ischemia/reperfusion. In this study, transient whole-brain ischemia was induced by four-vessel occlusion in normal and diabetic rats, and extracellular signal-regulated kinase 1/2 inhibitor (U0126) was administered into diabetic rats 30 minutes before ischemia as a pretreatment. Results showed that the number of surviving neurons in the hippocampal CA1 region was reduced, extracellular signal-regulated kinase 1/2 phosphorylation and KuT0 activity were decreased, and pro-apoptotic Bax expression was upregulated after intervention using U0126. These findings demonstrate that inhibition of extracellular signal-regulated kinase 1/2 activity aggravated neuronal loss in the hippocampus in a diabetic rat after cerebral ischemia/reperfusion, further decreased DNA repairing ability and ac- celerated apoptosis in hippocampal neurons. Extracellular signal-regulated kinase 1/2 activation plays a neuroprotective role in hippocampal neurons in a diabetic rat after cerebral ischemia/ reperfusion.  相似文献   

7.
The present study aimed to observe cortical expression of Bcl-2 and Bax,cysteine-dependent aspartate directed proteases-3 activity and apoptotic cell death in a rat model of middle cerebral artery occlusion pretreated with propofol.Results showed that,propofol pretreatment significantly reduced oxidative stress levels and attenuated neuronal apoptosis in the cortex of rats.Propofol pretreatment upregulated Bcl-2 expression,and downregulated Bax expression and cysteine-dependent aspartate directed proteases-3 activity.These findings indicate that propofol pretreatment inhibits cell apoptosis during focal cerebral ischemia/reperfusion injury.This neuroprotective effect is most likely achieved through the Bcl-2/Bax/cysteine-dependent aspartate directed proteases-3 pathway.  相似文献   

8.
目的研究硫氢化钠(sodium hydrosulfide,Na HS)后处理对短暂全脑缺血大鼠海马中钾通道Kv4.2和Kv1.4 mRNA表达变化的影响及其脑保护作用,从而探讨Na HS对大鼠短暂全脑缺血神经保护作用的机制。方法用4VO方法建立大鼠短暂性全脑缺血(transient global cerebral ischemia,t GCI)模型,大鼠被随机分配到3组,分别为:假手术组(sham)、t GCI组、Na HS后处理组。Na HS后处理组为t GCI之后1 d,给予大鼠腹腔注射Na HS 24μmmol/kg或者180μmmol/kg。通过尼氏染色与Neu N免疫染色确定海马神经元的死亡,通过RT-PCR方法检测海马组织Kv4.2和Kv1.4mRNA水平的表达变化。结果 (1)与t GCI组比较,在t GCI之后1 d给予24μmol/kg Na HS后处理使海马CA1区存活细胞数目显著增加,而高剂量的Na HS(180μmol/kg)后处理对t GCI大鼠海马CA1区则无明显的保护作用。(2)在Re 26 h和Re 48 h,海马组织中Kv4.2、Kv1.4的mRNA表达水平均明显低于假手术组(P<0.05)。在Re 26 h+Na HS组,kv4.2(1.24±0.08)和kv1.4(1.11±0.07)的mRNA表达水平均分别高于Re 26 h组的kv4.2(0.75±0.04)和kv1.4(0.79±0.06),差异均有显著性(P<0.05)。结论外源性Na HS可能通过上调大鼠t GCI后海马区Kv4.2和Kv1.4 mRNA的表达,从而导致膜电位超极化,降低神经元兴奋性和氧耗,继而保护神经元免受脑缺血损伤。  相似文献   

9.
小檗碱对小鼠全脑缺血后神经元凋亡相关基因的影响   总被引:10,自引:3,他引:7  
目的 探讨小檗碱对小鼠全脑缺血后神经元凋亡相关基因的影响,以了解小檗碱保护脑缺血的机制,为其开发利用提供理论依据。方法 利用改良的Pulsinelli-Brierley4血管闭塞法制成小鼠全脑缺血再灌注动物模型。小檗碱用量为1mg/kg,于术前30min,术后每日1次,腹腔注射。免疫组织化学技术检测凋亡相关基因Bcl-2,Bax蛋白的表达。结果 正常组海马区未见Bcl-2或Bax蛋白表达;缺血组再灌注6h海马CA3区可见Bcl-2阳性细胞,24h达到高峰,48h开始下降;小檗碱治疗组再灌注24h、48h及168hBcl-2阳性细胞明显减少(P<0.01)。缺血组再灌注6h海马CA1区可见Bax阳性细胞;48h达高峰;168h明显下降;小檗碱组再灌注24h,48h及168hBax阳性细胞数明显减少(P<0.01)。结论 小檗碱可以增加小鼠全脑缺血后海马CA3区bcl-2基因的表达,降低CA1区Bax基因的表达,从而减少凋亡的发生,可能为其保护脑缺血的机制之一。  相似文献   

10.
Apelin-13 is a novel endogenous ligand for an angiotensin-like orphan G-protein coupled receptor, and it may be neuroprotective against cerebral ischemia injury. However, the precise mechanisms of the effects of apelin-13 remain to be elucidated. To investigate the effects of apelin-13 on apoptosis and autophagy in models of cerebral ischemia/reperfusion injury, a rat model was established by middle cerebral artery occlusion. Apelin-13(50 μg/kg) was injected into the right ventricle as a treatment. In addition, an SH-SY5 Y cell model was established by oxygen-glucose deprivation/reperfusion, with cells first cultured in sugar-free medium with 95% N2 and 5% CO2 for 4 hours and then cultured in a normal environment with sugar-containing medium for 5 hours. This SH-SY5 Y cell model was treated with 10–7 M apelin-13 for 5 hours. Results showed that apelin-13 protected against cerebral ischemia/reperfusion injury. Apelin-13 treatment alleviated neuronal apoptosis by increasing the ratio of Bcl-2/Bax and significantly decreasing cleaved caspase-3 expression. In addition, apelin-13 significantly inhibited excessive autophagy by regulating the expression of LC3 B, p62, and Beclin1. Furthermore, the expression of Bcl-2 and the phosphatidylinositol-3-kinase(PI3 K)/Akt/mammalian target of rapamycin(mTOR) pathway was markedly increased. Both LY294002(20 μM) and rapamycin(500 nM), which are inhibitors of the PI3 K/Akt/mTOR pathway, significantly attenuated the inhibition of autophagy and apoptosis caused by apelin-13. In conclusion, the findings of the present study suggest that Bcl-2 upregulation and mTOR signaling pathway activation lead to the inhibition of apoptosis and excessive autophagy. These effects are involved in apelin-13-induced neuroprotection against cerebral ischemia/reperfusion injury, both in vivo and in vitro. The study was approved by the Animal Ethical and Welfare Committee of Jining Medical University, China(approval No. 2018-JS-001) in February 2018.  相似文献   

11.
The present study established a model of brain ischemia in aged rats using four-vessel occlusion.We observed hippocampal CA1 neuronal apoptosis and apoptosis-mediated protease caspase-3 expression following preconditioning of electroacupuncture at Baihui(GV 20).Our results showed that the number of hippocampal CA1 normal neurons was decreased,and degenerated neurons were increased 12 hours to 3 days following cerebral ischemia/reperfusion.The number of hippocampal CA1 apoptotic neurons and caspase-3-positive neurons in rats with cerebral ischemia/reperfusion injury was significantly decreased following acupuncture preconditioning.Acupuncture preconditioning protects aged rats against ischemia/reperfusion injury by regulating caspase-3 protein expression.  相似文献   

12.
The present study established a rat model of cerebral ischemia/reperfusion injury using four-vessel occlusion and found that hippocampal CA1 neuronal morphology was damaged, and that there were reductions in hippocampal neuron number and DNA-binding activity of cAMP response element binding protein and CCAAT/enhancer binding protein, accompanied by decreased learning and memory ability. These findings indicate that decline of hippocampal cAMP response element binding protein and CCAAT/enhancer binding protein DNA-binding activities may contribute to neuronal injury and learning and memory ability reduction induced by cerebral ischemia/reperfusion injury.  相似文献   

13.
Recent studies have shown that tea polyphenols can cross the blood-brain barrier, inhibit apoptosis and play a neuroprotective role against cerebral ischemia. Furthermore, tea polyphenols can decrease DNA damage caused by free radicals. We hypothesized that tea polyphenols repair DNA damage and inhibit neuronal apoptosis during global cerebral ischemia/reperfusion. To test this hypothesis, we employed a rat model of global cerebral ischemia/reperfusion. We demonstrated that intraperitoneal injection of tea polyphenols immediately after reperfusion significantly reduced apoptosis in the hippocampal CA1 region; this effect started 6 hours following reperfusion. Immunohistochemical staining showed that tea polyphenols could reverse the ischemia/reperfusion-induced reduction in the expression of DNA repair proteins, X-ray repair cross-complementing protein 1 and apurinic/apyrimidinic endonuclease/redox factor-1 starting at 2 hours. Both effects lasted at least 72 hours. These experimental findings suggest that tea polyphenols promote DNA damage repair and protect against apoptosis in the brain.  相似文献   

14.
Brain ischemic postconditioning is the induction of brief periods of ischemia-reperfusion during the early stages following ischemia, and it has been shown to produce neuroprotective effects. The mechanisms underlying these neuroprotective effects are poorly understood. Glutamate excitotoxicity is one cause of postischemic neuronal death. Glutamine synthetase (GS) is an enzyme that is expressed in glial cells and may affect glutamate excitotoxicity. We induced global ischemia in rats and performed postconditioning with 6 cycles of 10 seconds reperfusion and 10 seconds reocclusion before final reperfusion. Hematoxylin and eosin staining revealed extensive neuronal loss (44.0 ± 2.8% cell survival) in the hippocampal CA1 region. Ischemic postconditioning decreased neuronal death (82.0 ± 5.6% cell survival; p < 0.05). Western blotting revealed significantly increased GS expression in the hippocampus for the ischemia-reperfusion group over time compared with the sham group (p < 0.05). Ischemic postconditioning resulted in significantly increased (p < 0.05) GS expression compared with both the sham and ischemia-reperfusion groups, suggesting that upregulation of GS expression after ischemia constitutes a neuroprotective mechanism.  相似文献   

15.
目的探讨硫酸镁对脑缺血再灌注大鼠脑组织抗凋亡蛋白Bcl-2表达的影响及脑保护作用。方法将32只大鼠随机分为缺血组(n=15)、硫酸镁组(n=15)和正常对照组(n=2)。采用改良的Pulsinelli法建立脑缺血再灌注大鼠模型;制模后分别给予缺血组和硫酸镁组大鼠腹腔注射生理盐水(1.5 ml/d)及硫酸镁(90 mg/kg.d)。缺血再灌注第1、3、7 d分别观察各组大鼠海马CA1区病理学改变和Bcl-2的表达水平。结果正常对照组大鼠海马CA1区神经细胞数量多,排列整齐。缺血再灌注1 d时,缺血组及硫酸镁组大鼠海马CA1区神经元均未见明显死亡;3 d时,缺血组海马CA1区神经元可见少量死亡,残存神经细胞呈较严重缺血性改变,硫酸镁组海马CA1区神经元无明显死亡;7 d时,缺血组海马CA1区神经元大部分死亡,伴有小胶质细胞增生,硫酸镁组仅见部分神经元死亡。与缺血组相比,硫酸镁组神经元受损程度较轻,坏死区较小。硫酸镁组缺血再灌注各时间点大鼠Bcl-2阳性细胞较缺血组均明显增加(均P<0.05)。结论硫酸镁能上调脑组织Bcl-2的表达,对缺血再灌注大鼠的脑组织有明显的保护作用。  相似文献   

16.
Oxidative damage plays a critical role in many diseases of the central nervous system. This study was conducted to determine the molecular mechanisms involved in the putative anti-oxidative effects of sevoflurane against experimental stroke. Focal cerebral ischemia was performed via 1 h of middle cerebral artery occlusion followed by reperfusion. At the onset of reperfusion, rats were subjected to postconditioning with sevoflurane or without sevoflurane for 1 h. Neurological deficit score was assessed at different time points after reperfusion. Cerebral infarct volume, oxidative stress level and the binding activity of Nrf2 to antioxidant response element were assessed, meanwhile the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), quinine oxidoreductase 1 (NQO1), protein kinase B (Akt) and phosphor-Akt was examined by Western blot at 72 h after reperfusion. Sevoflurane postconditioning administration significantly reduced neurological deficit score, infarct volume and oxidative stress levels, while increased the expression of phosphorylation Akt, NQO1, Nrf2 and the binding activity of Nrf2 to ARE in middle cerebral artery occlusion rats. These neuroprotective effects were all suppressed by LY294002, a selective PI3K blocker. Taken together, these findings provided evidence that sevoflurane postconditioning protects brain against ischemic/reperfusion injury, and this neuroprotective effect involves the Akt/Nrf2 pathway.  相似文献   

17.
BACKGROUND: Blood supply to the hippocampus is not provided by the middle cerebral artery. However, previous studies have shown that delayed neuronal death in the hippocampus may occur following focal cerebral ischemia induced by middle cerebral artery occlusion.
OBJECTIVE: To observe the relationship between reactive changes in hippocampal astrocytes and delayed neuronal death in the hippocampal CA1 region following middle cerebral artery occlusion.
DESIGN, TIME AND SETTING: The immunohistochemical, randomized, controlled animal study was performed at the Laboratory of Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, from July to November 2007.
MATERIALS: Rabbit anti-glial fibrillary acidic protein (GFAP) (Neomarkers, USA), goat anti-rabbit IgG (Sigma, USA) and ApoAlert apoptosis detection kit (Biosciences Clontech, USA) were used in this study. METHODS: A total of 42 healthy adult male Wistar rats, aged 3–5 months, were randomly divided into a sham operation group (n = 6) and a cerebral ischemia/reperfusion group (n = 36). In the cerebral ischemia/reperfusion group, cerebral ischemia/reperfusion models were created by middle cerebral artery occlusion. In the sham operation group, the thread was only inserted into the initial region of the internal carotid artery, and middle cerebral artery occlusion was not induced. Rats in the cerebral ischemia/reperfusion group were assigned to a delayed neuronal death (+) subgroup and a delayed neuronal death (–) subgroup, according to the occurrence of delayed neuronal death in the ischemic side of the hippocampal CA1 region following cerebral ischemia.
MAIN OUTCOME MEASURES: Delayed neuronal death in the hippocampal CA1 region was measured by Nissl staining. GFAP expression and delayed neuronal death changes were measured in the rat hippocampal CA1 region at the ischemic hemisphere by double staining for GFAP and TUNEL.
RESULTS: After 3 days of ischemia/reperfusion, astrocytes with abnormal morphology were detected in the rat hippocampal CA1 region in the delayed neuronal death (+) subgroup. No significant difference in GFAP expression was found in the rat hippocampal CA1 region at the ischemic hemisphere in the sham operation group, delayed neuronal death (+) subgroup and delayed neuronal death (–) subgroup (P 〉 0.05). After 7 days of ischemia/reperfusion, many GFAP-positive cells, which possessed a large cell body and an increased number of processes, were activated in the rat hippocampal CA1 region at the ischemic hemisphere. GFAP expression in the hippocampal CA1 region was greater in the delayed neuronal death (+) subgroup and delayed neuronal death (–) subgroup compared with the sham operation group (P 〈 0.01). Moreover, GFAP expression was significantly greater in the delayed neuronal death (–) subgroup than in the delayed neuronal death (+) subgroup (P 〈 0.01). After 30 days of ischemia/reperfusion, GFAP-positive cells were present in scar-like structures in the rat hippocampal CA1 region at the ischemic hemisphere. GFAP expression was significantly greater in the delayed neuronal death (+) subgroup and delayed neuronal death (–) subgroup compared with the sham operation group (P 〈 0.05). GFAP expression was significantly lower in the delayed neuronal death (–) subgroup than in the delayed neuronal death (+) subgroup (P 〈 0.05). The delayed neuronal death rates were 42% (5/12), 33% (4/12) and 33% (4/12) at 3, 7 and 30 days, respectively, followingischemia/reperfusion. No significant differences were detected at various time points (χ2 = 0.341, P 〉 0.05).
CONCLUSION: The activation of astrocytes was poor in the hippocampal CA1 region during the early stages of ischemia, which is an important reason for delayed neuronal death. Glial scar formation aggravated delayed neuronal death during the advanced ischemic stage.  相似文献   

18.
Pretreatment with scutellaria baicalensis stem-leaf total flavonoid has protective effects against ischemia and attenuates myocardial ischemia-reperfusion injury. In this study, rats were given scutellaria baicalensis stem-leaf total flavonoid intragastrically at 50, 100, and 200 mg/kg per day for 7 days before focal cerebral ischemia-reperfusion injury models were established using the suture method. We then determined the protective effects of scutellaria baicalensis stem-leaf total flavon- oid pretreatment on focal cerebral ischemia-reperfusion injury. Results showed that neurological deficit scores increased, infarct volumes enlarged, apoptosis increased and Bcl-2 and Bax protein expression were upregulated at 24 hours after reperfusion. Pretreatment with scutellaria baicalensis stem-leaf total flavonoid at any dose lowered the neurological deficit scores, reduced the infarct volume, prevented apoptosis in hippocampal cells, attenuated neuronal and blood-brain barrier damage and upregulated Bcl-2 protein expression but inhibited Bax protein expression. Doses of 100 and 200 mg/kg were the most efficacious. Our findings indicate that pretreatment with scutel- laria baicalensis stem-leaf total flavonoid at 100 and 200 mg/kg can improve the neurological func- tions and have preventive and protective roles after focal cerebral ischemia-reperfusion injury.  相似文献   

19.
In this study, we tried to verify the neuroprotective effect of Chrysanthemum indicum Linne(CIL) extract, which has been used as a botanical drug in East Asia, against ischemic damage and to explore the underlying mechanism involving the anti-inflammatory approach. A gerbil was given CIL extract for 7 consecutive days followed by bilateral carotid artery occlusion to make a cerebral ischemia/reperfusion model. Then, we found that CIL extracts protected pyramidal neurons in the hippocampal CA1 region(CA1) from ischemic damage using neuronal nucleus immunohistochemistry and Fluoro-Jade B histofluorescence. Accordingly, interleukin-13 immunoreactivities in the CA1 pyramidal neurons of CIL-pretreated animals were maintained or increased after cerebral ischemia/reperfusion. These findings indicate that the pre-treatment of CIL can attenuate neuronal damage/death in the brain after cerebral ischemia/reperfusion via an anti-inflammatory approach.  相似文献   

20.
Ilexonin A is a compound isolated from the root of Ilex pubescens,a traditional Chinese medicine.Ilexonin A has been shown to play a neuroprotective role by regulating the activation of astrocytes and microglia in the peri-infarct area after ischemia.However,the effects of ilexonin A on astrocytes and microglia in the infarct-free region of the hippocampal CA1 region remain unclear.Focal cerebral ischemia models were established by 2-hour occlusion of the middle cerebral artery in rats.Ilexonin A(20,40 or 80 mg/kg)was administered immediately after ischemia/reperfusion.The astrocyte marker glial fibrillary acidic protein,microglia marker Iba-1,neural stem cell marker nestin and inflammation markers were detected by immunohistochemistry and western blot assay.Expression levels of tumor necrosis factor-αand interleukin 1βwere determined by enzyme linked immunosorbent assay in the hippocampal CA1 tissue.Astrocytes were activated immediately in progressively increasing numbers from 1,3,to 7 days post-ischemia/reperfusion.The number of activated astrocytes further increased in the hippocampal CA1 region after treatment with ilexonin A.Microglial cells remained quiescent after ischemia/reperfusion,but became activated after treatment with ilexonin A.Ilexonin A enhanced nestin expression and reduced the expression of tumor necrosis factor-αand interleukin 1βin the hippocampus post-ischemia/reperfusion.The results of the present study suggest that ilexonin A has a neuroprotective effect in the hippocampus after ischemia/reperfusion,probably through regulating astrocytes and microglia activation,promoting neuronal stem cell proliferation and reducing the levels of pro-inflammatory factors.This study was approved by the Animal Ethics Committee of the Fujian Medical University Union Hospital,China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号