首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Caspase inhibitors in prevention of apoptosis   总被引:3,自引:0,他引:3  
Thomas Rudel 《Herz》1999,24(3):236-241
Apoptosis, a morphological distinct form of programmed cell death, is a crucial process during development, the maintenance of cell homeostasis and the regulation of the immune system. A variety of diseases have been found to correlate with physiological apoptosis including cancer, autoimmune disease, viral infection and degenerative disorders. Although very different signals initiate apoptosis, the phenotype of apoptosis is surprisingly similar even in different cell types suggesting that the final stages of apoptotic death are highly conserved. The execution of the death program is coordinated by a recently identified class of cysteine proteases termed caspases. The finding that caspases are mainly involved in regulation of this conserved part of the death program has boosted the search for caspase inhibitors which might offer a therapeutic approach to treat apoptotic disorders. Synthetic peptide inhibitors have been developed which exhibit some selectivity for the different caspases. In the last years several natural inhibitors have been discovered which either prevent caspase activation or caspase activity. This review will present the recent advances and discuss the potential of caspase inhibitors as future therapeutics.  相似文献   

2.
Caspases have demonstrated several nonapoptotic functions including a role in the differentiation of specific cell types. Here, we show that caspase-8 is the upstream enzyme in the proteolytic caspase cascade whose activation is required for the differentiation of peripheral-blood monocytes into macrophages. On macrophage colony-stimulating factor (M-CSF) exposure, caspase-8 associates with the adaptor protein Fas-associated death domain (FADD), the serine/threonine kinase receptor-interacting protein 1 (RIP1) and the long isoform of FLICE-inhibitory protein FLIP. Overexpression of FADD accelerates the differentiation process that does not involve any death receptor. Active caspase-8 cleaves RIP1, which prevents sustained NF-kappaB activation, and activates downstream caspases. Together these data identify a role for caspase-8 in monocytes undergoing macrophagic differentiation, that is, the enzyme activated in an atypical complex down-regulates NF-kappaB activity through RIP1 cleavage.  相似文献   

3.
This study examines the basis of resistance and sensitivity of normal and transformed cells to histone deacetylase inhibitor (HDACi)-induced cell death, specifically the role of caspases and thioredoxin (Trx). An important attribute of HDACis is that they induce cancer cell death at concentrations to which normal cells are relatively resistant, making them well suited for cancer therapy. The mechanism underlying this selectivity has not been understood. In this study we found that the HDACi suberoylanilide hydroxamic acid (SAHA) and MS-275, a benzamide, cause an accumulation of reactive oxygen species (ROS) and caspase activation in transformed but not normal cells. Inhibition of caspases does not block HDACi-induced cell death. These studies provide a possible mechanism that can explain why normal but not certain transformed cells are resistant to HDACi-induced cell death. The HDACi causes an increase in the level of Trx, a major reducing protein for many targets, in normal cells but not in transformed cells. The SAHA-induced increase in Trx activity in normal cells is associated with no increase in ROS accumulation. Transfection of transformed cells with Trx small interfering RNA caused a marked decrease in the level of Trx protein with an increase in ROS, a decrease in cell proliferation, and an increase in sensitivity to SAHA-induced cell death. Thus, Trx, independent of the caspase apoptotic pathway, is an important determinant of resistance of cells to HDACi-induced cell death.  相似文献   

4.
Ceramides are the metabolic products of sphingolipids of the eukaryotic cell membranes and are believed to function as signaling molecules in a variety of biological processes. Ceramide induces apoptosis in cultured cardiomyocytes. However, the molecular pathway underlying ceramide-induced apoptosis is not clear. In this study, we investigated the role of the cysteinyl aspartate-specific proteases (caspases) in cardiomyocyte apoptosis induced by ceramide. Treatment of in vitro cultured rat neonatal cardiomyocytes with ceramide results in robust cell death, of which the majority is apoptotic, as shown by positive staining for terminal deoxyribonuclease transferase-mediated deoxyuridine triphosphate nick end-labeling and the appearance of pyknotic nuclei with Hoechst staining. Caspase 3- and 8-like protease activities are induced in cardiomyocytes by ceramide treatment. Addition of the tetrapeptide inhibitors for caspases attenuated ceramide-induced apoptosis. The nonselective caspase inhibitor (B-D-FMK) and the caspase 3 (Z-DEVD-FMK) and caspase 8 (Z-IETD-FMK) inhibitors reduced ceramide-induced cardiomyocyte death and significantly inhibited the activation of caspase 3. However, the inhibitors specific for caspases 1, 2, 4, 6, and 9 have no significant effects on cardiomyocyte survival under the same conditions. These data suggest that caspases 3- and 8-related proteases are involved in ceramide-induced cardiomyocyte apoptosis.  相似文献   

5.
Platelet apoptosis and activation have been studied in human platelets treated with BH3‐only mimetic ABT‐737 and calcium ionophore A23187, agents triggering apoptosis through the intrinsic mitochondrial pathway. Platelet apoptosis was determined as activation of crucial apoptosis‐associated caspases, initiator caspase‐9 of intrinsic apoptosis pathway, executioner caspase‐3 and initiator caspase‐8 of extrinsic death receptor pathway, and platelet activation was detected by P‐selectin (CD62) exposure on the platelet surface. We found that ABT‐737 predominantly induced activation of caspases‐9, ‐3 and ‐8 rather than CD62 exposure, whereas A23187 induces both caspases activation and CD62 exposure. Caspase‐8 activation was stimulated independently of the extrinsic apoptosis pathway via mitochondrial membrane permeabilization and depolarization. These data suggest that (i) caspase‐8 activation is triggered in ABT‐737‐ and A23187‐treated anucleate platelets through the mitochondria‐initiated caspase activation cascade bypassing the death receptors, and (ii) ABT‐737‐treated platelets are a useful experimental tool for discerning the role of platelet apoptosis in platelet function and survival.  相似文献   

6.
Hematopoietic progenitor cells (HPC) from mice nullizygous at the Fanconi anemia (FA) group C locus and children with Fanconi anemia group C (FA-C) are hypersensitive to interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha. This hypersensitivity results, in part, from the capacity of these cytokines to prime the fas pathway. Because fas-mediated programmed cell death in many cells involves sequential activation of specific caspases, we tested the hypothesis that programmed cell death in FA HPC involves the ordered activation of specific caspase molecules. Lysates from lymphoblasts treated with both agonistic anti-fas antibody and IFN-gamma contained activated caspase 3 family members (caspases 3, 6, and 7), as well as caspase 8, whereas activation of caspases 1, 2, 4, 9, and 10 was not detected. The apoptotic effects of fas agonists in IFN-gamma-treated human and murine FA-C cells were blocked when pretreated with inhibitors (ac-DEVD-cho, CP-DEVD-cho, Z-DEVD-FMK) of the caspase 3 protease. Inhibitors (ac-YVAD-cho, CP-YVAD-cho, Z-YVAD-FMK) of caspase 1 did not block apoptosis or caspase 3 activation. Treatment of FA cells with the fluoromethyl ketone tetrapeptide caspase 8 inhibitor (ac-IETD-FMK) did suppress caspase 3 activation. A 4-fold greater fraction of IFN-induced FA-C cells expressed caspase 3 than FA-C cells complemented by retroviral-mediated transfer of FANCC. Therefore fas-induced apoptosis in Fanconi anemia cells of the C type involves the activation of caspase 8, which controls activation of caspase 3 family members and one direct or indirect function of the FANCC protein is to suppress apoptotic responses to IFN-gamma upstream of caspase 3 activation. (Blood. 2000;96:4204-4211)  相似文献   

7.
OBJECTIVE: Cartilage homeostasis dysregulation during osteoarthritis (OA) has been linked to an increased rate of apoptosis of chondrocytes, the only cell type resident in the cartilage. In addition, the CD95-CD95 ligand (the Fas system) has emerged as one of the major pathways of cell death in the cartilage. We undertook the present study to investigate the role of interferon-gamma (IFNgamma) in the regulation of the Fas system by analyzing the modulation of intracellular signaling molecules (FLICE inhibitory protein [FLIP] and caspases 3 and 8) in primary cultures of human OA chondrocytes. METHODS: CD95-induced apoptotic death of human OA chondrocytes was analyzed in the presence or absence of IFNgamma using cell death immunoassay for apoptosis, real-time polymerase chain reaction for FLIP and caspase 8 expression, Western blotting for FLIP, and proteolytic activity for caspases 3 and 8. RESULTS: CD95-induced apoptotic death of human OA chondrocytes was strongly counteracted by IFNgamma treatment, although the surface expression of CD95 was slightly up-regulated by this cytokine. The messenger RNA (mRNA) expression of FLIP and caspase 8, mediators involved in CD95 signaling, revealed that FLIP expression in human OA chondrocytes was significantly up-regulated (2-fold increase) by IFNgamma treatment. Moreover, the FLIP:caspase 8 mRNA ratio increased significantly. FLIP up-regulation by IFNgamma was confirmed at the protein level. Caspase 8 and caspase 3 proteolytic activities, both induced in these cells by stimulation with anti-CD95, were also significantly down-modulated by IFNgamma. CONCLUSION: These findings suggest that IFNgamma impairs CD95-mediated signaling and apoptotic death in human chondrocytes. Its mechanism of action involves down-regulation of caspase 8 and caspase 3 activities and increased expression of the antiapoptotic protein FLIP, suggesting an interesting mechanism for the inhibition of chondrocyte apoptosis.  相似文献   

8.
The mitochondrial pathway of apoptosis is the major mechanism of physiological cell death in vertebrates. In this pathway, proapoptotic members of the Bcl-2 family cause mitochondrial outer membrane permeabilization (MOMP), allowing the release of cytochrome c, which interacts with Apaf-1 to trigger caspase activation and apoptosis. Despite conservation of Bcl-2, Apaf-1, and caspases in invertebrate phyla, the existence of the mitochondrial pathway in any invertebrate is, at best, controversial. Here we show that apoptosis in a lophotrochozoan, planaria (phylum Platyhelminthes), is associated with MOMP and that cytochrome c triggers caspase activation in cytosolic extracts from these animals. Further, planarian Bcl-2 family proteins can induce and/or regulate cell death in yeast and can replace Bcl-2 proteins in mammalian cells to regulate MOMP. These results suggest that the mitochondrial pathway of apoptosis in animals predates the emergence of the vertebrates but was lost in some lineages (e.g., nematodes). In further support of this hypothesis, we surveyed the ability of cytochrome c to trigger caspase activation in cytosolic extracts from a variety of organisms and found this effect in cytosolic extracts from invertebrate deuterostomes (phylum Echinodermata).  相似文献   

9.
Caspase: executioner and undertaker of apoptosis   总被引:12,自引:0,他引:12  
The caspase family of proteases play pivotal roles in the execution of apoptosis, a morphologically defined form of cell death observed in a variety of physiological and pathophysiological settings. This review focuses on the biochemical and cell biological aspects of caspases, including their structure, mechanism of activation, intracellular localization, inhibitors, substrates, and precise roles in cell death. Such an overview of the basic properties of caspases should provide insights into the apoptotic mechanism; these insights are crucial for understanding the contribution of deregulated apoptosis in hematological disorders.  相似文献   

10.
Macrophages play a key role in the initiation and progression of atherosclerotic plaques. Although a significant number of macrophages undergoes cell death during plaque development as a result of atherogenic stressors, advanced plaques are characterized by a large macrophage content. Macrophage accumulation is mediated by continuous recruitment of monocytes, reduced emigration of macrophages and poor phagocytosis of dead cells which may trigger secondary necrosis and amplification of plaque inflammation. Moreover, an increasing body of evidence indicates that macrophages have developed several strategies to survive and to proliferate in the adverse environment of an advanced atherosclerotic plaque. Macrophages contain organic molecules or enzymes that provide enhanced antioxidant protection. In addition, synthesis of anti-apoptotic proteins is upregulated and several cellular protection mechanisms such as the unfolded protein response and autophagy are activated in macrophages to promote cellular survival. In this review, we discuss these macrophage survival mechanisms that allow growth and destabilization of advanced atherosclerotic plaques.  相似文献   

11.
Apoptosis is a cell-suicide process that appears to play a central role not only during normal neuronal development but also in several neuropathological disease states. An important component of this process is a proteolytic cascade involving a family of cysteine proteases called caspases. Caspase inhibitors have been demonstrated to be effective in inhibiting neuronal cell death in various apoptotic paradigms. We have created transgenic mice that neuronally express the baculoviral caspase inhibitor p35. Neuronal expression of the p35 protein was found to confer functional caspase inhibitory activity and prevent apoptosis in isolated cerebellar granular cultures induced to undergo apoptosis either via staurosporine treatment or through withdrawal of extracellular potassium. Neuronal expression of p35 was also found to attenuate neurodegeneration associated with the excitotoxic glutamate analogue kainic acid (KA) in vitro and in vivo. Organotypic hippocampal cultures isolated from p35 transgenics demonstrated lowered caspase activity and decreased apoptosis compared with wild type when exposed to KA. In vivo injection of KA also produced decreased caspase activity and cell death in p35 transgenics vs. wild type. These results suggest that the presence of p35 in neurons in vivo is protective against various types of apoptosis, including seizure-related neurodegeneration, and that caspases may be attractive potential targets for preventing neuronal injury associated with diseases such as epilepsy. These mice also provide a valuable tool for exploring the role of caspases in other neuropathological conditions in which apoptosis has been implicated.  相似文献   

12.
Caspases are cysteine proteases involved in apoptosis and cytokine maturation. In erythroblasts, keratinocytes, and lens epithelial cells undergoing differentiation, enucleation has been regarded as a caspase-mediated incomplete apoptotic process. Here, we show that several caspases are activated in human peripheral blood monocytes whose differentiation into macrophages is induced by macrophage colony-stimulating factor (M-CSF). This activation is not associated with cell death and cannot be detected in monocytes undergoing dendritic cell differentiation in the presence of interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The mechanisms and consequences of caspase activation were further studied in U937 human monocytic cells undergoing phorbol ester-induced differentiation into macrophages. Differentiation-associated caspase activation involves the release of cytochrome c from the mitochondria and leads to the cleavage of the protein acinus while the poly(ADP-ribose)polymerase remains uncleaved. Inhibition of caspases by either exposure to the broad-spectrum inhibitor benzyloxycarbonyl-Val-Ala-(DL)-Asp-fluoromethylketone (z-VAD-fmk) or expression of the p35 baculovirus inhibitory protein or overexpression of Bcl-2 inhibits the differentiation process. In addition, z-VAD-fmk amplifies the differentiation-associated production of radical oxygen species in both phorbol ester-differentiated U937 cells and M-CSF-treated monocytes, shifting the differentiation process to nonapoptotic cell death. Altogether, these results indicate that caspase activation specifically contributes to the differentiation of monocytes into macrophages, in the absence of cell death.  相似文献   

13.
Morphologic and biochemical hallmarks of apoptosis   总被引:30,自引:0,他引:30  
Apoptosis is characterised by a series of typical morphological features, such as shrinkage of the cell, fragmentation into membrane-bound apoptotic bodies and rapid phagocytosis by neighbouring cells. This paper reviews the current knowledge on the molecular mechanisms of apoptosis as they relate to the morphologic hallmarks and their implications for the detection of apoptosis in cardiac tissue. Activation of cysteine proteases called caspases plays a major role in the execution of apoptosis. These proteases selectively cleave vital cellular substrates, which results in apoptotic morphology and internucleosomal fragmentation of DNA by selectively activated DNases. In response to several pro-apoptotic signals, mitochondria release caspase activating factors, that initiate an escalating caspase cascade and commit the cell to die. Members of the Bcl-2 oncoprotein family control mitochondrial events and are able to prevent, or induce, both apoptotic and non-apoptotic types of cell death. This suggests that different types of cell death share common mechanisms in the early phases, whereas activation of caspases determines the phenotype of cell death. Detection of apoptotic cells in tissue samples currently relies on the TUNEL assay. TUNEL-positive cardiomyocytes show morphological features of apoptosis and the typical ladder pattern in DNA electrophoresis. Thus, provided that the staining protocol is carefully standardised, this quantitative methodology provides reproducible results of the occurrence of cardiomyocyte apoptosis in cardiac samples. Recently, potentially more specific assays based on analysis of DNA fragmentation or demonstration of caspase activation have been developed. Applicability of these assays to demonstrate cardiomyocyte apoptosis should be tested.  相似文献   

14.
The clinical outcome of cardiovascular diseases as myocardial infarction and stroke are generally caused by rupture of an atherosclerotic plaque. However, the actual cause of a plaque to rupture is not yet established. Interestingly, pathology studies have shown an increased presence of the mast cell, an important inflammatory effector cell in allergy and host defense, in (peri)vascular tissue during plaque progression, which may point towards a causal role for mast cells. Very recent data in mouse models show that mast cells and derived mediators indeed can profoundly impact plaque progression, plaque stability and acute cardiovascular syndromes such as vascular aneurysm or myocardial infarction. In this review, we discuss recent evidence on the role of mast cells in the progression of cardiovascular disorders and give insight in the therapeutic potential of modulation of mast cell function in these processes to improve the resilience of a plaque to rupture.Key Words: Cardiovascular diseases, atherosclerosis, mast cell, plaque stability, proteases, aneurysm.  相似文献   

15.
16.
Role of apoptosis in sarcopenia   总被引:5,自引:0,他引:5  
Skeletal muscle atrophy and the loss of myofibers contribute to sarcopenia, a condition associated with normal aging. However, relatively little is known regarding the relevance of apoptosis to skeletal muscle homeostasis and the possible mechanisms involved, although evidence suggests that apoptosis may play a role during muscle aging. By age 80 it is estimated that humans generally lose 30%-40% of skeletal muscle fibers, particularly from muscles containing type II fibers such as the vastus lateralis muscle. Studies using rodents show that between a 20%-50% loss in muscle fibers occurs depending on the specific fiber type studied. Caspases (cysteine-dependent, aspartate-specific proteases) such as caspase-3 play an important role in mediating cell death in that many of the apoptotic signaling pathways, such as the mitochondrial-mediated, receptor-mediated, and sarcoplasmic-reticulum-mediated pathways, converge at caspase-3 in the caspase cascade. Studies show that with age the levels of several caspases are significantly increased. Therefore, the activation of these proteolytic caspases may be partly responsible for the initiation of muscle protein degradation, loss of muscle nuclei, which is associated with local atrophy, and finally into cell death of the myocyte.  相似文献   

17.
Apoptosis is a type of programmed cell death that is evident during embryonic development and normal tissue turnover. When the apoptotic activity extends beyond physiologic limits, it can determine and/or contribute to those pathologic states characterized by excessive cell loss and impairment of organ function. The clinical development of caspase inhibitors may represent a potential therapeutic strategy for influencing the onset and progression of ventricular dysfunction to terminal failure. This article focuses on the caspase cascade, a fundamental enzymatic system for apoptotic cell death. Caspases do not constitute the death signals, but are implicated in their transmission. These cytoplasmic cysteine proteases have a dual role in apoptosis. Caspases can operate as initiators, activating an endonuclease that catalyzes deoxyribonucleic acid fragmentation. Alternatively, caspases can act as effectors, participating in the total disassembly of cell structures. For example, apoptosis represents the principal form of myocyte death in the region of an acute myocardial infarction. In addition, apoptosis in the region bordering the infarct can influence the development of ischemic cardiomyopathy and ventricular dilation.  相似文献   

18.
Oxygen deprivation for prolonged periods leads to cardiac cell death and ventricular dysfunction. The ability to prevent myocardial cell death would be of significant therapeutic value in maintaining cardiac function after injury. While caspases have been suggested to play a critical role in apoptosis, their involvement during hypoxic injury has not been formally determined. In this report, we show that adult ventricular myocytes subjected to hypoxia for 1 h undergo a three-fold increase (P<0.05) in the incidence of apoptosis as determined by TUNEL analysis and Hoechst 33258 nuclear staining. Western blot analysis of hypoxic myocytes revealed a 10-fold increase in the proteolytic processing of caspase 3 to p17 with a concomitant cleavage of the caspase 3 substrate PARP from 116 kd to p85 kd compared to normoxic controls. Defects in mitochondrial membrane integrity were also observed as evidenced by the translocation of cytochrome c from the mitochondrial to cytosolic compartment of hypoxic cells. Pretreatment of ventricular myocytes with the peptide-caspase inhibitor known to block caspases related to caspase 1 (Ac-YVAD-CHO) attenuated cytochrome c release, processing of caspase 3, and apoptosis. While the caspase inhibitor (Ac-DEVD-CHO) which blocks caspases related to caspase 3, suppressed the cleavage of PARP and apoptosis, it had no effect on cytochrome c release by mitochondria. The data provide direct evidence for the proteolytic activation of caspases during hypoxia-mediated apoptosis of adult ventricular myocytes. Furthermore, the data suggest a hierarchical scheme for caspase activation with mitochondrial cytochrome c release occurring proximally to DEVD-CHO-inhibitable caspases.  相似文献   

19.
Arroba AI  Frago LM  Argente J  Chowen JA 《Endocrinology》2005,146(10):4417-4424
Lactotroph cell death is increased in streptozotocin-induced diabetic rats. To determine the mechanism involved, cell death proteins were accessed in pituitaries of diabetic (streptozotocin at 65 mg/kg, 2 months evolution) and control male rats by Western blot analysis and double immunohistochemistry. The intact and cleaved forms of caspase 9 were increased in diabetic rat pituitaries compared with controls. Although the proforms of caspases 3, 6, and 7 were increased in diabetic rat pituitaries, their activated forms were either unchanged or decreased. Activation of these effector caspases may be blocked by the increased expression of X-chromosome-linked inhibitor of apoptosis protein (XIAP) in diabetic rat pituitaries. However, in diabetic rats, XIAP expression in lactotrophs was decreased, suggesting that this cell type is not protected. Caspase 8, p53, and nuclear factor kappaB were more highly activated in diabetic rat pituitaries, with caspase 8 colocalization in lactotrophs being increased. These results suggest that, in the pituitaries of diabetic rats, the cascades of normal cell turnover are partially inhibited, possibly via XIAP, and this may be cell specific. Furthermore, activation of the extrinsic cell-death pathway, including activation of caspase 8, may underlie the diabetes-associated increase in lactotroph death.  相似文献   

20.
Increasing evidence suggests that apoptosis may be the underlying cell death mechanism in the selective loss of dopaminergic neurons in Parkinson's disease. Because the inhibition of caspases provides only partial protection in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenylpyridinium (MPTP/MPP(+)) model of Parkinson's disease, we investigated the role of the proapoptotic c-Jun N-terminal kinase (JNK) signaling cascade in SH-SY5Y human neuroblastoma cells in vitro and in mice in vivo. MPTP/MPP(+) led to the sequential phosphorylation and activation of JNK kinase (MKK4), JNK, and c-Jun, the activation of caspases, and apoptosis. In mice, adenoviral gene transfer of the JNK binding domain of JNK-interacting protein-1 (a scaffold protein and inhibitor of JNK) inhibited this cascade downstream of MKK4 phosphorylation, blocked JNK, c-Jun, and caspase activation, the death of dopaminergic neurons, and the loss of catecholamines in the striatum. Furthermore, the gene transfer resulted in behavioral benefit. Therefore, inhibition of the JNK pathway offers a new treatment strategy for Parkinson's disease that blocks the death signaling pathway upstream of the execution of apoptosis in dopaminergic neurons, providing a therapeutic advantage over the direct inhibition of caspases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号