首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skeletal muscle atrophy is commonly associated with aging, immobilization, muscle unloading, and congenital myopathies. Generation of mature muscle cells from skeletal muscle satellite cells (SCs) is pivotal in repairing muscle tissue. Exercise therapy promotes muscle hypertrophy and strength. Primary cilium is implicated as the mechanical sensor in some mammalian cells, but its role in skeletal muscle cells remains vague. To determine mechanical sensors for exercise-induced muscle hypertrophy, we established three SC-specific cilium dysfunctional mouse models—Myogenic factor 5 (Myf5)-Arf-like Protein 3 (Arl3)−/−, Paired box protein Pax-7 (Pax7)-Intraflagellar transport protein 88 homolog (Ift88)−/−, and Pax7-Arl3−/−—by specifically deleting a ciliary protein ARL3 in MYF5-expressing SCs, or IFT88 in PAX7-expressing SCs, or ARL3 in PAX7-expressing SCs, respectively. We show that the Myf5-Arl3−/− mice develop grossly the same as WT mice. Intriguingly, mechanical stimulation-induced muscle hypertrophy or myoblast differentiation is abrogated in Myf5-Arl3−/− and Pax7-Arl3−/− mice or primary isolated Myf5-Arl3−/− and Pax7-Ift88−/− myoblasts, likely due to defective cilia-mediated Hedgehog (Hh) signaling. Collectively, we demonstrate SC cilia serve as mechanical sensors and promote exercise-induced muscle hypertrophy via Hh signaling pathway.

Exercise is considered as the primary intervention to improve muscle strength and to counteract muscle atrophy. While physical exercise training is considered a suitable intervention to improve muscle strength and endurance in healthy individuals, some people are resistant to the beneficial effects of exercise (13). It has been debated whether exercise is beneficial or harmful for patients with myopathic disorders (4) and type 2 diabetes (5). This so-called “exercise resistance” is considered congenital, and one recently identified causative factor involved in exercise resistance is hepatokine selenoprotein P (2, 6).Primary cilia have a mechanosensory function in bone cells (7), renal cells (8), and airway smooth muscle cells exert a role in sensing oscillatory fluid flow and transducing extracellular mechano-chemical signals into intracellular biochemical responses (9). Intriguingly, low muscle tone is a clinical feature often present in congenital ciliopathies with unclear underlying mechanisms (10). Arf-like Protein 3 (ARL3) is a highly conserved ciliary protein across ciliated organisms. ARL3, a regulator of intraflagellar transport in primary cilia, has been reported involving with various ciliary signaling functions (11, 12) and maintaining cell division polarity (13). Arl3 mutations cause Joubert syndrome (14, 15). Arl3−/− knockout does not affect cilia structure but compromises ciliary function (16).Cells utilize primary cilia to convert environmental cues, mechanical or chemical, into various cellular signaling essential for development (1721). During skeletal muscle development, Hedgehog (Hh) signaling helps to initiate the myogenic program (22). In myoblast cells, Fu et al. (23) showed that primary cilia are assembled during the initial stages of myogenic differentiation but disappear as cells progress through myogenesis. The ablation of primary cilia suppresses Hh signaling and myogenic differentiation while enhancing proliferation. However, there are still significant gaps in our understanding of how exercise and mechanical signals activate the Hh signaling pathway. In the present study, we hypothesize that primary cilia in satellite cells (SCs) transduce mechanical stimulation through activation of Hh signaling and promote muscle hypertrophy induced by exercise.Hypertrophy of skeletal muscle is a complex biological process that involves multiple cell types, including SCs, fibro-adipogenic precursors, endothelial cells, fibroblasts, pericytes, and immune cells. Removing cilia from fibro-adipogenic precursors can reduce intramuscular adipogenesis and increase myofibril size during muscle healing (24). SCs play an essential role in muscle hypertrophy and exercise adaptation (25, 26), especially in young mice (27). Mechanical signals can interrupt SC suppression in a skeletal muscle loss model induced by ovariectomy. Diminished SC number and elevated adipogenic gene expression in muscle caused by ovariectomy are averted by mechanical stimulation (28). Experiments in vitro indicate that mechanical stimulation enhances the fusion of SCs (29). SCs are a heterogeneous population of stem cells and committed progenitors (30). Paired box protein Pax-7 (Pax7) is a traditional marker of SCs and acts at different levels in a nonhierarchical regulatory network controlling SC-mediated muscle hypertrophy (31). A major target gene of Pax7 is Myogenic factor 5 (Myf5), and loss of Pax7 significantly decreases Myf5 expression in myoblasts (32). However, Myf5 is present in Pax3/Pax7 double mutants, indicating Myf5 activation occurs independently of Pax3/Pax7 (33). Furthermore, 10% of Pax7-expressing satellite cells have never expressed Myf5 (30). Parise et al. (34) observed an approximately sixfold increase in the number of Myf5-expressing cells by 48 h following exercise, which remained elevated until at least 96 h after exercise. We established three mouse models of Myf5-Arl3−/−, Pax7-Intraflagellar transport protein 88 homolog (Ift88−/−), and Pax7-Arl3−/− to investigate the SC during mechanical stimulation and exercise. In the present study, we provide exciting evidence that SC cilia act as the key mechanical sensor for exercise-induced hypertrophy.  相似文献   

2.
3.
目的 探究铜绿假单胞菌注射液(PA-MSHA)对肺癌A549细胞自噬及磷脂酰肌醇-3激酶(PI3K)/蛋白激酶B(Akt)通路的影响.方法 体外培养人肺癌A549细胞,随机分为空白对照组、LY294002组(加入20μmol/L LY294002),PA-MSHA干预组(加入0.5×109/mL、1.0×109/mL、...  相似文献   

4.
5.
自噬是真核生物细胞内一种高度保守的细胞程序,在肝脏的营养和能量代谢中起着重要作用。促进肝细胞自噬,可保护细胞应对外界不良刺激,但若自噬过度,可以引起肝细胞自噬性细胞死亡。肝星状细胞(HSC)是肝纤维化发生、发展过程中一种重要细胞,自噬可为其活化提供能量,但也可能导致其死亡。简述了自噬与肝细胞、HSC的关系;介绍了近年来丝裂原活化蛋白激酶通路与自噬的关系,提出了深入研究肝纤维化过程中自噬与调节通路间的关系,可为研发抗肝纤维化药物提供新靶标的观点。  相似文献   

6.
7.
Type 2 diabetes mellitus (T2DM) is a severe, long-term condition characterised by disruptions in glucolipid and energy metabolism. Autophagy, a fundamental cellular process, serves as a guardian of cellular health by recycling and renewing cellular components. To gain a comprehensive understanding of the vital role that autophagy plays in T2DM, we conducted an extensive search for high-quality publications across databases such as Web of Science, PubMed, Google Scholar, and SciFinder and used keywords like ‘autophagy’, ‘insulin resistance’, and ‘type 2 diabetes mellitus’, both individually and in combinations. A large body of evidence underscores the significance of activating autophagy in alleviating T2DM symptoms. An enhanced autophagic activity, either by activating the adenosine monophosphate-activated protein kinase and sirtuin-1 signalling pathways or inhibiting the mechanistic target of rapamycin complex 1 signalling pathway, can effectively improve insulin resistance and balance glucolipid metabolism in key tissues like the hypothalamus, skeletal muscle, liver, and adipose tissue. Furthermore, autophagy can increase β-cell mass and functionality in the pancreas. This review provides a narrative summary of autophagy regulation with an emphasis on the intricate connection between autophagy and T2DM symptoms. It also discusses the therapeutic potentials of natural products with autophagy activation properties for the treatment of T2DM conditions. Our findings suggest that autophagy activation represents an innovative approach of treating T2DM.  相似文献   

8.
Hepatic stellate cell (HSC) activation is the central event during liver fibrogenesis. Metabolic syndrome characterized by hyperglycemia and hyperinsulinemia contributes to nonalcoholic steatohepatitis-associated liver fibrosis. This study was to investigate the effects of tetramethylpyrazine (TMP) on HSC activation induced by glucose and insulin (Glu/Ins) and the underlying mechanisms. Results showed that Glu/Ins significantly stimulated proliferation, invasion, adhesion, and extracellular matrix (ECM) production in HSCs. TMP inhibited HSC proliferation, invasion and adhesion, and reduced the expression of marker genes related to HSC activation in Glu/Ins-activated HSCs. Mechanistic evidence revealed that TMP reduced insulin receptor (InsR) expression and blocked the downstream phosphatidylinositol-3-kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK) cascades, which was required for TMP attenuation of HSC activation. Moreover, TMP modulated the genes relevant to ECM homeostasis favoring ECM degradation. It could be concluded that TMP inhibited Glu/Ins-stimulated HSC activation and ECM production by inhibiting InsR-mediated PI3K/AKT and ERK pathways.  相似文献   

9.
BackgroundLung cancer (LC) is a malignancy with one of the highest mortality rates. Respiratory microbiota is considered to play a key role in the development of LC, but the molecular mechanisms are rarely studied.MethodsWe used lipopolysaccharide (LPS) and lipoteichoic acid (LTA) to study human lung cancer cell lines PC9 and H1299. The gene expression of CXC chemokine ligand (CXCL)1/6, interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The Cell-Counting Kit 8 (CCK-8) was used to analyze cell proliferation. Transwell assays were performed to analyze cell migration ability. Flow cytometry was used to observe cell apoptosis. Western blot and qRT-PCR were used to analyze the expression of secreted phosphoprotein 1 (SPP1), toll-like receptor (TLR)-2/4, and NLR family pyrin domain containing 3 (NLRP3) to determine the mechanism of LPS + LTA. We evaluated the effect of LPS + LTA on cisplatin sensibility by analyzing cell proliferation, apoptosis, and caspase-3/9 expression levels. We observed the proliferation activity, apoptosis, and migration ability of cells in which SPP1 had been transfected small interfering (si) negative control (NC) and integrin β3 siRNA. Then the mRNA expression level and protein expression of PI3K, AKT, and ERK were analyzed. Finally, the nude mouse tumor transplantation model was conducted to verify.ResultsWe studied that in two cell lines, the expression level of inflammatory factors in LPS+LTA group was significantly higher than that in single treatment group (P<0.001). We explored LPS + LTA combined treatment group significantly increased the expression of NLRP3 and genes and proteins. LPS + LTA + Cisplatin group could significantly reduce the inhibitory effect of LPS on cell proliferation (P<0.001), reduce the apoptosis rate (P<0.001) and significantly reduce the expression levels of caspase-3/9 (P<0.001) compared with Cisplatin group. Finally, we verified that LPS and LTA could increase osteopontin (OPN)/integrin β3 expression and activate the PI3K/AKT pathway to promote malignant progression of LC in vitro studies.ConclusionsThis study provides a theoretical basis for further exploration of the influence of lung microbiota on NSCLC and the optimization of LC treatment in the future.  相似文献   

10.
11.
目的 研究甲胎蛋白(AFP)对肝癌细胞内PI3K/AKT信号传递的影响,以及其在癌细胞耐受全反式维甲酸(ATRA)中的作用. 方法 四甲基偶氮唑盐(MTT)法检测ATRA对人肝癌Bel 7402细胞增殖的影响;显微照相观察细胞形态学的改变;流式细胞分析细胞凋亡;激光共聚焦显微镜观察AFP与PTEN的共定位;免疫共沉淀(Co-IP)技术研究AFP与PTEN相互作用;Westemblot法分析磷酸化的蛋白激酶B(pAKT)和Src表达,构建干扰AFP表达的载体(AFP-siRNA)并转染Bel 7402细胞;用PI3K特异性阻断剂Ly294002处理细胞,分析Ly294002的作用效果.通过t检验分析组间的统计学差异. 结果 MTT分析显示,人肝癌Bel 7402耐受ATRA的细胞毒性;共聚焦显微镜观察显示AFP与PTEN共定位于细胞质;Co-IP技术研究发现AFP能与PTEN结合;MTT分析发现,Bel 7402细胞转染AFP-siRNA载体后24 h后,细胞生长显著受抑制,与对照组比较,差异有统计学意义(P<0.05),而且AFP-siRNA载体和ATRA共同处理组,细胞生长受到抑制更为显著,与对照组、单独处理组比较,差异均有统计学意义(P< 0.01);干扰AFP表达能显著增加Bel 7402细胞对ATRA敏感性,并能抑制pAKT和Src的表达;Ly294002能抑制AFP促进Bel 7402细胞表达pAKT和Src的作用.结论 肝癌细胞内表达的AFP能与PTEN结合并抑制PTEN对AKT的去磷酸化作用,肝癌细胞内高表达的AFP能激活PI3K/AKT信息通路对抗ATRA诱导的凋亡.  相似文献   

12.
13.
In pituitary cells, prolactin (PRL) synthesis and release are controlled by multiple transduction pathways. In the GH4C1 somatolactotroph cell line, we previously reported that MAPK ERK-1/2 are a point of convergence between the pathways involved in the PRL gene regulation. In the present study, we focused on the involvement of the phosphoinositide 3-kinase (PI3K)/Akt pathway in the MAPK ERK-1/2 regulation and PRL secretion in pituitary cells. Either specific pharmacological PI3K and Akt inhibitors (LY294002, Akt I, and phosphoinositide analog-6) or Akt dominant-negative mutant (K179M) enhanced ERK-1/2 phosphorylation in unstimulated GH4C1 cells. Under the same conditions, PI3K and Akt inhibition also both increased Raf-1 kinase activity and the levels of GTP-bound (active form) monomeric G protein Rap1, which suggests that a down-regulation of the ERK-1/2 cascade is induced by the PI3K/Akt signaling pathway in unstimulated cells. On the contrary, ERK-1/2 phosphorylation, Raf-1 activity, and Rap1 activation were almost completely blocked in IGF-I-stimulated cells previously subjected to PI3K or Akt inhibition. Although the PRL promoter was not affected by either PI3K/Akt inhibition or activation, PRL release increased in response to the pharmacological PI3K/Akt inhibitors in unstimulated GH4C1 and rat pituitary primary cells. The IGF-I-stimulated PRL secretion was diminished, on the contrary, by the pharmacological PI3K/Akt inhibitors. Taken together, these findings indicate that the PI3K/Akt pathway exerts dual regulatory effects on both the Rap1/Raf-1/ERK-1/2 cascade and PRL release in pituitary cells, i.e. negative effects in unstimulated cells and positive ones in IGF-I-stimulated cells.  相似文献   

14.
15.
《Pancreatology》2022,22(1):9-19
Background/objectivesPancreatic ductal adenocarcinoma (PDAC) is characterized by excessive desmoplasia and autophagy-dependent tumorigenic growth. Pancreatic stellate cells (PSCs) as a predominant stromal cell type play a critical role in PDAC biology. We have previously reported that autophagy facilitates PSC activation, however, the mechanism remains unknown. We investigated the mechanism of autophagy in PSC activation.MethodsWe compared gene expression profiles between patient-derived PSCs from pancreatic cancer and chronic pancreatitis using a microarray. The stromal expression of target gene in specimen of PDAC patients (n = 63) was analyzed. The effect of target gene on autophagy and activation of PSCs was investigated by small interfering RNAs transfection, and the relationship between autophagy and ER stress was investigated. We analyzed the growth and fibrosis of xenografted tumor by orthotopic models.ResultsIn analysis of gene expression microarray, endoplasmic reticulum aminopeptidase 2 (ERAP2) upregulated in cancer-associated PSCs was identified as the target gene. High stromal ERAP2 expression is associated with a poor prognosis of PDAC patients. Knockdown of ERAP2 inhibited unfolded protein response mediated autophagy, and led to inactivation of PSCs, thereby attenuating tumor-stromal interactions by inhibiting production of IL-6 and fibronectin. In vivo, the promoting effect of PSCs on xenografted tumor growth and fibrosis was inhibited by ERAP2 knockdown.ConclusionsOur findings demonstrate a novel mechanism of PSCs activation regulated by autophagy. ERAP2 as a promising therapeutic target may provide a novel strategy for the treatment of PDAC.  相似文献   

16.
17.
The AML14.3D10 human myeloid leukemic cell line expresses receptors for granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-5 (IL-5), but not IL-3. We have found that this cell line produces GM-CSF in amounts up to 113 pg/ml in culture supernatants. Deprivation of endogenous GM-CSF by addition of neutralizing anti-GM-CSF antibody strongly inhibits proliferation of the cells, suggesting a GM-CSF autocrine growth mechanism. To examine whether endogenously produced GM-CSF activates intracellular GM-CSF/IL-3/IL-5-related signal transduction pathways, we performed anti-phosphotyrosine immunoblotting of cell lysates of AML14.3D10 cells before and after deprivation of endogenous GM-CSF. We found constitutive tyrosine-phosphorylation of a number of proteins in AML14.3D10 that could not be detectably increased by the addition of exogenous GM-CSF, IL-3, or IL-5. However, GM-CSF-deprived cells demonstrated a marked increase in phosphorylation of proteins of identical molecular mass following addition of GM-CSF and IL-5, but not IL-3, consistent with the receptor expression of the cells and the known use of the same signaling pathways by the three cytokines. This suggests that AML14.3D10 cells use endogenously produced GM-CSF to activate signal transduction pathways, interfering with activation by exogenous cytokine until the endogenous stimulation is removed. We then assessed the activation of the β-subunit common to the GM-CSF/IL-3/IL-5 receptors (βc), JAK2 and p53/56 lyn, known to be involved in the common signaling pathways of the three cytokines. We found that phosphorylation of βc and JAK2 in response to GM-CSF and IL-5 could be markedly enhanced by depriving cells of endogenous GM-CSF. Constitutive hyperphosphorylation of lyn was found in AML14.3D10 cells, and no further activation of lyn in response to cytokine was demonstrable in GM-CSF-deprived cells, suggesting that lyn is activated in this cell line by a mechanism other than GM-CSF. These studies represent the first demonstration of autocrine activation of intracellular cytokine signaling pathways by malignant hematopoietic cells. Because the addition of anti-GM-CSF to cell cultures improved responsiveness of intracellular signal transducing molecules to exogenous GM-CSF and IL-5, it can be inferred that endogenously produced GM-CSF exerts its effects by secretion and binding to surface GM-CSF receptors, although an intracellular component to signaling cannot be excluded. These observations provide further information regarding an autocrine contribution to leukemic cell growth, and establish a new model for study of these events. Am. J. Hematol. 56:79–85, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Premature ovarian failure (POF) is a major side effect of chemotherapy in young cancer patients. To develop pharmaceutical agents for preserving fertility, it is necessary to understand the mechanisms responsible for chemotherapy‐induced follicle loss. Here, we show that treatment with cisplatin, a widely used anticancer drug, depleted the dormant follicle pool in mouse ovaries by excessive activation of the primordial follicles, without inducing follicular apoptosis. Moreover, we show that co‐treatment with the antioxidant melatonin prevented cisplatin‐induced disruption of the follicle reserve. We quantified the various stages of growing follicles, including primordial, primary, secondary, and antral, to demonstrate that cisplatin treatment alone significantly decreased, whereas melatonin co‐treatment preserved, the number of primordial follicles in the ovary. Importantly, analysis of the PTEN/AKT/FOXO3a pathway demonstrated that melatonin significantly decreased the cisplatin‐mediated inhibitory phosphorylation of PTEN, a key negative regulator of dormant follicle activation. Moreover, melatonin prevented the cisplatin‐induced activating phosphorylation of AKT, GSK3β, and FOXO3a, all of which trigger follicle activation. Additionally, we show that melatonin inhibited the cisplatin‐induced inhibitory phosphorylation and nuclear export of FOXO3a, which is required in the nucleus to maintain dormancy of the primordial follicles. These findings demonstrate that melatonin attenuates cisplatin‐induced follicle loss by preventing the phosphorylation of PTEN/AKT/FOXO3a pathway members; thus, melatonin is a potential therapeutic agent for ovarian protection and fertility preservation during chemotherapy in female cancer patients.  相似文献   

19.
Salameh A  Galvagni F  Bardelli M  Bussolino F  Oliviero S 《Blood》2005,106(10):3423-3431
Vascular endothelial growth factor receptor-3 (VEGFR-3) plays a key role for the remodeling of the primary capillary plexus in the embryo and contributes to angiogenesis and lymphangiogenesis in the adult. However, VEGFR-3 signal transduction pathways remain to be elucidated. Here we investigated VEGFR-3 signaling in primary human umbilical vein endothelial cells (HUVECs) by the systematic mutation of the tyrosine residues potentially involved in VEGFR-3 signaling and identified the tyrosines critical for its function. Y1068 was shown to be essential for the kinase activity of the receptor. Y1063 signals the receptor-mediated survival by recruiting CRKI/II to the activated receptor, inducing a signaling cascade that, via mitogen-activated protein kinase kinase-4 (MKK4), activates c-Jun N-terminal kinase-1/2 (JNK1/2). Inhibition of JNK1/2 function either by specific peptide inhibitor JNKI1 or by RNA interference (RNAi) demonstrated that activation of JNK1/2 is required for a VEGFR-3-dependent prosurvival signaling. Y1230/Y1231 contributes, together with Y1337, to proliferation, migration, and survival of endothelial cells. Phospho-Y1230/Y1231 directly recruits growth factor receptor-bonus protein (GRB2) to the receptor, inducing the activation of both AKT and extracellular signal-related kinase 1/2 (ERK1/2) signaling. Finally, we observed that Y1063 and Y1230/Y1231 signaling converge to induce c-JUN expression, and RNAi experiments demonstrated that c-JUN is required for growth factor-induced prosurvival signaling in primary endothelial cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号