首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
探讨具有抗癫痫反复发作作用的蝎毒耐热蛋白(scorpion venom heat-resistant protein,SVHRP)对大鼠海马神经元神经肽Y(neuropeptide Y,NPY)表达的影响。采用免疫细胞化学ABC法与HPIAS系列彩色病理图文定量分析系统相结合,检测NPY-免疫阳性产物(NPY-IR)表达的变化,用RT-PCR技术观察NPY mRNA表达水平的变化。终浓度范围为0.2、2、20和200μg/ml的SVHRP分别与培养10d的海马神经元共孵育24h后,NPY阳性神经元的反应强度明显增强,具有剂量-反应关系。终浓度为20μg/ml的SVHRP分别与培养10d的海马神经元共孵育3、6、9、12和24h,NPY阳性反应强度增强,并呈时间-反应关系。RT-PCR结果显示,20μg/ml的SVHRP与原代培养海马神经元共孵育24h后,NPY mRNA的表达明显增加。以上结果提示SVHRP可诱导原代培养海马神经元NPY阳性反应和NPY mRNA的表达。  相似文献   

2.
Neuropeptide Y (NPY) immunoreactivity and gene expression was investigated in the hippocampus after kainic acid-induced seizures and pentylenetetrazol kindling in the rat. Pronounced increases of NPY immunoreactivity were found in the terminal field of mossy fibers in both animal models. In kainic acid-treated rats the peptide progressively accumulated in the hilus and the stratum lucidum of CA3, 5-60 days after injection of the toxin and, at the later intervals, extended to the supragranular molecular layer of the dentate gyrus indicating sprouting of these neurons. Unilateral injection of colchicine into the hilus abolished NPY staining of the mossy fibers. Using in situ hybridization, in both animal models markedly enhanced expression of prepro-NPY mRNA was observed in the granular layer, containing the perikarya of the mossy fibers. It is suggested that sustained expression of the neuromodulatory neuropeptide NPY, in addition to the observed plastic changes, may contribute to altered excitability of hippocampal mossy fibers in epilepsy. Neither somatostatin immunoreactivity nor gene expression were enhanced in granule cells/mossy fibers.  相似文献   

3.
Al-Noori S  Swann JW 《Neuroscience》2000,101(2):337-348
Excitotoxic injury of the dendrites of inhibitory interneurons could lead to decreases in their synaptic activation and explain subsequent local circuit hyperexcitability and epilepsy. A hallmark of dendrotoxicity, at least in principal neurons of the hippocampus and cortex, is focal or varicose swellings of dendritic arbors.In experiments reported here, transient (1h) exposure of hippocampal explant cultures to kainic acid produced marked focal swellings of the dendrites of parvalbumin-immunoreactive pyramidal basket cells in a highly reproducible and dose-dependent manner. At 5mM kainic acid, more than half of the immunopositive apical dendrites in area CA(1) had a beaded appearance. However, the somal volumes of these cells were unaltered by the same treatment. The presence of focal swellings was reversible with kainate washout and was not accompanied by interneuronal cell death. In contrast, exposure to much higher concentrations (300mM) of kainic acid resulted in the total loss of parvalbumin-positive interneurons from explants. Surprisingly, kainic acid-induced dendritic beading does not appear to be mediated by extracellular calcium. Beading was unaltered in the presence of N-methyl-D-aspartate receptor antagonists, the L-type calcium channel antagonist, nimodipine, cadmium, or by removing extracellular calcium. However, blockade of voltage-gated sodium channels by either tetrodotoxin or lidocaine abolished dendritic beading, while the activation of existing voltage-gated sodium channels by veratridine mimicked the kainic acid-induced dendritic beading. Finally, the removal of extracellular chloride prevented the kainic acid-induced dendritic beading.Thus, we suggest that the movement of Na(+) and Cl(-), rather than Ca(2+), into cells underlies the focal swellings of interneuron dendrites in hippocampus.  相似文献   

4.
Changes in levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and neurotrophin-3 (NT-3) in various regions of the rat brain following kainic acid-induced seizure activity were investigated. BDNF protein, as measured by a two-site enzyme immunoassay, increased transiently 12-24 h after the intraperitoneal administration of kainic acid to 61.6 ng/g wet weight in the hippocampus (approximately 10-fold increase), 19.5 ng/g in the piriform plus entorhinal cortex (approximately 10-fold) and 8.2 ng/g in the olfactory bulb (approximately 16-fold), and then rapidly decreased. Increases of 2- to 4-fold in levels of BDNF were also detected in the septum, cerebral cortex, striatum and hypothalamus, but not in the cerebellum. In contrast, levels of NGF and NT-3 decreased 24 h after the administration of kainic acid. Western and Northern blotting analyses of hippocampal tissues, respectively, revealed increase in levels of a 14-kDa protein corresponding to BDNF and its mRNA at both 4.2 and 1.4 kb. Hippocampal mRNAs for NGF and NT-3 increased and decreased, respectively, in kainic acid-treated rats. Immunohistological investigations showed that, in the hippocampus, the administration of kainic acid enhanced a homogeneous immunoreactivity of BDNF in the polymorph inner layer (the stratum radiatum of the CA3/CA4 regions and the hilar region) and in granule cells of the dentate gyrus. BDNF protein was found in neurons, but not at all in glial cells or in blood vessels, and was localized in the cytoplasm, the nucleoplasm and the primary dendrites of neurons as well as in perisynaptic extracellular spaces, but hardly in their axons. Our results show that kainic acid treatment increases levels of BDNF, but not NGF or NT-3, in various regions of the rat brain, other than the cerebellum. Also, the majority of BDNF newly synthesized by hippocampal granule neurons is secreted into the perisynaptic extracellular space in the polymorph inner layer of the dentate gyrus, supporting an autocrine-like role for the factor in synaptic functions.  相似文献   

5.
Jinde S  Masui A  Morinobu S  Noda A  Kato N 《Neuroscience》2002,115(4):1035-1045
The anti-convulsive effects of neuropeptide Y have been suggested in several animal models of epilepsy. We have found the sustained increase of neuropeptide Y contents and the seizure-induced elevation of hippocampal messenger RNA in a novel spontaneous epileptic mutant rat: Noda epileptic rat. In the present study, we investigated the change of neuropeptide Y Y1 and Y2 receptor messenger RNA expressions and binding sites in the hippocampus following a spontaneous generalized tonic-clonic seizure of Noda epileptic rat. Furthermore, the binding sites of a more recently isolated receptor subtype, neuropeptide Y Y5 receptors, were also evaluated by receptor autoradiography. A marked elevation of neuropeptide Y immunoreactivity in the mossy fiber, and Y2-receptor up-regulation in the dentate gyrus were observed in the hippocampus of Noda epileptic rat, which coincided with the previous results of the other epileptic models. In contrast, Y1-receptor down-regulation was not found after a spontaneous seizure of Noda epileptic rat while this occurs in kindling and after kainic acid-induced seizures. [125I][Leu31, Pro34]peptide YY/BIBP 3226-insensitive (Y5 receptor) binding sites in CA1 stratum radiatum were significantly decreased following a spontaneous seizure of Noda epileptic rat. The present results suggest that a spontaneous seizure of Noda epileptic rat induces significant changes in neuropeptide Y-mediated transmission in the hippocampus via Y2 and Y5 receptors, but not Y1 receptors. Therefore, specific subset of neuropeptide Y receptor subtypes might be involved in the epileptogenesis of Noda epileptic rat.  相似文献   

6.
7.
Previous work shows that sleep deprivation impairs hippocampal-dependent learning and long-term potentiation (LTP). Brain-derived neurotrophic factor (BDNF), cAMP response-element-binding (CREB) and calcium–calmodulin-dependent protein kinase II (CAMKII) are critical modulators of hippocampal-dependent learning and LTP. In the present study we compared the effects of short- (8 h) and intermediate-term (48 h) sleep deprivation ( SD ) on the expression of BDNF and its downstream targets, Synapsin I, CREB and CAMKII in the neocortex and the hippocampus. Rats were sleep deprived using an intermittent treadmill system which equated total movement in the SD and control treadmill animals (CT), but permitted sustained periods of rest in CT animals. Animals were divided into SD (treadmill schedule: 3 s on/12 s off) and two treadmill control groups, CT1 (15 min on/60 min off) and CT2 (30 min on/120 min off – permitting more sustained sleep). Real-time Taqman RT-PCR was used to measure changes in mRNA; BDNF protein levels were determined using ELISA . In the hippocampus, 8 h treatments reduced BDNF , Synapsin I, CREB and CAMKII gene expression in both SD and control groups. Following 48 h of experimental procedures, the expression of all these four molecular markers of plasticity was reduced in SD and CT1 groups compared to the CT2 and cage control groups. In the hippocampus, BDNF protein levels after 8 h and 48 h treatments paralleled the changes in mRNA. In neocortex, neither 8 h nor 48 h SD or control treatments had significant effects on BDNF , Synapsin I and CAMKII mRNA levels. Stepwise regression analysis suggested that loss of REM sleep underlies the effects of SD on hippocampal BDNF , Synapsin I and CREB mRNA levels, whereas loss of NREM sleep underlies the effects on CAMKII mRNA.  相似文献   

8.
Saji M  Kobayashi S  Ohno K  Sekino Y 《Neuroscience》2000,97(3):437-445
In this study we describe the preventive effect of interruption of the supramammillohippocampal afferents on the Fos expression in the forebrain and epileptic discharges in the hippocampal electroencephalogram in rat model of kainic acid-induced limbic seizure. Little was known about the contribution of different degrees of neural activity of hippocampal principal cells to the genesis and spread of limbic seizures in the forebrain structures. Following kainic acid injection to the amygdala with or without concurrent injection of muscimol to the supramammillary nucleus, behavioral changes and electroencephalograms were observed in freely moving rats. The animals were processed for Fos immunocytochemical analysis at several time points. The latest expression of Fos at 2h was seen in hippocampal CA1-CA3, ventrolateral thalamic nuclei and mediodorsal caudate putamen, while the early Fos expression at 0.5h was seen in the piriform, entorhinal and other cortices, the thalamic midline nuclei and hypothalamic nuclei. Muscimol injection to the supramammillary nucleus prevented Fos expression in the CA1-CA3 region and reduced that in the forebrain regions with the latest Fos expression, but did not affect Fos expression in other forebrain regions with early Fos expression. This treatment also eliminated epileptic discharges and attenuated all waves in hippocampus.These findings indicate that an acute interruption of the facilitatory hypothalamic afferents by intrasupramammillary injection of muscimol may cause the inactivation of the disinhibition mechanism for hippocampal throughput at the dentate gyrus, resulting in the blockade of the genesis and spread of limbic seizures in the hippocampus.  相似文献   

9.
目的探讨蝎毒耐热蛋白(SVHRP)对Aβ1-40神经突触毒性的影响。方法应用Aβ1-40进行大鼠海马内定位注射后,腹腔给予SVHRP进行干预。10d后,采用水迷宫实验和免疫组织化学方法分别检测大鼠的学习记忆能力和海马内突触密度的变化。结果SVHRP干预组大鼠的水迷宫逃避潜伏期缩短、目标象限游泳时间和距离增加;SVHRP干预组大鼠的P38免疫反应产物明显强于Aβ组,接近对照组水平。结论腹腔注射SVHRP可抑制外源性Aβ1-40引起的大鼠海马内突触密度的下降,可阻止Aβ1-40对大鼠学习记忆能力的损害。  相似文献   

10.
The administration of kainic acid (KA) causes seizures and produces neurodegeneration in hippocampal CA3 pyramidal cells. The present study investigated a possible role of acupuncture in reducing hippocampal cell death and inflammatory events, using a mouse model of kainic acid-induced epilepsy. Male C57BL/6 mice received acupuncture treatments at acupoint HT8 or in the tail area bilaterally once a day for 2 days and again immediately after an intraperitoneal injection of KA (30 mg/kg). HT8 is located on the palmar surface of the forelimbs, between the fourth and fifth metacarpal bones. Twenty-four hours after the KA injection, neuronal cell survival, the activations of microglia and astrocytes, and mRNA expression of two proinflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), were measured in the hippocampus. Acupuncture stimulation at HT8, but not in the tail area, significantly reduced the KA-induced seizure, neuron death, microglial and astrocyte activations, and IL-1β mRNA expression in the hippocampus. The acupuncture stimulation also decreased the mRNA expression of TNF-α, but it was not significant. These results indicate that acupuncture at HT8 can inhibit hippocampal cell death and suppress KA-induced inflammatory events, suggesting a possible role for acupuncture in the treatment of epilepsy.  相似文献   

11.
Isokawa M 《Neuroscience》2005,131(4):801-812
Dentate granule cell (DGC) swelling was studied by imaging changes in light transmittance from hippocampal slices in the rat pilocarpine model of epilepsy and human epileptic specimens. Brief bath-application of N-methyl-D-aspartic acid (NMDA) induced swelling in the control rat DGC (physiological swelling). Physiological swelling was short-lasting, and rapidly recovered upon removal of NMDA. In contrast, the swelling induced in the pilocarpine-treated rat hippocampus and human epileptic hippocampus (epileptic swelling) was long-lasting, and often recovered slowly over an hour. Both types of swelling were blocked by the NMDA receptor (NMDAR) antagonist, D-APV, suggesting that they shared the same induction mechanism. However, the swellings differed in their sensitivity to a calcium chelator, 1.2-bis(2-aminophenoxy)ethane-N,N,N,N-tetra-acetate (BAPTA), and an endoplasmic reticulum (ER) Ca2+-ATPase inhibitor, thapsigargin (TG). BAPTA and TG affected only epileptic swelling, and physiological swelling was spared. This suggested that the NMDAR-induced epileptic swelling might involve an additional mechanism for its maintenance, likely recruiting ER Ca2+ stores. Brain-derived neurotrophic factor (BDNF) slightly attenuated physiological swelling, and blocked epileptic swelling. The present study suggests a functional link between the activation of NMDAR and a release of Ca2+ from internal stores during the induction of epileptic swelling, and a neuroprotective role of BDNF on the NMDAR-induced swelling in the epileptic hippocampus.  相似文献   

12.
13.

Introduction

Calcium entry plays a critical role in the proliferation and survival of certain tumors. Ca2+ release activated Ca2+ (CRAC) channels constitute one of the most important pathways for calcium entry especially that of store-operated calcium entry (SOCE). ORAI1 and stromal interaction molecule1 (STIM1) are essential protein components of CRAC channels. In this study we tested the effect of inhibiting CRAC through ORAI1 and STIM1 on glioblastoma multiforme (GBM) tumor cell proliferation and survival.

Methods

Two glioblastoma cell lines, C6 (rat) and U251 (human), were used in the study. ORAI1 and STIM1 expressions were examined using Western blot and immunohistochemistry. CRAC channel activity and its components were inhibited with ion channel blockers and using siRNA knockdown. Changes in intracellular calcium concentration were recorded using Fura-2 fluorescent calcium imaging. Cell proliferation and apoptosis were examined using MTS and TUNEL assays, respectively.

Results

CRAC blockers, such as SKF-96365 (1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl) propoxy]ethyl-1H-imidazole), 2-aminoethoxydiphenyl borate (2-APB) and Diethylstilbestrol (DES), inhibited cell proliferations and SOCE in GBM cells. Knockdown of ORAI1 and STIM1 proteins using siRNA significantly inhibited C6 cell proliferation and SOCE compared with those in control cells, and a more significant effect was observed in cells with ORAI1 siRNA knockdown than that of STIM1-treated cells. Both CRAC blockers and siRNA treatments increased apoptosis in C-6 cells compared with control.

Conclusion

Calcium entry via ORAI1 and CRAC channels are important for GBM proliferation and survival.  相似文献   

14.
目的探讨人参皂苷Rg1对癫痫大鼠海马神经元损伤和小胶质细胞活化的影响及其作用机制。方法 SD大鼠分为对照组(control组)、癫痫模型组(model组)、人参皂苷Rg1低剂量组(Rg1-L组)和人参皂苷剂量组(Rg1-H组),采用氯化锂-匹罗卡品腹腔注射制备癫痫大鼠模型;记录各组大鼠行为学发作情况;ELISA检测各组大鼠海马组织的氧化应激水平;qRT-PCR检测各组海马组织中炎症因子的表达;HE染色观察各组大鼠海马神经元结构和病理形态变化;免疫荧光组织化学染色检测各组大鼠小胶质细胞中iNOS、Arg-1蛋白表达。结果 model组大鼠症状达到Ⅲ级及Ⅲ级以上较control组显著增加,人参皂苷Rg1使大鼠的癫痫症状得到改善;与control组相比,model组大鼠海马组织中MDA(P<0.001)、TNF-αm RNA(P<0.001)、IL-1βmRNA(P<0.001)的表达水平上调,SOD(P<0.001)、IL-10 m RNA(P<0.001)的表达水平下调,而人参皂苷Rg1使大鼠海马组织中MDA(P<0.05)、TNF-αm RNA(P<0.05)、IL-1βmRNA(P<0.05)的表达水平下调,SOD(P<0.05)、IL-10 mRNA(P<0.05)的表达水平上调;model组大鼠海马神经元形态不完整,细胞间间隙增大和排列紊乱,人参皂苷Rg1组大鼠海马神经元形态明显改变,可见细胞排列较规则,大部分细胞形态正常;model组大鼠海马神经元凋亡率显著上升(P<0.001),人参皂苷Rg1组使大鼠海马神经元凋亡率下降(P<0.05);与control组相比,model组大鼠小胶质细胞数量显著增加(P<0.001),iNOS蛋白的表达显著升高(P<0.001),Arg-1蛋白表达显著降低(P<0.001),与model组相比,人参皂苷Rg1组大鼠小胶质细胞数量减少(P<0.05),iNOS蛋白的表达降低(P<0.05),Arg-1蛋白表达升高(P<0.05)。结论人参皂苷Rg1降低癫痫大鼠海马组织中iNOS蛋白的表达,增加Arg-1蛋白的表达,抑制小胶质细胞的激活,减轻氧化应激和炎症因子的表达,降低癫痫大鼠发作的等级。  相似文献   

15.
GABA, the main inhibitory neurotransmitter in the adult brain, exerts its effects through multiple GABA(A) receptor subtypes with different pharmacological profiles, the alpha subunit variant mainly determining the binding properties of benzodiazepine site on the receptor protein. In adult experimental epileptic animals and in humans with epilepsy, increased excitation, i.e. seizures, alters GABA(A) receptor subunit expression leading to changes in the receptor structure, function, and pharmacology. Whether this also occurs in the developing brain, in which GABA has a trophic, excitatory effect, is not known. We have now applied autoradiography to study properties of GABA(A)/benzodiazepine receptors in 9-day-old rats acutely (6 h) and sub-acutely (7 days) after kainic acid-induced status epilepticus by analyzing displacement of [(3)H]flunitrazepam binding by zolpidem, a ligand selective for the alpha1beta2gamma2 receptor subtype. Regional changes in the binding properties were further corroborated at the cellular level by immunocytochemistry. The results revealed that status epilepticus significantly decreased displacement of [(3)H]flunitrazepam binding by zolpidem 6 h after the kainic acid-treatment in the dentate gyrus of the hippocampus, parietal cortex, and thalamus, and in the hippocampal CA3 and CA1 cell layers 1 week after the treatment. Our results suggest that status epilepticus modifies region-specifically the pharmacological properties of GABA(A) receptors, and may thus disturb the normal, strictly developmentally-regulated maturation of zolpidem-sensitive GABA(A) receptors in the immature rat brain. A part of these changes could be due to alterations in the cell surface expression of receptor subtypes.  相似文献   

16.
目的:探索蝎毒耐热蛋白(SVHRP)对淀粉样β蛋白(Aβ)神经毒性的抑制作用。方法:在大鼠海马内每侧注射Aβ1-40(10μg/2μl)后1d,给予腹腔SVHRP(0.5~2μg/100g),1次/d,连续10次。建模16d后分别进行海马部位的突触体素免疫组织化学分析和突触超微结构计量观察。结果:与对照组比较,Aβ组大鼠突触体素免疫反应强度和电镜下突触密度明显下降(P0.01),小突触丢失为主,突触终末可见突触小泡大量集聚,突触活性区平均长度增加。SVHRP干预组大鼠实触体素免疫反应强度和电镜下突触密度明显高于Aβ组大鼠(P0.01),突触终末内未见突触小泡过量集聚,但小突触比例显著增加(P0.01)。结论:以上结果强有力的提示,Aβ是突触退变的始动因素,SVHRP可抑制Aβ引起的突触退变,有可能成为治疗Alzheimer病(AD)的一种药物。  相似文献   

17.
 目的: 研究钙库操纵性钙通道(store-operated calcium channels,SOCC)相关功能蛋白ORAI1-3和STIM1-2在人循环纤维细胞(circulating fibrocytes)中的表达及SOCC对人循环纤维细胞分化的影响。方法: 采集健康人外周静脉血,分离出单个核细胞,体外培养分化为循环纤维细胞。采用RT-PCR和real-time PCR检测循环纤维细胞中ORAI1-3及STIM1-2的mRNA表达情况,并检测SOCC抑制剂对循环纤维细胞分化的影响。结果: Real-time PCR检测结果显示ORAI1-3和STIM1-2 mRNA在循环纤维细胞中有较高的表达水平,并且SOCC抑制剂SKF-96365对循环纤维细胞分化具有明显的抑制作用。结论: SOCC表达于循环纤维细胞中,并且影响循环纤维细胞的分化。  相似文献   

18.
19.
We have investigated a potential mechanism by which a diet, similar in composition to the typical diet of most industrialized western societies rich in saturated fat and refined sugar (HFS), can influence brain structure and function via regulation of neurotrophins. We show that animals that learn a spatial memory task faster have more brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus. Two months on the HFS diet were sufficient to reduce hippocampal level of BDNF and spatial learning performance. Consequent to the action of BDNF on synaptic function, downstream effectors for the action of BDNF on synaptic plasticity were reduced proportionally to BDNF levels, in the hippocampus of rats maintained on the HFS diet between 2 and 24 months. In particular, animals maintained on the HFS diet showed a decrease in levels of: (i) synapsin I mRNA and protein (total and phosphorylated), important for neurotransmitter release; (ii) cyclic AMP-response element-binding protein (CREB) mRNA and protein (total and phosphorylated); CREB is required for various forms of memory and is under regulatory control of BDNF; (iii) growth-associated protein 43 mRNA, important for neurite outgrowth, neurotransmitter release, and learning and memory. Diet-related changes were specific for the hippocampus consequent to its role in memory formation, and did not involve neurotrophin-3, another member of the neurotrophin family.Our results indicate that a popularly consumed diet can influence crucial aspects of neuronal and behavioral plasticity associated with the function of BDNF.  相似文献   

20.
目的观察蝎毒耐热蛋白(SVHRP)对Aβ_(1-40)活化星形胶质细胞(AST)作用的影响。方法应用Aβ_(1-40)进行大鼠海马内定位注射后腹腔给予SVHRP进行干预,16d后应用免疫组化法进行海马内GFAP免疫反应强度检测。结果Aβ_(1-40)注射点周围GFAP免疫反应明显增强,而经SVHRP干预后GFAP免疫反应显著减弱,接近正常对照水平。结论腹腔注射SVHRP可抑制外源性Aβ_(1-40)引起的大鼠海马内AST活化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号