首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim: To investigate the effects of S-allylcysteine (SAC), a water-soluble garlic derivative, on human ovarian cancer cells in vitro. Methods: Human epithelial ovarian cancer cell line A2780 was tested. Cell proliferation was examined with CCK-8 and colony formation assays. Cell cycle was analyzed with flow cytometry. Cell apoptosis was studied using Hoeohst 33258 staining and Annexin V/PI staining with flow cytometry. The migration and invasion of A2780 cells were examined with transwell and wound healing assays. The expression of relevant proteins was detected with Western blot assays. Results: SAC (1-100 mmol/L) inhibited the proliferation of A2780 cells in dose- and time-dependent manners (the ICsovalue was approximately 25 mmoVL at 48 h, and less than 6.25 mmol/L at 96 h). Furthermore, SAC dose-dependently inhibited the colony formation of A2780 cells. Treatment of A2780 cells with SAC resulted in G/S phase arrest and induced apoptosis, accompanied by decreased expression of pro-caspase-3, Parp-1 and Bcl-2, and increased expression of active caspase-3 and Bax. SAC treatment significantly reduced the migration of A2780 cells, and markedly decreased the protein expression of Wnt5a, p-AKT and c-Jun, which were the key proteins involved in proliferation and metastasis. Conclusion: SAC suppresses proliferation and induces apoptosis in A2780 ovarian cancer cells in vitro.  相似文献   

2.
Aim: The aim of the present study was to determine the effect of 5-aminoimidazole- 4-carboxamide-ribonucleoside (A/CAR) on proliferation, cell cycle, and apoptosis in the human epithelial cervical cancer cell line CaSki cells. Methods: Cell count and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay were used to determine cell proliferation and viability. Hoechst 33258 staining was con- ducted to distinguish the apoptotic cells. Cell cycle and Annexin-V/propidium iodide staining were analyzed by fluorescence-activated cell sorting (FACS). A Western blot assay was used to evaluate the expression of AKT (also known as protein kinase B), mammalian target of rapamycin (mTOR), p53, and extracellular signal-regulated kinase (ERK). Results: A/CAR (500 pmol/L) significantly inhibi- ted the proliferation of CaSki cells treated for 24, 48, and 72 h as determined by cell count. The cells at the Gl and G2 phases were dramatically decreased while cells at the S phase were increased in response to A/CAR treatment for 24, 48, and 72 h, The MTF assay showed less viable cells and Hoechst fluorescent staining showed more apoptotic cells upon AICAR stimulation. The results of the Annexin-V staining demonstrated a time-dependent increase of apoptosis in cells treated with A/CAR for 24, 36, and 48 h. Furthermore, AICAR activated caspase-3 in a time-dependent manner. It was also found that AICAR inhibited the phosphory- lation of AKT and mTOR, which are important kinases regulating cell growth and survival. AICAR stimulation obviously increased the expression of the tumor suppressor p53 and the phosphorylation of ERK. Conclusion: A/CAR inhibited proliferation and induced S phase arrest and promoted apoptosis in CaSki cells, which might be mediated by the dowrtregulation of the AKT/mTOR pathway and the upregulation of the p53/ERK pathway.  相似文献   

3.
Aim To explore the signaling pathway of matrine derivative ZS10 in inhibiting proliferation and inducing apoptosis of BEL-7402 cells. Methods ZS10 was synthesized by organic synthesis. The inhibitory effect of ZS10 on the proliferation of BEL-7402 cells was analyzed by MTT method at the time of 24 h, 48 h and 72 h, respectively, and IC50 was calculated. DAPI staining was used to observe the state of BEL-7402 cells. Clone formation method was used to observe the colony formation of BEL-7402 cells, flow cytometry was used to observe the cell cycle arrest and apoptosis of BEL7402 cells, and Western blot was used to detect the expression level of PI3K/AKT pathway and related proteins. Results MTT results showed that the IC50 was(6.62±1.11)μmol·L-1; DAPI staining showed that the cell state changed significantly with the increase of drug concentration, and the results of colony formation showed that ZS10 significantly inhibited the colony formation of BEL-7402 cells. The results of flow cytometry showed that ZS10 induced S phase arrest and cycle apoptosis of BEL-7402 cells. Western blot showed that ZS10 at the concentration of 0~8 μ mol·L-1 could regulate the PI3K/AKT pathway and its related proteins in a dose-dependent manner. Compared with the control group, the expression of PI3K, AKT, P-AKT and anti-apoptotic protein Bcl-2 significantly decreased, the expression of pro-apoptotic protein Bax significantly increased, the expression of Cyclin D1 and CDK2 significantly decreased, and the expression of EGFR and N-cadherin, Vimentin significantly decreased in the treatment group. The expression of E-cadherin increased. Conclusions Matrine derivative ZS10 can inhibit the growth and proliferation of hepatocellular carcinoma cell line BEL-7402. © 2023 Publication Centre of Anhui Medical University. All rights reserved.  相似文献   

4.
AIM: To study the effect of octreotide on cell proliferation and apoptosis in different hepatocellular carcinoma (HCC) cells and hepatocytes. METHODS: The proliferation of HCC cells (HepG2, SMMC-7721) and hepatocytes (L-02) was determined by MTT assay. Apoptosis was detected either by fluorescent staining, transmission electron microscopy or flow cytometry. The content of AFP in the supernatant of cultured HCC cells was determined by electrochemiluminescence immunoassay. The expression of SSTR subtypes was identified by RT-PCR. RESULTS: The proliferation of HCC cells and L-02 cells was inhibited significantly by octreotide (0.25, 0.5, 1.0, 2.0 and 4.0 mg/L). However, the apoptosis of HCC cells markedly increased in a concentration-dependent manner. Both the apoptosis index and the percentage of apoptotic cells in L-02 cells were significantly lower than those of HepG2 and SMMC-7721 cells. The content of AFP in the supernatant of cultured HepG2 cells treated with octreotide was also statistically reduced.  相似文献   

5.
Aim: Mangiferin is glucosylxanthone extracted from plants of the Anacardiaceae and Gentianaceae families. The aim of this study was to investigate the effects of mangiferin on Nrf2-antioxidant response element (ARE) signaling and the sensitivity to etoposide of human myeloid leukemia cells in vitro. Methods: Human HL-60 myeloid leukemia cells and mononuclear human umbilical cord blood cells (MNCs) were examined. Nrf2 protein was detected using immunofluorescence staining and Western blotting. Binding of Nrf2 to ARE was examined with electrophoretic mobility shift assay. The level of NQ01 was assessed with real-time RT-PCR and Western blotting. DCFH-DA was used to evaluate intracellular ROS level. Cell proliferation and apoptosis were analyzed using MTT and flow cytometry, respectively. Results: Mangiferin (50 pmol/L) significantly increased Nrf2 protein accumulation in HL-60 cells, particularly in the nucleus. Mangiferin also enhanced the binding of Nrf2 to an ARE, significantly up-regulated NQ01 expression and reduced intracellular ROS in HL60 cells. Mangiferin alone dose-dependently inhibited the proliferation of HL-60 cells. Mangiferin (50 mol/L) did not attenuate etoposide-induced cytotoxicity in HL-60 cells, and combined treatment of mangiferin with low concentration of etoposide (0.8 pg/mL) even increased the cell inhibition rate. Nor did mangiferin change the rate of etoposide-induced apoptosis in HL-60 cells. In MNCs, mangiferin significantly relieved oxidative stress, but attenuated etoposide-induced cytotoxicity. Conclusion: Mangiferin is a novel Nrf2 activator that reduces oxidative stress and protects normal cells without reducing the sensitivity to etoposide of HL-60 leukemia Cells in vitro. Mangiferin may be a potential chemotherapy adjuvant.  相似文献   

6.
Aim: To assess the synergistic actions of lidamycin (LDM) and chloroquine (CQ), a lysosomal enzyme inhibitor, in human non-small cell lung cancer (NSCLC) cells, and to elucidate the potential mechanisms. Methods: Human NSCLC cell lines A549 and H460 were treated with CQ and/or LDM. Cell proliferation was analyzed using MTI- assay and apoptosis was quantified using flow cytometry. Western blotting was used to detect the protein levels of caspase 3, PARP, Bcl-2, Bax, p53, LC3-1 and LC3-11. A H460 cell xenograft model in BALB/c nude mice was used to evaluate the anticancer efficacy of CQ and LDM in vivo. Results: Both LDM and CQ concentration-dependently suppressed the proliferation of A549 and H460 ceils in vitro (the ICso values of LDM were 1.70±0.75 and 0.043±0.026 nmol/L, respectively, while the IC50 values of CQ were 71.3±6.1 and 55.6±12.5 pmol/L, respectively). CQ sensitized both NSCLC cell lines to LDM, and the majority of the coefficients of drug interaction (CDIs) for combination-doses were less than 1. The ratio of apoptosis of H460 cells induced by a combined treatment of CQ and LDM (77.0%±5.2%) was significantly higher than those caused by CQ (23.1%±4.2%) or by LDM (65.1%±4.1%) alone. Furthermore, the combined treatment markedly increased the cleaved PARP and cleaved caspase 3 in H460 cells, which were partly reversed by pretreatment with the caspase inhibitor zVAD.fmk, zVAD.fmk also partially reversed the inhibitory effect of the combination treatment on the proliferation of H460 cells. The combination therapy group had a notable increase in expression of Bax and a very slight decrease in expression of Bcl-2 and p53 protein. LDM alone scarcely affected the level of LC3-11 in H460 cells, but slightly reduced CQ-induced LC3-11 expression. 3-MA, an autophagy inhibitor also sensitized H460 cells to LDM. In nude mice bearing H460 cell xenograft, administration of LDM (25 pg/kg, iv) and CQ (60 mg/kg, ip) suppressed tumor growth by 57.14% and 73.02%, respectively. Conclusion: The synergistic anticancer effect of LDM and CQ in vitro results from activation of a caspase-dependent and p53- independent apoptosis pathway as well as inhibition of cytoprotective autophagy.  相似文献   

7.
Aim: Receptor-interacting protein 3 (RIP3) is involved in tumor necrosis factor receptor signaling, and results in NF-KB-mediated prosurvival signaling and programmed cell death. The aim of this study was to determine whether overexpression of the RIP3 gene could sensitize human breast cancer cells to parthenolide in vitro. Methods: The expression of RIP3 mRNA in human breast cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-435 and T47D) was detected using RT-PCR. Both MDA-MB-231 and MCF-7 cells were transfected with RIP3 expression or blank vectors via lentivirus. Cell viability was measured with MTT assay; intracellular ROS level and cell apoptosis were analyzed using flow cytometry. Results: RIP3 mRNA expression was not detected in the four human breast cancer cell lines tested. However, the transfection induced higher levels of RIP3 protein in MCF-7 and MDA-MB-231 cells. Furthermore, overexpression of RIP3 decreased the IC50 values of parthenolide from 17.6 to 12.6 μmol/L in MCF-7 cells, and from 16.6 to 9.9 μmol/L in MDA-MB-231 cells. Moreover, overexpression of RIP3 significantly increased parthenolide-induced apoptosis and ROS accumulation in MCF-7 and MDA-MB-231 cells. Pretreatment with N-acetyl-cysteine abrogated the increased sensitivity of RIP3-transfected MCF-7 and MDA-MB-231 cells to parthenolide. Conclusion: Overexpression of RIP3 sensitizes MCF-7 and MDA-MB-231 breast cancer cells to parthenolide in vitro via intracellular ROS accumulation.  相似文献   

8.
AIM: To investigate 2-methoxyestradiol induced apoptosis and its mechanism of action in CNE2 cell lines.METHODS: CNE2 cells were cultured in RPMI-1640 medium and treated with 2-methoxyestradiol in different concentrations. MTT assay was used to detect growth inhibition. Flow cytometry and DNA ladders were used to detect apoptosis. Western blotting was used to observe the expression of p53, p21WAF1, Bax, and Bcl-2 protein.RESULTS: 2-methoxyestradiol inhibited proliferation of nasopharyngeal carcinoma CNE2 cells with IC50 value of2.82 μmol/L. The results of flow cytometry showed an accumulation of CNE2 cells in G2/M phase in response to 2-methoxyestradiol. Treatment of CNE2 cells with 2-methoxyestradiol resulted in DNA fragmentation. The expression levels of protein p53 and Bcl-2 decreased following 2-methoxyestradiol treatment in CNE2 cells, whereas Bax and p21WAF1 protein expression were unaffected after treatment with 2-methoxyestradiol. CONCLUSION:These results suggest that 2-methoxyestradiol induced cell cycle arrest at G2/M phase and apoptosis of CNE2 cells which was associated to Bcl-2 down-regulation.  相似文献   

9.
Aim: To investigate the role of the Notch1 signaling pathway in growth arrest of an esophageal carcinoma cell line (EC109) in vitro and the mechanism involved. Methods: An intracellular domain of Notch1 (ICN) was transfected into cultured EC109 cells by lipofectamine transfection. Subsequently, the proliferation of the transfected cells was measured by an MTT assay. Cell cycle distribution was analyzed by flow cytometry. Human papillomavirus type 18 (HPV18) E6/E7 mRNA expression was detected by RT-PCR, and p53 protein expression was detected by Western blot. Results: Activation of Notch1 signaling resulted in inhibition of EC109 cell proliferation with the induction of G2/M arrest, downmodulation of HPV18 E6/E7 gene expression, and upregulation of p53 expression. Conclusion:Repression of HPV18 E6/E7 expression by Notch1 signaling results in the activation of p53-mediated pathways with concomitant growth suppression of HPV18-positive EC109 cells.  相似文献   

10.
11.
12.
Aim: BAG-1 is a multifunctional anti-apoptotic gene with four isoforms, and different BAG-1 isoforms have different anti-apoptotic functions. In this study, we transfected BAG-1 isoforms into the human breast cancer cell lines Hs578T (ER negative) and MCF-7 (ER positive) to study their effect on apoptosis with or without estrogens. Methods: The constructed recombinant expression vectors carrying individual BAG-1 isoforms was used to transfect human breast cancer cell lines Hs578T (ER negative) and MCF-7 (ER positive). After stable cell lines were made, a variety of apoptosis-inducing agents, including doxorubicin, docetaxel, and 5-FU, was used to treat these cell lines with or without estrogen to test the role of BAG-1. The mechanism by which BAG-1 affected the function of Bcl-2 was exploredby using the cycloheximide chase assay. Results: The BAG-1 p50 and p46 isoforms significantly enhanced the resistance to apoptosis in both cell lines according to flow cytometry analysis. BAG-1 p33 and p29 failed to protect the transfected cells from apoptosis. The cell viability assay showed that only BAG-1 p50, but not p46, p33, or p29, increased estrogen-dependent function in ER-positive cell line MCF-7. Only BAG-1 p50 dramatically increased its anti-apoptotic ability in the presence of estrogen, while estrogen has very little effect on the anti-apoptotic ability of other BAG-1 isoforms. In the detection of the expression of K-ras, Hsp70, cytochrome c, Raf-1, ER-a, and Bcl-2 in MCF-7 cells by Western blot, only Bcl-2 protein expression was significantly increased in MCF-7 cells transfected with BAG-1 p50 and p46, respectively. Furthermore, the cycloheximide chase assay indicated that the degradation of Bcl-2 protein was extended in the BAG-1 p50 and p46 transfected MCF-7 cells. Conclusion: Distinct isoforms of BAG-1 have different anti-apoptotic functions in breast cancer cells, and that the BAG-1 p50 isoform can potentiate the role of estrogen in ER-positive breast cancer.  相似文献   

13.
Aim The aim of this study was to explore the effects and mechanism of berbamine on imatinib-resistant BCR-ABL-positive human leukemia K562 (K562-r) cells in vitro and in vivo. Methods:Cell viability was measured by MTT assay, and apoptotic morphology changes were detected by fluorescence microscopy. The apoptosis rate was measured by flow cytometric assay, mdr-1 mRNA levels were determined by RT-PCR. Bcl-2 family proteins, cytochrome c( cyt C) , poly (ADP-ribose) polymerase (PARP), and P-glycoprotein were detected by Western blot. BALB/c nu/nu mice were injected with K562-r cells subcutaneously. Tumor-bearing mice were treated intravenously with berbamine.
Results: MTT tests revealed that berbamine significantly inhibited K562-r cell proliferation and increased the chemosensitivity of K562-r cells to imatinib. The apoptosis rate was significantly increased following treatment with 21.2μmol/L berbamine; formation of typical apoptotic blebs was apparent, as observed by fluorescence microscopy. Expression levels of mdr-I mRNA and P-gp protein were high in untreated K562-r cells and significantly down-regulated by berbamine treatment. Berbamine-treated K562-r cells also exhibited down-regulated expression of the anti-apoptotic proteins Bcl-2 and Bcl-XL up-regulated expression of the apoptotic proteins Bax and cytoplasmic cyt C, and stimulated proteolytic cleavage of PARP. In addition, berbamine also suppressed the growth of K562-r xenotransplanted tumors in vivo.
Conclusion Berbamine inhibited proliferation of K562-r ceils both in vitro and in vivo. Berbamine-induced apoptosis in K562-r cells appeared to occur through a mechanism involving Bcl-2 family proteins, as well as mdr-1 mRNA and P-gp pro- tein. Berbamine in combination with imatinib restored the chemo-sensitivity of K562-r cells to imatinib. Our findings suggest that berbamine may be useful in treating imafinib-resistant CML patients.  相似文献   

14.
Glioblastoma(GBM)is the most common and lethal primary brain tumor in adults,but there is no effective drug available for GBM.Avasimibe is a potent inhibitor of acyl-coenzyme A:cholesterol acyltransferase-1(ACAT-1),which was used to treat atherosclerosis.Experimental evidence and bioinformatics have shown that avasimibe has anticancer activity.In this study we investigated the anticancer effects of avasimibe on human glioblastoma cells and the underlying mechanisms.Our results showed that avasimibe dose-dependently inhibited the proliferation of U251 and U87 human glioblastoma cells with IC50 values of 20.29 and 28.27μM,respectively,at 48 h.Avasimibe(7.5,15,30μM)decreased the DNA synthesis,and inhibited the colony formation of the tumor cells.Treatment of avasimibe also dose-dependently increased the apoptotic rate of tumor cells,decreased the mitochondrial membrane potential,induced the activity of caspase-3/7,and increased the protein expression of cleaved caspase-9,cleaved PARP and Bax in U251 and U87 cells.RNA-sequencing analyses revealed that avasimibe suppressed the expression of CDK2,cyclin E1,CDK4,cyclin D,CDK1,cyclin B1,Aurora A,and PLK1,while induced the expression of p53,p21,p27,and GADD45A,which was validated by Western blot analysis.These results demonstrated that avasimibe induced mitochondria-dependent apoptosis in glioblastoma cells,which was associated with arresting the cell cycle at G0/G1 phase and G2/M phase by regulating the p53/p21 pathway,p53/GADD45A and Aurora A/PLK1 signaling pathways.In U87 xenograft nude mice model,administration of avasimibe(15,30 mg·kg?1·d?1,ip,for 18 days)dose-dependently inhibit the tumor growth.Taken together,our results demonstrated that avasimibe might be a promising chemotherapy drug in the treatment of GBM.  相似文献   

15.
Aim: To investigate the effects of BILBO21, an inhibitor of heat shock protein 90 (Hsp90) alone or in combination with triptolide (TPL) on T-cell acute lymphoblastic leukemia (T-ALL) and the mechanisms of action. Methods: Human T-ALL cells line Molt-4 was examined. The cell viability was measured using M]-I- assay. Apoptotic cells were studied with Hoechst 33258 staining. Cell apoptosis and cell cycle were analyzed using flow cytometry with Annexin V/PI staining and PI staining, respectively. The levels of multiple proteins, including Akt, p65, CDK4/6, p18, Bcl-2 family proteins, MDM2, and p53, were examined with Western blotting. The level of MDM2 mRNA was determined using RT-PCR. Results: Treatment of Molt-4 cells with BILBO21 (50-800 nmol/L) inhibited the cell growth in a dose-dependent manner (the IC~ovalue was 384.6 and 301.8 nmol/L, respectively, at 48 and 72 h). BILBO21 dose-dependently induced Go/G1 phase arrest, followed by apoptosis of Molt-4 cells. Furthermore, BILBO21 increased the expression of p18, decreased the expression of CDK4/6, and activated the caspase pathway in Molt-4 cells. Moreover, BILBO21 (50-400 nmol/L) dose-dependently decreased the phospho-MDM2 and total MDM2 protein levels, but slightly increased the phospho-p53 and total p53 protein levels, whereas TPL (5-40 nmol/L) dose- dependently enhanced p53 activation without affecting MDM2 levels. Co-treatment with BILBO21 and TPL showed synergic inhibition on Molt-4 cell growth. The co-treatment disrupted p53-MDM2 balance, thus markedly enhanced p53 activation. In addition, the co-treatment increased the expression of Bak and Bim, followed by increased activation of caspase-9. Conclusion: The combination of BILBO21 and TPL may provide a novel strategy for treating T-ALL by overcoming multiple mechanisms of apoptosis resistance.  相似文献   

16.
Aim: The aim of this study was to investigate the mechanism of pseudolaric acid B (PLAB)-induced cell cycle arrest in human melanoma SK-28 cells.
Methods: Cell growth inhibition was detected by MTT assay, the cell cycle was analyzed by flow cytometry, and protein expression was examined by Western blot analysis.
Results: PLAB inhibited the growth of human melanoma cells and induced GR/M arrest in SK-28 cells, accompanied by an up-regulation of Cdc2 phosphorylation and a subsequent down-regulation of Cdc2 expression. Furthermore, PLAB decreased the expression of Cdc25C phosphatase and increased the expression of Wee1 kinase. Meanwhile, a reduction in Cdc2 activity was partly due to induction of the expression of p21^waf1/cip1 in a p53-dependent manner. In addition, PLAB activated the checkpoint kinase, Chk2, and increased the expression of p53, two major targets of ATM kinase. These effects were inhibited by caffeine, an ATM kinase inhibitor. We also found that PLAB significantly enhanced ATM kinase activity.
Conclusion: Taken together, these results suggest that PLAB induced G2/M arrest in human melanoma cells via a mechanism involving the activation of ATM, and the effect of PLAB on Cdc2 activity was mediated via interactions with the Chk2-Cdc25C and p53 signalling pathways, two distinct downstream pathways of ATM. PLAB may be a promising chemopreventive agent for treating human melanoma.  相似文献   

17.
Aim: Skewed cytoplasmic accumulation of NPM mutant protein (NPM1c+) is close related to leukemia pathogenesis. The aim of this study was to investigate whether oridonin, a diterpenoid isolated from the Chinese traditional medicine Rabdosia rubescens, was able to interfere with NPM1c+ protein trafficking and induce apoptosis in NPM1c+ acute myeloid leukemia cells in vitro.
Methods: OCI-AML3 cell line harboring a NPM1 gene mutation was examined. Cell growth was detected by MTT assay. Cell apoptosis was evaluated using flow cytometry and Hoechst 33258 staining. The expression and subcellular localization of relevant proteins were detected by Western blot and immunofluorescent staining. The mRNA expression was detected by RT-PCR.
Results: Oridonin (2–12 μmol/L) dose-dependently inhibited the viability of OCI-AML3 cells (the IC50 value was 3.27±0.23 μmol/L at 24 h). Moreover, oridonin induced OCI-AML3 cell apoptosis accompanied by activation of caspase-3 and nuclear translocation of NPM1c+ protein. Oridonin did not change the expression of Crm1 (the export receptor for nuclear export signal-containing proteins), but induced nuclear translocation of Crm1. Oridonin markedly increased the expression of nucleoporin98 (Nup98), which had an important role in Crm1-mediated nuclear protein export, and induced nuclear accumulation of Nup98. Furthermore, oridonin markedly increased the expression of p14arf and p53.
Conclusion: In NPM1c+ leukemia cells, oridonin induces NPM1c+ protein translocation into the nucleus possibly via nuclear accumulation of Crm1; the compound markedly increases p53 and p14arf expression, which may contribute to cell apoptosis.  相似文献   

18.
Aim: To study the caspase-3-independent mechanisms in oridonin-induced MCF-7 human breast cancer cell apoptosis in vitro. Methods: The viability of oridonin- treated MCF-7 cells was measured by MTT (thiazole blue) assay. Apoptotic cells with condensed nuclei were visualized by phase contrast microscopy. Nucleosomal DNA fragmentation was assayed by agarose gel electrophoresis. The apoptotic ratio was determined by lactate dehydrogenase assay. Cell cycle alternation and mitochondrial membrane potential were measured by flow cytometric analysis. Bax, Bcl-2, caspase-3, caspase-9, heat shock protein (Hsp)90, p53, p-p53, p21, Poly (ADP-ribose) polymerase (PARP), and the inhibitor of caspase-activated DNase (ICAD) protein expressions were detected by Western blot analysis. Results: Oridonin inhibited cell growth in a time- and dose-dependent manner. Cell cycle was altered through the upregulation of p53 and p21 protein expressions. Pancaspase inhibitor Z-VAD-fmk and calpain inhibitor II both decreased cell death ratio. Nucleosomal DNA fragmentation and the downregulation of △ψmit were detected in oridonin-induced MCF-7 cell apoptosis, which was involved in a postmitochondrial caspase-9-dependent pathway. Decreased Bcl-2 and Hsp90 expression levels and increased Bax and p21 expression levels were positively correlated with elevated levels of phosphorylated p53 phosphorylation. Moreover, PARP was partially cleaved by calpain rather than by capase-3. Condusion: DNA damage provoked alternations in the mitochondrial and caspase-9 pathways as well as p53-mediated cell cycle arrest, but was not related to caspase-3 activity in oridonin-induced MCF-7 cells.  相似文献   

19.
20.
OBJECTIVE α-Hederin is an effective component of the traditional Chinese medicine Pulsatilla chinensis,which has been reported to exert many pharmacological activities. However, the effect of α-hederin on metabolism is still unclear. This study aimed to illuminate the role of α-hederin in glucose metabolism in lung cancer cells and investigate the molecular mechanism of α-hederin. METHODS CCK8 and colony formation assays were employed to assess the anti-proliferative effects induced by α-hederin. Glucose uptake, ATP generation, and reduced lactate production were measured using kits, and an A549 tumor xenograft mouse model of lung cancer was used to assess the in vivo antitumor effect of α-hederin(5, 10 mg·kg~(-1)). Glycolytic-related key enzymes were detected by Western blotting and immunohistochemical staining. RESULTS Cell proliferation was significantly inhibited by α-hederin in a dose-dependent manner and that α-hederin inhibited glucose uptake and ATP generation and reduced lactate production. Furthermore, α-hederin remarkably inhibited hexokinase 2(HK2), glucose transporters 1(GLUT1), pyruvate kinase M2(PKM2), lactate dehydrogenase A(LDHA), monocarboxylate transporter(MCT4), c-Myc, and hypoxia inducible factor-1α(HIF-1α) protein expression. Using inhibitors, we proved that α-hederin inhibits glycolysis by inhibiting glycolytic regulators. Moreover, a tumor xenograft mouse model of lung cancer further confirmed that α-hederin inhibits lung cancer growth via inhibiting glycolysisin vivo. CONCLUSION α-Hederin inhibits the growth of non-small cell lung cancer A549 cells by inhibiting glycolysis.The mechanism of glycolysis inhibition includes α-hederin inhibiting the expression of the glycolytic regulatory factors HIF-1α and c-Myc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号