首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine (DA) and N-methyl-d-aspartate (NMDA) receptors seem to be critically involved in working memory processing in the medial prefrontal cortex (mPFC). Effects of NMDA receptors blockade on dopamine D1 receptors activation in the mPFC on spatial working memory was investigated. Adult male Wistar rats, well trained in an eight-arm radial maze and bilaterally cannulated in the mPFC, received intracortical administrations of saline (SAL) or SKF-38393 (DA D1 receptor agonist) followed, 10 min later, by MK-801 (non-competitive NMDA receptor antagonist). They were tested in 1 h delayed tasks after 5 min of the second administration. SKF-38393 (0.56 and 1.8 μg) was disruptive to working memory, increasing significantly the number of errors in the 1 h post-delay performance when administered into the mPFC. MK-801, at doses with no significant effects alone (0.32 or 1.0 μg), reduced significantly the disruptive effect of 0.56 μg SKF-38393. These results showed that the disruptive effect of DA D1 receptors activation in the mPFC on working memory was significantly reduced by an open-channel NMDA receptor blockade, suggesting that the processing of working memory in the mPFC involving DA D1 receptors depend, at least in part, of NMDA receptors activity in this cortical area.  相似文献   

2.
OBJECTIVES: Several lines of evidence suggest that the prefrontal cortex is involved in working memory. Our goal was to determine whether transient functional disruption of the dorsolateral prefrontal cortex (DLPFC) would impair performance in a sequential-letter working memory task. METHODS: Subjects were shown sequences of letters and asked to state whether the letter just displayed was the same as the one presented 3-back. Single-pulse transcranial magnetic stimulation (TMS) was applied over the DLPFC between letter presentations. RESULTS: TMS applied over the left DLPFC resulted in increased errors relative to no TMS controls. TMS over the right DLPFC did not alter working memory performance. CONCLUSION: Our results indicate that the left prefrontal cortex has a crucial role in at least one type of working memory.  相似文献   

3.
In order to clarify the roles of hippocampal M1 and M2 muscarinic receptors in working and reference memory performance of rats, the effects of intrahippocampal injections of selective antagonists at both receptors on this behavior were examined with a three-panel runway task. In the working memory task, the M1 muscarinic receptor antagonist pirenzepine, injected bilaterally at 0.32 and 1.0 μg/side into the dorsal hippocampus, significantly increased the number of errors (attempts to pass through two incorrect panels of the three panel-gates at four choice points). This effect of intrahippocampal pirenzepine (1.0 μg/side) on working memory was attenuated by concurrent injection of 10 μg/side AF102B, the selective M1 muscarinic receptor agonist. Intrahippocampal injection of the M2 muscarinic receptor antagonist methoctramine at doses up to 1.0 μg/side had no significant effect on the number of working memory errors. Intrahippocampal methoctramine injection at 3.2 μg/side produced a significant increase in working memory errors, an effect that was reversed by concurrent injection of 10 μg/side AF102B. Concurrent injection of 0.32 μg/side methoctramine significantly reduced the increase in working memory errors induced by intrahippocampal pirenzepine (1.0 μg/side). In the reference memory task, neither pirenzepine nor methoctramine affected the number of errors when injected into the hippocampus at doses up to 1.0 and 3.2 μg/side, respectively. These results suggest that processes mediated by M1 muscarinic receptors in the hippocampus are involved in working memory, but not in reference memory, and that blockade of hippocampal M2 muscarinic receptors ameliorates working memory deficits produced by M1 muscarinic blockade, possibly by increasing acetylcholine release.  相似文献   

4.
BACKGROUND: Stimulation of alpha-2 adrenoceptors in the monkey or rat prefrontal cortex (PFC) has been known to improve spatial working memory (SWM) and stimulation of alpha-1 adrenoceptors in the rat PFC has been reported to impair SWM. The present study attempted to replicate in monkey the rat experiments on alpha-1 adrenoceptor stimulation. METHODS: The alpha-1 adrenergic agonist phenylephrine or the alpha-2 adrenergic agonist guanfacine was infused into the dorsolateral prefrontal cortex (dlPFC) of monkeys performing the delayed-response (DR) task, a task of SWM, to see how the drugs affect SWM performance. RESULTS: Phenylephrine infusion in dlPFC significantly impaired DR performance, whereas guanfacine improved performance. The effects of both drugs were delay-dependent. Infusions outside dlPFC were ineffective. CONCLUSIONS: Stimulation of prefrontal cortical alpha-1 adrenoceptors impairs SWM function in monkeys, consistent with the parallel study in rats, whereas stimulation of alpha-2 adrenoceptors improves SWM, indicating that alpha-1 and alpha-2 adrenoceptors may have opposing roles in the PFC.  相似文献   

5.
Working memory, which is dependent on higher-order executive function in the prefrontal cortex, is often disrupted in patients exposed to blast overpressure. In this study, we evaluated working memory and medial prefrontal neurochemical status in a rat model of blast neurotrauma. Adult male Sprague–Dawley rats were anesthetized with 3% isoflurane and exposed to calibrated blast overpressure (17 psi, 117 kPa) while sham animals received only anesthesia. Early neurochemical effects in the prefrontal cortex included a significant decrease in betaine (trimethylglycine) and an increase in GABA at 24 h, and significant increases in glycerophosphorylcholine, phosphorylethanolamine, as well as glutamate/creatine and lactate/creatine ratios at 48 h. Seven days after blast, only myo-inositol levels were altered showing a 15% increase. Compared to controls, short-term memory in the novel object recognition task was significantly impaired in animals exposed to blast overpressure. Working memory in control animals was negatively correlated with myo-inositol levels (r =  .759, p < 0.05), an association that was absent in blast exposed animals. Increased myo-inositol may represent tardive glial scarring in the prefrontal cortex, a notion supported by GFAP changes in this region after blast overexposure as well as clinical reports of increased myo-inositol in disorders of memory.  相似文献   

6.
Although there is consensus that instrumental conditioning depends on the encoding of action-outcome associations, it is not known where this learning process is localized in the brain. Recent research suggests that the posterior dorsomedial striatum (pDMS) may be the critical locus of these associations. We tested this hypothesis by examining the contribution of N-methyl-D-aspartate receptors (NMDARs) in the pDMS to action-outcome learning. Rats with bilateral cannulae in the pDMS were first trained to perform two actions (left and right lever presses), for sucrose solution. After the pre-training phase, they were given an infusion of the NMDA antagonist 2-amino-5-phosphonopentanoic acid (APV, 1 mg/mL) or artificial cerebral spinal fluid (ACSF) before a 30-min session in which pressing one lever delivered food pellets and pressing the other delivered fruit punch. Learning during this session was tested the next day by sating the animals on either the pellets or fruit punch before assessing their performance on the two levers in extinction. The ACSF group selectively reduced responding on the lever that, in training, had earned the now devalued outcome, whereas the APV group did not. Experiment 2 replicated the effect of APV during the critical training session but found no effect of APV given after acquisition and before test. Furthermore, Experiment 3 showed that the effect of APV on instrumental learning was restricted to the pDMS; infusion into the dorsolateral striatum did not prevent learning. These experiments provide the first direct evidence that, in instrumental conditioning, NMDARs in the dorsomedial striatum are involved in encoding action-outcome associations.  相似文献   

7.
The perirhinal cortex (PRh) is strategically located between the neocortex and memory-related structures such as the entorhinal cortex and the hippocampal formation. The pattern of strong reciprocal connections between these areas, together with experimental evidence that PRh damage induces specific memory deficits, has placed this cortical region at the center of a growing interest for its role in learning and memory mechanisms. The aim of the present study is to clarify the involvement of PRh in learning and retention in a novel experimental model of spatial working memory, the water T-maze. The data show that pre-acquisition neurotoxic PRh lesions caused task-learning deficits. This impairment was observed during the acquisition phase as well as the retrieval phase. On the other hand, a post-acquisition PRh neurotoxic lesion failed to impair the acquisition and the retrieval of the water T-maze task performed 32 day after lesion. These results suggest a possible key role of PRh in the acquisition but not in the retention of a working memory task. Furthermore, these results show that the water T-maze may be a suitable learning paradigm to study different components of learning and memory.  相似文献   

8.
There is a unidirectional, ipsilateral and monosynaptic projection from the hippocampus to the prefrontal cortex. The cognitive function of hippocampal-prefrontal cortical circuit is not well established. In this paper, we use muscimol treated rats to investigate the roles of the hippocampal-prefrontal cortical circuits in spatial working memory, as assessed with a delayed spatial alternation task. First of all, the effect of muscimol on EEG power of infusion area was observed for confirmation of the dosage of muscimol to inhibit the function of infusion area. The results show that the EEG power of the ventral hippocampus and the prelimbic area of the prefrontal cortex were inhibited by local infusion of muscimol (0.5 microg in 0.25 microl PBS) into the above areas, respectively. Delayed alternation performance was significantly impaired when muscimol at this dosage was infused (1) bilaterally into the ventral hippocampus, (2) bilaterally into the prelimbic area, (3) unilaterally into the ventral hippocampus and simultaneously contralaterally into the prelimbic area. Infusion of muscimol either unilaterally into the ventral hippocampus or unilaterally into the prelimbic area did not impair delayed alternation performance. The present results suggest that any structures in this circuit is damaged or inhibited bilaterally, the spatial working memory will be disrupted. It means the hippocampal-prefrontal cortical circuit plays an important role in spatial working memory.  相似文献   

9.
Novel spatially restricted genetic manipulations can be used to assess contributions made by synaptic plasticity to learning and memory, not just selectively within the hippocampus, but even within specific hippocampal subfields. Here we generated genetically modified mice (NR1(deltaDG) mice) exhibiting complete loss of the NR1 subunit of the N-methyl-D-aspartate receptor specifically in the granule cells of the dentate gyrus. There was no evidence of any reduction in NR1 subunit levels in any of the other hippocampal subfields, or elsewhere in the brain. NR1(deltaDG) mice displayed severely impaired long-term potentiation (LTP) in both medial and lateral perforant path inputs to the dentate gyrus, whereas LTP was unchanged in CA3-to-CA1 cell synapses in hippocampal slices. Behavioural assessment of NR1(deltaDG) mice revealed a spatial working memory impairment on a three-from-six radial arm maze task despite normal hippocampus-dependent spatial reference memory acquisition and performance of the same task. This behavioural phenotype resembles that of NR1(deltaCA3) mice but differs from that of NR1(deltaCA1) mice which do show a spatial reference memory deficit, consistent with the idea of subfield-specific contributions to hippocampal information processing. Furthermore, this pattern of selective functional loss and sparing is the same as previously observed with the global GluR-A L-alpha-amino-3-hydroxy-5-methyl-4-isoxazelopropionate receptor subunit knockout, a mutation which blocks the expression of hippocampal LTP. The present results show that dissociations between spatial working memory and spatial reference memory can be induced by disrupting synaptic plasticity specifically and exclusively within the dentate gyrus subfield of the hippocampal formation.  相似文献   

10.
In conditioned taste aversion (CTA), a subject learns to associate a novel taste (conditioned stimulus, CS) with visceral malaise (unconditioned stimulus, US). Considerable evidence indicates that the noradrenergic system in the amygdala plays an important role in memory consolidation for emotionally arousing experiences. The specific aim of the present set of experiments was to determine the involvement of noradrenergic activity in the basolateral amygdala (BLA) during the US presentation and consolidation of CTA as well as during the consolidation of a nonaversive/incidental gustatory memory. Selective bilateral microinfusions of the beta-adrenergic antagonist propranolol administered into the BLA immediately before intraperitoneal (i.p.) lithium chloride (LiCl) injections disrupted CTA memory. Additionally, propranolol infused into the BLA immediately after a pre-exposure to the saccharin (CS) significantly attenuated latent inhibition. The present findings indicating that alterations in noradrenergic function in the BLA affect taste memory formation, provide additional evidence that the BLA plays a critical role in modulating the consolidation of memory and that the influence is mediated by interactions with other brain regions that support memory for different kinds of experiences.  相似文献   

11.
A large corpus of research indicates that exposure to stress impairs cognitive abilities, specifically executive functioning dependent on the prefrontal cortex (PFC). We collected structural MRI scans (n = 61), well-validated assessments of executive functioning, and detailed interviews assessing stress exposure in humans to examine whether cumulative life stress affected brain morphometry and one type of executive functioning, spatial working memory, during adolescence-a critical time of brain development and reorganization. Analysis of variations in brain structure revealed that cumulative life stress and spatial working memory were related to smaller volumes in the PFC, specifically prefrontal gray and white matter between the anterior cingulate and the frontal poles. Mediation analyses revealed that individual differences in prefrontal volumes accounted for the association between cumulative life stress and spatial working memory. These results suggest that structural changes in the PFC may serve as a mediating mechanism through which greater cumulative life stress engenders decrements in cognitive functioning.  相似文献   

12.
Earlier neuroimaging studies of working memory (WM) have demonstrated that dorsolateral prefrontal cortex (DLPFC) activity increases as maintenance and load demand increases. However, few studies have carefully disambiguated these two WM processes at the behavioral and physiological levels. The objective of the present functional resonance imaging (fMRI) study was to map within prefrontal cortex locales that are selectively load sensitive, delay sensitive, or both. We studied 18 right-handed normal subjects with fMRI at 3 Tesla during a block design version of the Sternberg task. WM load was manipulated by varying the memory set size (3, 5, or 8 letters). The effect of memory maintenance was examined by employing two time delays (1 s and 6 s) between the letter set and probe stimuli. The DLPFC was strongly activated in load manipulation, whereas activation as a function of delay was restricted to the left premotor regions and Broca's areas. Moreover, regions of prefrontal cortex on the right (BA 46) were found to be exclusively affected by load. These results suggest the possibility that top-down modulation of attention or cognitive control at encoding and/or decisionmaking may be mediated by these areas.  相似文献   

13.
The relationship among discharges of neurons that were recorded simultaneously with tetrodes in the rat medial prefrontal cortex was analyzed. Spatial working memory tasks were divided into several distinct stages based on the behavioral correlates of individual neurons, and interneuronal correlation of signal (mean discharge rate at each stage) and noise (trial-to-trial deviation from the signal) was calculated. Behavioral correlates of neighboring neurons were quite heterogeneous and, accordingly, average signal correlation was relatively low ( approximately 0.16). Noise correlation was even lower ( approximately 0.06), but neuronal noise was more correlated among the neurons with similar signals. Spikes underlying the signal and noise correlation among the prefrontal cortical neurons were loosely synchronized over a few hundred milliseconds. These results suggest that neighboring prefrontal cortical neurons process largely independent information and have weakly correlated noise and that precisely synchronized spikes play a relatively minor role in producing the correlated signal and noise among these neurons.  相似文献   

14.
This series of studies investigated the effects of predator exposure on working memory in rats trained on the radial arm water maze (RAWM). The RAWM is a modified Morris water maze that contains four or six swim paths (arms) radiating out of an open central area, with a hidden platform located at the end of one of the arms. The hidden platform was located in the same arm on each trial within a day and was in a different arm across days. Each day rats learned the location of the hidden platform during acquisition trials, and then the rats were removed from the maze for a 30-min delay period. During the delay period, the rats were placed either in their home cage (nonstress condition) or in close proximity to a cat (stress condition). At the end of the delay period, the rats were run on a retention trial, which tested their ability to remember which arm contained the platform that day. The first experiment confirmed that the RAWM is a hippocampal-dependent task. Rats with hippocampal damage were impaired at learning the location of the hidden platform in the easiest RAWM under control (non-stress) conditions. The next three experiments showed that stress had no effect on memory in the easiest RAWM, but stress did impair memory in more difficult versions of the RAWM. These findings indicate that the capacity for stress to impair memory is influenced not only by the brain memory system involved in solving the task (hippocampal versus nonhippocampal), but also by the difficulty of the task. This work should help to resolve some of the confusion in the literature regarding the heterogeneous effects of stress on hippocampal-dependent learning and memory.  相似文献   

15.
In order to test whether there is a correspondence in function of prefrontal cortex in rats and humans, rats with medial prefrontal cortex lesions were tested for item and order memory for a list of items (spatial locations in a maze). Results indicate that for order memory rats with medial prefrontal cortex lesions cannot remember the order of presentation of four or eight specific spatial locations. This inability to remember order information can be seen even when animals with lesions have to remember only two spatial locations, can self-order the sequence of four or eight spatial locations, or have been presented with the same study phase on every trial. In contrast, for item memory animals with medial prefrontal cortex lesions retain the first item of the list in the variable study phase situation and remember all the items of the list in a constant study phase situation. However, there are also deficits for the last items within a list in the variable study phase situation for both win-stay and win-shift procedures. This deficit might be a function of an impairment in the utilization of appropriate temporal strategies, which normally would facilitate recognition memory in the win-stay and win-shift tasks. In general, the data suggest a partial, but not complete, dissociation of item-order memory. Furthermore, the data suggest that the medial prefrontal cortex is involved in temporal structuring of information.  相似文献   

16.
Tauopathy in the hippocampus is one of the earliest cardinal features of Alzheimer's disease (AD), a condition characterized by progressive memory impairments. In fact, density of tau neurofibrillary tangles (NFTs) in the hippocampus strongly correlates with severity of cognitive impairments in AD. In the present study, we employed a somatic cell gene transfer technique to create a rodent model of tauopathy by injecting a recombinant adeno-associated viral vector with a mutated human tau gene (P301L) into the hippocampus of adult rats. The P301L mutation is causal for frontotemporal dementia with parkinsonism-17 (FTDP-17), but it has been used for studying memory effects characteristic of AD in transgenic mice. To ascertain if P301L-induced mnemonic deficits are persistent, animals were tested for 6 months. It was hypothesized that adult-onset, spatially restricted tau expression in the hippocampus would produce progressive spatial working memory deficits on a learned alternation task. Rats injected with the tau vector exhibited persistent impairments on the hippocampal-dependent task beginning at about 6 weeks post-transduction compared to rats injected with a green fluorescent protein vector. Histological analysis of brains for expression of human tau revealed hyperphosphorylated human tau and NFTs in the hippocampus in experimental animals only. Thus, adult-onset, vector-induced tauopathy spatially restricted to the hippocampus progressively impaired spatial working memory in rats. We conclude that the model faithfully reproduces histological and behavioral findings characteristic of dementing tauopathies. The rapid onset of sustained memory impairment establishes a preclinical model particularly suited to the development of potential tauopathy therapeutics.  相似文献   

17.
Wolf RC  Vasic N  Walter H 《Neuropsychologia》2006,44(12):2558-2563
Brain imaging studies have suggested a predominant involvement of prefrontal areas during retrieval of information from working memory (WM). This study used event-related functional magnetic resonance imaging to assess the gradual recruitment of brain areas during verbal WM-retrieval with a parametrically varied modified version of the Sternberg Item Recognition Paradigm. In particular, we were interested in activation differences during retrieval of negative and positive probes. Fifteen subjects performed a WM-task which required the retrieval of a probe letter from a set of a maximum of three letters. The analysis of the retrieval period regardless of probe type revealed bilateral VLPFC activation during retrieval from a single remembered item. These initially activated regions showed a gradual activation increase of left VLPFC (BA 47) and anterior PFC (BA 10) as well as and bilateral DLPFC (BA 9) with increasing retrieval demand, i.e. during retrieval of two and three previously remembered letters. The comparison of negative and positive probes (non-targets versus targets) revealed greater activity in VLPFC (BA 47) in response to negative than to positive probes. These findings demonstrate that ventral areas of prefrontal cortex seem to be differentially engaged during the discrimination of a non-target from a previously manipulated set.  相似文献   

18.
Unilateral lesions of the medial precentral prefrontal cortex produce severe polymodal neglect which reaches a stable level of recovery over 3 to 4 weeks. Previous research has indicated that neglect is produced by unilateral destruction of this region in either hemisphere, but that the nature of the neglect produced is dependent on the hemisphere damaged. The present study is a further examination of behavioral laterality produced by this unilateral destruction. The results indicated that destruction of medial precentral cortex in the left hemisphere (n = 12) produced severe contralateral multimodal neglect of visual, somatosensory, and auditory stimuli. Identical destruction in the right hemisphere (n = 18) also produced severe neglect, but unlike the left hemisphere operates which always demonstrated contralateral neglect, there were two distinct populations of right hemisphere operates. These subjects demonstrated either ipsilateral neglect or a "switching" response pattern characterized by the initial demonstration of contralateral or ipsilateral neglect and then, during the course of recovery, severe neglect on the opposite body side. Histological analysis indicated that the left and right hemisphere lesions were equivalent, as were the lesions in the two behavioral subcategories of right hemisphere operates. Operated controls (n = 12) did not demonstrate long-standing neglect or this switching pattern. The behavioral laterality observed following unilateral destruction of medial precentral prefrontal cortex is discussed in relationship to the anatomical and neurochemical asymmetries which have been demonstrated in this cortical region.  相似文献   

19.

Objective

The right prefrontal cortex (PFC) plays an essential role in active processing within visuospatial working memory (VSWM). The aim of this study was to examine developmental changes in the recruitment patterns of the PFC during visuospatial memory tasks in school-age participants.

Methods

We recruited 80 school-age children who were classified into three age groups: 7- to 8-year-old, 9- to 10-year-old, and 11- to 12-year-old children. We used near infrared spectroscopy (NIRS) to measure PFC activity during visuospatial memory task. Memory stimuli were presented either sequentially or simultaneously.

Results

In all three groups, right-lateralized PFC activity was observed during sequential presentation, suggesting specialization of the right PFC for VSWM. During simultaneous presentation, right-lateralized PFC activity was not observed in 7- to 8-year-old children or 9- to 10-year-old children. In contrast, PFC activity was right-lateralized in 11- to 12-year-old children.

Conclusions

We suggest that specialization of the right PFC for VSWM is already present before school-age, but widely distributed activity in response to visuospatial memory tasks changes to more focal activity in VSWM-specific regions during the early school years.

Significance

Using NIRS, we showed developmental changes in the recruitment patterns of the PFC during visuospatial memory tasks.  相似文献   

20.
Laroche S  Davis S  Jay TM 《Hippocampus》2000,10(4):438-446
The involvement of the hippocampus and the prefrontal cortex in cognitive processes and particularly in learning and memory has been known for a long time. However, the specific role of the projection which connects these two structures has remained elusive. The existence of a direct monosynaptic pathway from the ventral CA1 region of the hippocampus and subiculum to specific areas of the prefrontal cortex provides a useful model for conceptualizing the functional operations of hippocampal-prefrontal cortex communication in learning and memory. It is known now that hippocampal to prefrontal cortex synapses are modifiable synapses and can express different forms of plasticity, including long-term potentiation, long-term depression, and depotentiation. Here we review these findings and focus on recent studies that start to relate synaptic plasticity in the hippocampo-prefrontal cortex pathway to two specific aspects of learning and memory, i.e., the consolidation of information and working memory. The available evidence suggests that functional interactions between the hippocampus and prefrontal cortex in cognition and memory are more complex than previously anticipated, with the possibility for bidirectional regulation of synaptic strength as a function of the specific demands of tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号