首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, it has been reported that large-conductance Ca(2+)-activated potassium channels, also known as BK(Ca)-type potassium channels, are present in the inner mitochondrial membrane of the human glioma LN229 cell line. Hence, in the present study, we have investigated whether BK(Ca)-channel openers (BK(Ca)COs), such as the benzimidazolone derivatives NS004 (5-trifluoromethyl-1-(5-chloro-2-hydroxyphenyl)-1,3-dihydro-2H-benzimidazole-2-one) and NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one), affect the functioning of LN229 glioma cell mitochondria in situ. We examined the effect of BK(Ca)COs on mitochondrial membrane potential, mitochondrial respiration and plasma membrane potassium current in human glioma cell line LN229. We found that BK(Ca)COs decrease the mitochondrial membrane potential with an EC(50) value of 3.6+/-0.4 microM for NS1619 and 5.4+/-0.8 microM for NS004. This mitochondrial depolarization was accompanied by an inhibition of the mitochondrial respiratory chain. Both BK(Ca)COs induced whole-cell potassium current blocked by charybdotoxin, as measured by the patch-clamp technique. The BK(Ca)COs had no effect on membrane bilayer conductance. Moreover, the inhibition of mitochondrial function by NS004 and NS1619 was without effect on cell survival, as measured by lactate dehydrogenase release from the cells.  相似文献   

2.
Cytoprotective properties of potassium channel openers (KCOs) have been demonstrated in several models of cell injury, mainly in ischemia-reperfusion-induced damage of cardiac muscle. The mechanism responsible for the observed cytoprotection and the relative contribution of plasma membrane or inner mitochondrial membrane potassium channels regarding the beneficial effects exerted by KCOs remain unclear. Our work demonstrates the cytoprotective properties of NS1619, an opener of large-conductance calcium-activated potassium channels (BKCa channels), using C2C12 myoblasts injured by calcium ionophore A23187 treatment. Application of two BKCa channel inhibitors, paxilline and iberiotoxin, abolished this cytoprotective effect. At concentrations of 10-100 μM, NS1619 increased the respiration rate and decreased mitochondrial membrane potential (Δψ) in C2C12 cells in a dose-dependent manner. At a concentration of 0.2 μM, paxilline, which effectively abolished the protective effect of NS1619, failed to counteract the opener-induced mitochondrial depolarization and increase in cellular respiration. This result indicates that the NS1619-mediated increase in the survival rate of A23187-treated C2C12 cells occurs in a manner distinct from its effect on mitochondrial functioning and suggests that activation of BKCa channels in the plasma membrane is the mechanism responsible for cytoprotection by NS1619.  相似文献   

3.
1. The dihydropyridine Ca2+ channel agonist Bay K 8644 (10-200 microM) produced a concentration-dependent increase in State 4 respiration in the rat heart mitochondria with the highest concentration (200 microM) increasing the rate from 33.1 +/- 0.7 to 187.0 +/- 13.3 ng atoms O2 consumed min-1 mg-1 protein. 2. Bay K 8644 (200 microM) reduced State 3 respiration from 247.2 +/- 11.7 to 174.4 +/- 0.06 ng atoms O2 min-1 mg-1 protein, reduced the respiratory control index (RCI) from 5.3 +/- 0.45 to 1.1 +/- 0.03 and reduced the ADP:O ratio from 2.75 +/- 0.03 to 1.3 +/- 0.15. 3. A similar, but smaller, stimulation of State 4 respiration was seen with nitrendipine (25-200 microM), the rate increasing from 22.6 +/- 1.0 to 33.1 +/- 1.8 ng atoms O2 consumed min-1 mg-1 protein in the presence of 200 microM nitrendipine. 4. Bay K 8644 (10-60 microM) increased the total Ca2+ uptake into rat heart mitochondria, the total increasing from 248.8 +/- 8.4 to 406.9 +/- 17.6 ng Ca2+ mg-1 protein at 60 microM Bay K 8644 (EC50 = 18.9 +/- 1.4 microM). 5. Bay K 8644 (10-60 microM) produced a concentration-dependent reduction in the Ca2+ influx rate (IC50 = 52.5 +/- 2.8 microM). Similar effects were seen with (+)-Bay K 8644 and (-)-Bay K 8644. 6. Nitrendipine (40-120 microM) stimulated Ca2+ efflux from mitochondria preloaded with the ion; the efflux rate increasing from 2.9 +/- 0.05 to 114.2 +/- 6.2 nmol Ca2+ min-1 mg-1 protein (EC50 = 57.3 +/- 1.3 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
1. The effects of NS 1619, the putative BKCa channel opener, were investigated on rat intact portal veins and on single smooth muscle cells enzymatically separated from the same tissue. 2. Under whole-cell patch clamp conditions with K-rich pipettes, exposure of single cells held at -10 mV to NS 1619 (10-33 microM) induced a noisy, outward current which reached a maximum (33 microM NS 1619; mean 35.8 +/- 17 pA, n = 8) within about 6 min. 3. On stepping to test potentials (range -50 to +50 mV) from a holding potential of -10 mV, the NS 1619-induced noisy current exhibited time-dependent activation and marked outward rectification. 4. The stimulation of outward currents by NS 1619 at -10 mV was independent of the presence of Ca2+ in the bath or pipette solutions but was antagonized by either charybdotoxin (250 nM) or penitrem A (100 nM) in the bath solution. 5. Stationary fluctuation analysis of the noisy current induced by NS 1619 at -10 mV yielded a value of 70 +/- 8 pS (n = 4) (under the quasi-physiological conditions of the experiment) for the unitary conductance of the channel involved. 6. At -10 mV, NS 1619 (10-33 microM) rapidly inhibited spontaneous transient outward currents. 7. With a holding potential of -90 mV, NS 1619 (10-33 microM) produced a reduction of outward currents evoked by depolarizing steps to +50 mV, an effect associated with marked inhibition of the delayed rectifier current, IK(V). 8. NS 1619 (3-100 microM) produced a concentration-dependent inhibition of spontaneous activity in rat portal vein characterized by a reduction in the amplitude and duration of the tension waves. This inhibition was slightly potentiated in the presence of either charybdotoxin (250 nM) or penitrem A (1 microM). NS 1619 also totally inhibited contractions of rat aorta induced by KCl (both 20 mM and 80 mM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We first determined whether the cardioprotection resulting from kappa opioid receptor (kappa-OR) stimulation was blocked by the K(Ca) channel inhibitor, paxilline (Pax), administered before or during ischaemic insults in vitro. In isolated rat hearts, 30 min of ischaemia and 120 min of reperfusion induced infarction and increased lactate dehydrogenase (LDH) release. In isolated ventricular myocytes subjected to 5 min of metabolic inhibition and anoxia followed by 10 min of reperfusion, the percentage of live cells and the amplitude of the electrically induced intracellular Ca(2+) ([Ca(2+)](i)) transient decreased, while diastolic [Ca(2+)](i) increased. Pretreatment with 10 microM U50,488H, a kappa-OR agonist, attenuated the undesirable effects of ischaemic insults in both preparations. The beneficial effects of kappa-OR stimulation, that were abolished by 5 microM nor-BNI, a kappa-OR antagonist, were also abolished by 1 microM Pax administered before ischaemic insults or 20 microM atractyloside, an opener of the mitochondrial permeability transition pore. Activation of protein kinase C (PKC) with 0.1 microM phorbol 12-myristate 13-acetate decreased the infarct size and LDH release in isolated rat hearts subjected to ischaemia/reperfusion, and these effects were abolished by blockade of PKC with its inhibitors, 10 microM GF109203X or 5 microM chelerythrine, and more importantly by 1 microM Pax. On the other hand, the cardioprotective effects of opening the K(Ca) channel with 10 microM NS1619 were not altered by either PKC inhibitor. In conclusion, the high-conductance K(Ca) channel triggers cardioprotection induced by kappa-OR stimulation that involves inhibition of MPTP opening. The K(Ca) channel is located downstream of PKC.  相似文献   

6.
Previous studies have shown that Ca2+ channel antagonists in all chemical classes can inhibit Na(+)-induced CA2+ release from mitochondria. The effects of R023-6152, a new thiazepinone Ca2+ channel antagonist, on isolated rabbit heart mitochondrial Ca2+ transport and respiratory activity were compared with those of diltiazem. Heart mitochondria were also isolated and assayed from dogs treated in vivo with either R023-6152 or diltiazem. The results indicate that R023-6152 produces half-maximal inhibition of Na(+)-induced Ca2+ release from isolated mitochondria at relatively the same concentrations (10-30 microM) as diltiazem but also produces inhibition of mitochondrial Ca2+ uptake and state 3 respiration at concentrations (25-100 microM), at which diltiazem has no effect. The greater lipophilicity of R023-6152 in gaining access to and inhibiting the phosphate transporter in the mitochondrial membrane as compared with that of diltiazem may explain these results. Heart mitochondria isolated from dogs treated with diltiazem and R023-6152 exhibited lower rates of state 3 respiration as compared with controls. We suggest that this may result from a reduction in transsarcolemmal Ca2+ flux causing a down-regulation in mitochondrial dehydrogenase activity and not from any direct intracellular effects of the two drugs.  相似文献   

7.
1. We have investigated the actions of NS1619, a putative activator of large conductance calcium-activated potassium channels (BKCa) by use of the patch-clamp technique on smooth muscle cells enzymatically isolated from the rat basilar artery. 2. Using whole cell current-clamp to measure membrane potential, addition of 30 microM NS1619 produced cellular hyperpolarization, moving the membrane potential towards the calculated equilibrium potential for potassium. This hyperpolarization was rapidly reversed by IbTX (100 nM), a selective inhibitor of BKCa. 3. In whole cell recordings made from cells voltage-clamped at 0 mV using the perforated-patch technique, addition of NS1619 (10-30 microM) activated an outward current, which reversed following washout of NS1619. 4. This outward current was unaffected by application of either glibenclamide (5 microM), an inhibitor of ATP-sensitive potassium channels, or apamin (100 nM), an inhibitor of small-conductance calcium-activated potassium channels. However, this current was almost completely abolished by iberiotoxin (IbTX; 50-100nM). 5. Depolarizing voltage steps activated small outward currents from cells held at -15 mV. Application of NS1619 (10-30 microM) increased the size of these currents, producing a shift to the left of the current-voltage (I-V) relationship. These currents were largely inhibited by IbTX (100 nM). 6. Measurements of the unitary amplitude of the single channels activated by NS1619 which could be resolved in whole cell recordings yielded a value of 5.6 +/- 0.14 pA at 0 mV. 7. NS1619 (10-30 microM) directly activated single channels contained in excised inside-out and outside-out membrane patches. In both configurations NS1619 (10-30 microM) rapidly increased the open probability of a large conductance calcium-dependent channel. The activation produced by NS1619 was calcium-dependent and inhibited by external IbTX (100 nM). The unitary current amplitude was unaffected by NS1619. 8. By use of conventional whole cell recording methods and conditions that suppressed BKCa openings, outward potassium currents were activated by depolarizing potentials positive to -35 mV from a holding potential of -65 mV. NS1619 (10-30 microM) inhibited this current in a concentration-dependent manner. This inhibition was reversed following washout of NS1619, recovering to 60-90% of control values within 2 min. 9. Ba2+ currents, measured by conventional whole cell recording, were activated by depolarizing voltage steps from negative holding potentials. NS1619 (1-30 microM) inhibited the evoked current in a concentration-dependent manner, yielding an IC50 value of 7 microM with a Hill coefficient approaching unity. This inhibition was reversible, with the currents recovering to 65-100% of control values after washout of NS1619 for 2 min. 10. NS1619 (0.3-100 microM) induced concentration-dependent relaxation of basilar artery segments contracted with histamine/5-HT (IC50 = 12.5 +/- 2.0 microM; n = 4). This relaxation curve was shifted to the right, but not abolished, when the tissue was treated with a blocker of BKCa channels (IbTX; 100nM). Additionally, NS1619 produced concentration-dependent relaxation of basilar artery contracted with a depolarizing, isotonic salt solution containing 80 mM K+. 11. Thus NS1619 produces hyperpolarization of basilar artery myocytes through direct activation of BKCa and also directly inhibits Ca2+ currents and voltage-activated K+ channels. We discuss the implications of these results for its vasorelaxant actions.  相似文献   

8.
1. The effects of imidazopyrazine derivative, SCA40, on the activity of single large conductance, Ca(2+)-activated K+ (BKCa) channels in inside-out and outside-out patches from bovine tracheal smooth muscle (BTSM) cells in culture have been compared with those of two established BKCa channel openers, NS 004 and NS 1619. 2. The presence of BKCa channels on inside-out patches of BTSM membranes was confirmed by the single channel conductance (240 pS), selectivity for K+, dependence of channel activity on [Ca2+]i, and sensitivity to the selective BKCa channel blocker, iberiotoxin. 3. NS 004 and ND 1619 (3-30 microM) induced concentration-related increases in open state probability of BKCa channels when applied to either inside-out or outside-out BTSM patches, thus confirming that these compounds are activators of the BKCa channel in this preparation. 4. SCA40 (0.1-10 microM) had no effect on the activity of BKCa channels when applied to either inside-out or outside-out patches which subsequently responded to the application of NS 004 (10-20 microM). 5. It is concluded that SCA40 does not have a direct effect on BKCa channel activity in BTSM patches and that the previously reported relaxant action of SCA40 on tracheal smooth muscle is unlikely to be mediated by this mechanism.  相似文献   

9.
This study was designed to determine the effect of sodium 6-(2-[1-(1H)-imidazolyl]methyl-4,5-dihydrobenzo[b] thiophene)carboxylate (RS-5186), a new thromboxane A2 (TXA2) synthetase inhibitor, on mitochondrial function and lysosomal integrity in ischemic myocardium. 17 anesthetized mongrel dogs were divided into 2 groups. In the control group (n = 11), the left anterior descending arteries (LAD) of the dogs were occluded for 2 h and physiological saline was infused until the end of the experiment. In the RS-5186 treated group (n = 6), 25 min prior to LAD occlusion, RS-5186, 10 mg/kg, was injected for 10 min. 2 h after occlusion, mitochondria were prepared from both ischemic and non-ischemic areas, which were confirmed by Evans' blue dye, and mitochondrial function (respiratory control index: RCI, and the rate of oxygen consumption in state III respiration: St.III O2) was measured polarographically with succinate as substrate. Fractionation of myocardial tissue from both ischemic and non-ischemic areas was also performed, and the activities of lysosomal enzymes (N-acetyl-beta-glucosaminidase: NAG, beta-glucuronidase: beta-gluc) of each fraction were measured. 2-h LAD occlusion induced a significant greater decrease in mitochondrial function from the ischemic area of the control group (RCI: 2.80 +/- 0.45, St.III O2: 133.5 +/- 35.6 natoms/mg protein/min) compared with those from the non-ischemic area (RCI: 4.49 +/- 0.46, St.III O2: 344.0 +/- 31.9).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effects of 2,5,2',5'-tetrachlorobiphenyl (25TCB) on parameters related to the bioenergetic functions of isolated rat liver mitochondria were investigated. State 3 respiration was inhibited by 25TCB with both succinate and glutamate/malate as the respiratory substrates. The extent of inhibition with succinate was larger than that observed with glutamate/malate. The concentration of 25TCB required to cause 50% inhibition for succinate was 51 microM, but with glutamate/malate, only 53% inhibition was observed at 200 microM. 25TCB stimulated state 4 respiration after 1-2 min lag period; state 4 respiration in the presence of glutamate/malate was more intensely stimulated by 25TCB than in the presence of succinate. 25TCB dissipated the membrane potential across the mitochondrial membranes. Isolated rat liver mitochondria accumulate large amounts of Ca2+ at the expense of respiration-linked energy (substrate oxidation) or of that provided by the hydrolysis of ATP by the mitochondrial ATPase. The Ca2+ accumulation by mitochondria was severely depressed by 25TCB when the energy was supplied by respiration. Furthermore, the inhibition of Ca2+ accumulation by 25TCB with succinate was greater than that produced with glutamate/malate. On the other hand, with ATP as the source of energy, 25TCB inhibited Ca2+ accumulation at high concentrations. 25TCB also released Ca2+ from mitochondria that had already accumulated Ca2+, indicating that mitochondrial membrane integrity was damaged by the intercalation of 25TCB. These results show that 25TCB impairs mitochondrial energy production, and inhibits Ca2+ sequestration by mitochondria.  相似文献   

11.
Chronic hypoxia increases resistance to myocardial ischemia in infants. Activation of the mitochondrial big conductance Ca(2+) -sensitive K channel (mitoBKCa) has been shown to be protective in adult hearts; however, its role in infant hearts is unknown. Hearts from normoxic or hypoxic infant rabbits were perfused with a mitoKCa opener, NS1619, or blocker Paxilline before ischemia and reperfusion. Hypoxic hearts were more resistant to ischemia than normoxic hearts as manifested by a reduction in infarct size (9 +/- 5% versus 14 +/- 5%) and an increase in recovery of left ventricular developed pressure (LVDP) (69 +/- 7% versus 51 +/- 2%). NS1619 decreased infarct size in normoxic hearts from 14 +/- 5% to 10 +/- 5% and increased recovery of LVDP from 51 +/- 2% to 65 +/- 4%, but it had no effect on hypoxic hearts. Paxilline did not affect normoxic or hypoxic hearts. Activation of mitoBKCa protects normoxic infant rabbit hearts; however, cardioprotection by chronic hypoxia in infant rabbits does not appear involve mitoBKCa.  相似文献   

12.
Large-conductance Ca(2+)- and voltage-activated K(+) channels (Kca1.1/BK/MaxiK) are widely expressed ion channels. They provide a Ca(2+)-dependent feedback mechanism for the regulation of various body functions such as blood flow, neurotransmitter release, uresis, and immunity. In addition, a mitochondrial K(+) channel with KCa1.1-resembling properties has been found in the heart, where it may be involved in regulation of energy consumption. In the present study, the effect of a novel NeuroSearch compound, 1-(3,5-bis-trifluoromethyl-phenyl)-3-[4-bromo-2-(1H-tetrazol-5-yl)-phenyl]-thiourea (NS11021), was investigated on cloned KCa1.1 expressed in Xenopus laevis oocytes and mammalian cells using electrophysiological methods. NS11021 at concentrations above 0.3 microM activated KCa1.1 in a concentration-dependent manner by parallel-shifting the channel activation curves to more negative potentials. Single-channel analysis revealed that NS11021 increased the open probability of the channel by altering gating kinetics without affecting the single-channel conductance. NS11021 (10 microM) influenced neither a number of cloned Kv channels nor endogenous Na(+) and Ca(2+) channels (L- and T-type) in guinea pig cardiac myocytes. In conclusion, NS11021 is a novel KCa1.1 channel activator with better specificity and a 10 times higher potency compared with the most broadly applied KCa1.1 opener, NS1619. Thus, NS11021 might be a valuable tool compound when addressing the physiological and pathophysiological roles of KCa1.1 channels.  相似文献   

13.
Levosimendan is a mitochondrial K(ATP) channel opener.   总被引:4,自引:0,他引:4  
Levosimendan, a new inodilator developed for the treatment of heart failure has been shown to have a vasodilatory effect via opening of K(ATP) channels in the plasma membrane of vascular smooth muscle cells. In this study, we investigated the effects of levosimendan on the mitochondrial K(ATP) channel. This compound did not influence mitochondrial transmembrane potential (DeltaPsi), and at up to 2.2 microM had no effect on the respiration rate of rat liver mitochondria, respiring on 5 mM succinate (+5 microM rotenone). A sensitive method was developed for assessing K(ATP) channel opening activity employing rat liver mitochondria, respiring only on endogenous substrates in the presence of 400 microM ATP and 1 microg oligomycin/mg mitochondrial protein. In this model, levosimendan (0.7-2.6 microM) decreased DeltaPsi by 6.5-40.4% (n=3, incubation time 15 min). This effect was dependent on the K+ concentration in the incubation medium and was abolished by the selective blocker of the mitochondrial K(ATP) channel-5-hydroxydecanoate (200 microM). Our results indicate that levosimendan opens mitochondrial K(ATP) channels.  相似文献   

14.
1. Effects of NS-1619, an opener of large conductance Ca2+-activated K+ (BK) channel, on intracellular Ca2+ concentration ([Ca2+]i) and membrane potential were examined in single myocytes freshly isolated from porcine coronary artery. 2. Under current clamp mode, the application of 1-30 microM NS-1619 hyperpolarized the membrane in concentration-dependent manner. The NS-1619-induced hyperpolarization was abolished by the presence of 100 nM iberiotoxin. 3. Application of 1-10 microM NS-1619 hyperpolarized the membrane by approximately 6 mV or less but did not change significantly the [Ca2+]i. When membrane hyperpolarization of 12 mV or so was caused by 30 microM NS-1619, [Ca2+]i was unexpectedly increased by approximately 200 nM. This increase in [Ca2+]i and the concomitant outward current activation were also observed under voltage-clamp at holding potential of -40 mV. 4. The increase in [Ca2+]i by 30 microM NS-1619 occurred mainly in peripheral regions than in the centre of the myocytes. The removal of extracellular Ca2+ affected neither the membrane hyperpolarization nor the increase in [Ca2+]i. 5. In the presence of 10 mM caffeine and 10 microM ryanodine, the increase in [Ca2+]i by 30 microM NS-1619 was not observed and the membrane hyperpolarization was reduced to approximately 67% of the control. 6. These results indicate that the opening of BK channels by NS-1619 at 30 microM, which is the most frequently used concentration of this agent, is partly due to Ca2+ release from caffeine/ryanodine-sensitive intracellular storage sites but is mainly due to the direct activation of the channels.  相似文献   

15.
Mitochondrial (m) KATP channel opening has been implicated in triggering cardiac preconditioning. Its consequence on mitochondrial respiration, however, remains unclear. We investigated the effects of two different KATP channel openers and antagonists on mitochondrial respiration under two different energetic conditions. Oxygen consumption was measured for complex I (pyruvate/malate) or complex II (succinate with rotenone) substrates in mitochondria from fresh guinea pig hearts. One of two mKATP channel openers, pinacidil or diazoxide, was given before adenosine diphosphate in the absence or presence of an mKATP channel antagonist, glibenclamide or 5-hydroxydecanoate. Without ATP synthase inhibition, both mKATP channel openers differentially attenuated mitochondrial respiration. Neither mKATP channel antagonist abolished these effects. When ATP synthase was inhibited by oligomycin to decrease [ATP], both mKATP channel openers accelerated respiration for both substrate groups. This was abolished by mKATP channel blockade. Thus, under energetically more physiological conditions, the main effect of mKATP channel openers on mitochondrial respiration is differential inhibition independent of mKATP channel opening. In contrast, under energetically less physiological conditions, mKATP channel opening can be evidenced by accelerated respiration and blockade by antagonists. Therefore, the effects of mKATP channel openers on mitochondrial function likely depend on the experimental conditions and the cell's underlying energetic state.  相似文献   

16.
Wu SN  Peng H  Chen BS  Wang YJ  Wu PY  Lin MW 《Molecular pharmacology》2008,74(6):1696-1704
1,3-Bis-[2-hydroxy-5-(trifluoromethyl)phenyl]urea (NS1643) is reported to be an activator of human ether-à-go-go-related gene current. However, it remains unknown whether it has any effects on other types of ion channels. The effects of NS1643 on ion currents and membrane potential were investigated in this study. NS1643 stimulated Ca(2+)-activated K(+) current [I(K(Ca))] in a concentration-dependent manner with an EC(50) value of 1.8 microM in pituitary tumor (GH(3)) cells. In inside-out recordings, this compound applied to the intracellular side of the detached channels stimulated large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels with no change in single-channel conductance. It shifted the activation curve of BK(Ca) channels to less depolarized voltages without altering the gating charge of the channels. NS1643-stimulated channel activity depended on intracellular Ca(2+), and mean closed time during exposure to NS1643 was reduced. NS1643 (3 microM) had little or no effect on peak amplitude of ether-à-go-go-related gene-mediated K(+) current evoked by membrane hyperpolarization, although it increased the amplitude of late-sustained components of K(+) inward current, which was suppressed by paxilline but not by azimilide. NS1643 (3 microM) had no effect on L-type Ca(2+) current. This compound reduced repetitive firing of action potentials, and further application of paxilline attenuated its decrease in firing rate. In addition, NS1643 enhanced BK(Ca)-channel activity in human embryonic kidney 293T cells expressing alpha-hSlo. In summary, we clearly show that NS1643 interacts directly with the BK(Ca) channel to increase the amplitude of I(K(Ca)) in pituitary tumor (GH(3)) cells. The alpha-subunit of the channel may be a target for the action of this small compound.  相似文献   

17.
Although techniques such as (86)Rb(+) flux provide a sensitive measure of K(+) channel activity, the relatively short half-life and high-energy emission, together with the quantities of radioactive material generated, hinder the usefulness of flux-based formats in high throughput screening efforts. This study elaborates on the utilization of flame atomic absorption spectrometry (AAS) techniques for a nonradioactive rubidium efflux assay for large conductance Ca(2+)-activated K(+) channels (BK(Ca)) channels. Utilizing human embryonic kidney (HEK293) cells expressing the BK(Ca) alpha subunit, a 96-well cell-based nonradioactive rubidium efflux screen for channel openers and inhibitors was established. Known BK(Ca) channel openers, including NS1608, NS1619, and NS-8, activated rubidium efflux with EC(50) values ranging from 1 to 4 microM in both radioactive and nonradioactive efflux formats. Compounds such as iberiotoxin, paxilline, and charybdotoxin inhibited rubidium efflux responses evoked by the BK(Ca) channel opener NS1608 in both radioactive and nonradioactive efflux formats. The IC(50) values of the inhibitors in AAS format were comparable to those derived from (86)Rb(+) efflux assays. The present studies show that the pharmacological profiles of BK(Ca) channels assessed by AAS compare well with those obtained using the (86)Rb(+) efflux assay, and support the utility of nonradioactive efflux format for higher throughput screening campaigns for novel K(+) channel modulators.  相似文献   

18.
The acidity and lipophilicity of the fluorinated arylalkylsulphonamides are determined by the nature of the substituents on their aromatic rings. Herbicidal and anti-inflammatory effects of these compounds appear to increase with their lipophilicity. According to Mitchell's chemiosmotic theory, lipophilic weak-acid uncoupling agents act by transporting protons across the inner mitochondrial membrane and thus destroying the proton-electrochemical potential gradient required for ATP synthesis and ion transport. 1:1:1-Trifluoro-N-[2-methyl-4-(phenylsulphonyl) phenyl]methanesulphonamide (Perfluidone), a pre- and post-emergence herbicide (at 20 microM concentration), in isolated rat-liver mitochondria caused (1) a 2-fold stimulation of metabolic state-4 respiration, (2) a reduction of respiratory control ratio (RCR) by at least 50%, (3) an enhancement of latent ATPase activity by 40%, (4) a significant passive swelling of mitochondria in 0.15 N NH4Cl(delta A520 = -0.46 +/- 0.003), (5) proton intrusion during state-4 respiration (356 ng H+/min/mg protein; ng H+/min/mg protein with 5 microM perfluidone), and (6) at least 100% stimulation of oligomycin-inhibited respiration. These profiles are qualitatively comparable with those of the classical lipophilic weak-acid uncoupler, carbonylcyanide-trifluoro-methoxyphenylene hydrazone (FCCP), which acts by promoting the electrogenic transport of H+ ions across mitochondrial membrane.  相似文献   

19.
Shi LL  Qiang GF  Gao M  Zhang HA  Chen BN  Yu XY  Xuan ZH  Wang QY  Du GH 《药学学报》2011,46(6):642-649
匹诺塞林是一种广泛存在于蜂胶和植物中的黄酮类天然化合物,具有抗菌、抗炎、抗氧化、神经保护等多种药理作用。本实验利用大鼠全脑缺血模型(4-vessel occlusion,4-VO),评价了匹诺塞林在体内对4-VO大鼠脑线粒体功能的保护作用。结果表明,匹诺塞林能显著提高4-VO大鼠脑线粒体的ADP/O比值、V3以及RCI、OPR等参数,保护线粒体结构完整性;体外实验表明,匹诺塞林能显著提高分离的脑线粒体的ADP/O、V3、RCI、OPR,降低V4,保护线粒体结构完整性;同时,匹诺塞林在体外条件下促进脑线粒体ATP的生成;在细胞水平,匹诺塞林能促进SH-SY5Y细胞的ATP生成。本研究发现,匹诺塞林通过保护线粒体结构完整性,降低NADH呼吸链的电子漏流,提高氧化磷酸化效率,促进线粒体呼吸功能,提升线粒体ATP合成能力等起到脑缺血保护作用。  相似文献   

20.
Antidiabetic sulphonylureas can bind to various intracellular organelles including mitochondria. The aim of this study was to monitor the influence of antidiabetic sulphonylureas on membrane permeability in mitochondria isolated from rat skeletal muscle. The effects of glibenclamide (and other sulphonylurea derivatives) on mitochondrial function were studied by measuring mitochondrial swelling, mitochondrial membrane potential, respiration rate and Ca2+ transport into mitochondria. We observed that glibenclamide induced mitochondrial swelling (EC50 = 8.2 +/- 2.5 microM), decreased the mitochondrial membrane potential and evoked Ca2+ efflux from the mitochondrial matrix. These effects were blocked by 2 microM cyclosporin A, an inhibitor of the mitochondrial permeability transition. Moreover, 30 microM glibenclamide accelerated the respiratory rate in the presence of glutamate/malate, substrates of complex I of the mitochondrial respiratory chain. In conclusion, we postulate that the antidiabetic sulphonylureas activate the mitochondrial permeability transition in skeletal muscle by increasing its sensitivity to Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号