首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

The aim of this study was to formulate nano-emulsions comprising natural oils and the active pharmaceutical ingredients (APIs) clofazimine (CLF), artemisone (ATM) and decoquinate (DQ) in order to determine effectiveness of the nano-emulsions for topical delivery of the APIs. The APIs alone do not possess suitable physicochemical properties for topical drug delivery.

Methods

Nano-emulsions were formulated with olive and safflower oils encapsulating the APIs. Skin diffusion and tape stripping studies were performed. By using the lactate dehydrogenase (LDH) assay, in vitro toxicity studies were carried out on immortalized human keratinocytes (HaCaT) cell line to determine cytotoxicities due to the APIs and the nano-emulsions incorporating the APIs.

Results

The nano-emulsions were effective in delivering the APIs within the stratum corneum-epidermis and the epidermis-dermis, were non-cytotoxic towards HaCaT cell lines (p <?0.05) and inhibited Mycobacterium tuberculosis in vitro.

Conclusion

Natural oil nano-emulsions successfully deliver CLF, ATM and DQ and in principle could be used as supplementary topical treatment of cutaneous tuberculosis (CTB).
Graphical Abstract ?
  相似文献   

2.

Purpose

Bleomycin-coated microneedles were devised for delivery of bleomycin into the sub-epidermal skin layer for the treatment of warts in order to provide patient convenience and reduce patient pain and fear.

Method

Poly-lactic-acid (L-PLA) microneedles were fabricated by a molding process and then the tips were partially coated using a dip-coating method based on a microstructure well. The mechanical strength of the pre-coated polymer microneedles was observed by inserting them in porcine foot and back skin. The holes were stained with trypan blue and the mechanical failure of the microneedles was investigated using a scanning electron microscope (SEM). The initial distribution of a model drug using microneedles was compared with distribution by intralesional injection. The amount of drug leaked below the skin using microneedles was measured and compared with that leaked by intralesional injection. The pharmacokinetic properties of bleomycin-coated microneedles were studied. The bleomycin remaining on the coated microneedles after the in vivo pharmacokinetic study was measured.

Results

Bleomycin was successfully coated on the tips of L-PLA microneedles. More than 80% of the bleomycin dissolved into the skin in vitro within 15 min. L-PLA microneedles possessed sufficient mechanical strength to penetrate skin with a thick stratum corneum. Compared to intralesional injection, tip-coated microneedles were more effective in distributing a drug into the sub-epidermal skin layer. A pharmacokinetic study of bleomycin-coated microneedles showed 50 min of Tmax.

Conclusions

Bleomycin-coated microneedles appeared to be a convenient and painless alternative to conventional intralesional injection of bleomycin. The microneedles delivered bleomycin into the targeted dermal layer regardless of body site. Bleomycin-coated microneedles therefore provide a suitable method for the treatment of warts.
  相似文献   

3.

Purpose

This study aimed to investigate the impact of the size of X-ray iodinated contrast agent in nano-emulsions, on their toxicity and fate in vivo.

Methods

A new compound, triiodobenzoate cholecalciferol, was synthetized, formulated as nano-emulsions, and followed after i.v. administration in mice by X-ray imaging (micro computed tomography). Physicochemical characterization and process optimization allowed identifying a good compromise between X-ray contrasting properties, monodispersity and stability. This also allowed selecting two formulations with different sizes, hydrodynamic diameters of 55 and 100 nm, but exactly the same composition. In vitro experiments were performed on two cell lines, namely hepatocytes (BNL-CL2) and macrophages (RAW264.7).

Results

Cell viability studies, cell uptake observations by confocal microscopy, and uptake quantification by fluorimetry, disclosed clear differences between two formulations, as well as between two types of cell lines. After i.v. injection of the two iodinated nano-emulsions in mice, CT scans provided the quantification of the pharmacokinetics and biodistributions. We finally showed that the size in the nano-emulsions has not a real impact on the pharmacokinetics and biodistributions, but has a strong influence on their toxicity, corroborating the in vitro results.

Conclusions

This study shows that the size of the nanocarrier significantly matters, likely due to highly different interactions with cells and tissues.
Graphical Abstract A study on the effect of the size of cholecciferol nano-emulsions, on their in vivo becoming, through X-ray imaging modality.
  相似文献   

4.

Purpose

Herein, we detail a promising strategy of nanovesicle preparation based on control of phospholipid self-assembly: the Double Solvent Displacement. A systematic study was conducted and diclofenac as drug model encapsulated. In vitro skin studies were carried out to identify better formulation for dermal/transdermal delivery.

Methods

This method consists in two solvent displacements. The first one, made in a free water environment, has allowed triggering a phospholipid pre-organization. The second one, based on the diffusion into an aqueous phase has led to liposome formation.

Results

Homogeneous liposomes were obtained with a size close to 100 nm and a negative zeta potential around -40 mV. After incorporation of acid diclofenac, we obtained nanoliposomes with a size between 101 ± 45 and 133 ± 66 nm, a zeta potential between 34 ± 2 and 49 ± 3 mV, and the encapsulation efficiency (EE%) was between 58 ± 3 and 87 ± 5%. In vitro permeation studies showed that formulation with higher EE% dispayed the higher transdermal passage (18,4% of the applied dose) especially targeting dermis and beyond.

Conclusions

Our results suggest that our diclofenac loaded lipid vesicles have significant potential as transdermal skin drug delivery system. Here, we produced cost effective lipid nanovesicles in a merely manner according to a process easily transposable to industrial scale.
Graphical Abstract ?
  相似文献   

5.

Purposes

To develop pH-sensitive liposomes (PSL) containing a high content of gemcitabine; and to investigate whether drug loading (DL) would alter the in vitro and pharmacokinetic properties.

Methods

PSL with a high DL were obtained using a modified small-volume incubation method. The DL effects on drug release rate and in vitro cytotoxicity of PSL were evaluated using MIA PaCa-2 pancreatic cancer cells and their pharmacokinetics investigated in rats.

Results

The highest DL of 4.5?±?0.1% was achieved for gemcitabine in PSL with 145?±?5 nm diameter. DL did not alter the in vitro release rate from PSL. The IC50 (48 h) of PSL (DL 0.5 and 4.5%) and non pH-sensitive liposomes (NPSL, DL 4.2%) were 1.1?±?0.1, 0.7?±?0.1 and 37.0?±?7.5 μM, respectively. The PSL resulted in a 4.2-fold increase in its elimination half-life (6.2 h) compared to gemcitabine solution (1.4 h) in rats. No significant difference in pharmacokinetic parameters was observed between the two PSL (DL 0.5 and 4.5%).

Conclusion

The PSL offered advantages over NPSL in restoring the sensitivity of pancreatic cancer cells to gemcitabine without requiring a high DL. DL in the PSL did not alter release rate, cytotoxicity or their long-circulating properties.
Graphical Abstract ?
  相似文献   

6.

Purpose

Preparation of Isoniazid (INH) loaded nanogel particles using gamma radiation as safe, simple, cheap and reproducible technique for promoting mycobacterial killing in a lower-dose system aiming in developing of drug resistance.

Methods

Polymeric pH-sensitive nanogels were prepared by gamma radiation-induced polymerization of Acrylic acid (AAc) or Itaconic acid (IA), in aqueous solution of polyvinylpyrrolidone (PVP), as template polymer. The prepared nanogels were utilized for encapsulation of INH. 31X22 factorial design was employed for optimization and exploring the effect of radiation dose (X1) (30-50kGy), ratio of PVP: acid (X2) (50:50–30:70) and type of acid (X3) on the prepared nanogel characterization

Results

The optimized levels of X1, X2 and X3 were (50 KGy, 30:70 and Itaconic acid, respectively), with a desirability of 0.959. In-vitro INH release rate from the prepared nanogels decreased with increasing gamma radiation doses, with the predominance of the diffusion mechanism for drug release pattern. In addition, it was perceived that the minimum inhibitory concentration (MIC) of INH loaded PVP/PIA nanogels on Mycobacteria Tuberculosis was 8 folds lower than that of INH solution.

Conclusion

The prospective of PVP-K90/PIA was recommended as a smart candidate for delivery of INH with promising achievements against tuberculosis than free drug.
Graphical abstract Mechanism of formation and loading of Isoniazid PVP/PIA nanogel
  相似文献   

7.

Purpose

In this study we developed and tested an iron oxide nanoparticle conjugated with DTPA and Trastuzumab, which can efficiently be radiolabeled with 99m-Tc and Ga-68, generating a nanoradiopharmaceutical agent to be used for SPECT and PET imaging.

Methods

The production of iron oxide nanoparticle conjugated with DTPA and Trastuzumab was made using phosphorylethanolamine (PEA) surface modification. Both radiolabeling process was made by the direct radiolabeling of the nanoparticles. The in vivo assay was done in female Balb/c nude mice xenografted with breast cancer. Also a planar imaging using the radiolabeled nanoparticle was performed.

Results

No thrombus and immune response leading to unwanted interaction and incorporation of nanoparticles by endothelium and organs, except filtration by the kidneys, was observed. In fact, more than 80% of 99mTc-DTPA-TZMB@Fe3O4 nanoparticles seems to be cleared by the renal pathway but the implanted tumor whose seems to increase the expression of HER2 receptors enhancing the uptake by all other organs.

Conclusion

However, even in this unfavorable situation the tumor bioconcentrated much larger amounts of the nano-agent than normal tissues giving clear enough contrast for breast cancer imaging for diagnostics purpose by both SPECT and PET technique.
Graphical Abstract ?
  相似文献   

8.

Purpose

The aim of the present study was to prepare a patient friendly long acting donepezil (D) nanocrystals (NCs) formulation, with a high payload for i.m administration. As the native D hydrochloride salt has high aqueous solubility it is necessary to increase its hydrophobicity prior to the NCs formation.

Methods

D was ionically paired with embonic acid (E) in aqueous media and was successfully characterized using techniques like DSC, PXRD, FT-IR, NMR etc. Later, we converted the bulk ion pair into NCs using high pressure homogenization technique to study further in-vitro and in-vivo.

Results

The bulk ion pair has a drug content of 66% w/w and an 11,000 reduced solubility in comparison to native D hydrochloride. Also, its crystalline nature was confirmed by DSC and PXRD. The possible interaction sites responsible for the ion pair formation were identified though NMR. The prepared NCs has mean particle size 677.5 ± 72.5 nm and PDI 0.152 ± 0.061. In-vitro release showed a slow dissolution of NCs. Further, excellent bio compatibility of NCs were demonstrated in 3T3 cells. Following i.m administration of single dose of NCs, the D plasma level was found to be detectable up to 18 days. In vivo pharmacodynamic studies revealed that the single dose NCs i.m injection improved spatial memory learning and retention in ICV STZ model.

Conclusion

Our results suggest that the developed formulation has a potential to replace the current daily dosing regimen to a less frequent dosing schedule.
Graphical Abstract Improved pharmacokinetic and pharmacodynamic profile after administration of single dose donpezil embonate nanocrystals in Rats
  相似文献   

9.

Purpose

The present study reports a novel conjugate of gemcitabine (GEM) with bovine serum albumin (BSA) and thereof nanoparticles (GEM-BSA NPs) to potentiate the therapeutic efficacy by altering physicochemical properties, improving cellular uptake and stability of GEM.

Methods

The synthesized GEM-BSA conjugate was extensively characterized by NMR, FTIR, MALDI-TOF and elemental analysis. Conjugation mediated changes in structural conformation and physicochemical properties were analysed by fluorescence, Raman and CD spectroscopy, DSC and contact angle analysis. Further, BSA nanoparticles were developed from BSA-GEM conjugate and extensively evaluated against in-vitro pancreatic cancer cell lines to explore cellular uptake pathways and therapeutic efficacy.

Results

Various characterization techniques confirmed covalent conjugation of GEM with BSA. GEM-BSA conjugate was then transformed into NPs via high pressure homogenization technique with particle size 147.2 ± 7.3, PDI 0.16 ± 0.06 and ZP -19.2 ± 1.4. The morphological analysis by SEM and AFM revealed the formation of smooth surface spherical nanoparticles. Cellular uptake studies in MIA PaCa-2 (GEM sensitive) and PANC-1 (GEM resistant) pancreatic cell lines confirmed energy dependent clathrin internalization/endocytosis as a primary mechanism of NPs uptake. In-vitro cytotoxicity studies confirmed the hNTs independent transport of GEM in MIA PaCa-2 and PANC-1 cells. Moreover, DNA damage and annexin-V assay revealed significantly higher apoptosis level in case of cells treated with GEM-BSA NPs as compared to free GEM.

Conclusions

GEM-BSA NPs were found to potentiate the therapeutic efficacy by altering physicochemical properties, improving cellular uptake and stability of GEM and thus demonstrated promising therapeutic potential over free drug.
Graphical Abstract ?
  相似文献   

10.

Purpose

The inhibition of myostatin - a member of the transforming growth factor (TGF–β) family - drives regeneration of functional skeletal muscle tissue. We developed a bioresponsive drug delivery system (DDS) linking release of a myostatin inhibitor (MI) to inflammatory flares of myositis to provide self-regulated MI concentration gradients within tissues of need.

Methods

A protease cleavable linker (PCL) – responding to MMP upregulation – is attached to the MI and site-specifically immobilized on microparticle surfaces.

Results

The PCL disintegrated in a matrix metalloproteinase (MMP) 1, 8, and particularly MMP-9 concentration dependent manner, with MMP-9 being an effective surrogate biomarker correlating with the activity of myositis. The bioactivity of particle-surface bound as well as released MI was confirmed by luciferase suppression in stably transfected HEK293 cells responding to myostatin induced SMAD phosphorylation.

Conclusions

We developed a MMP-responsive DDS for MI delivery responding to inflammatory flare of a diseased muscle matching the kinetics of MMP-9 upregulation, with MMP-9 kinetics matching (patho-) physiological myostatin levels.

?

Graphical Abstract Schematic illustration of the matrix metalloproteinase responsive delivery system responding to inflammatory flares of muscle disease. The protease cleavable linker readily disintegrates upon entry into the diseased tissue, therby releasing the mystatin inhibitor.
  相似文献   

11.

Purpose

Gold nanoparticles have been proved useful for many biomedical applications, specifically, for their use as advanced imaging systems. However, they usually present problems related with stability and toxicity.

Methods

In the present work, gold-nanoparticles have been encapsulated in polymeric nanoparticles using a novel methodology based on nano-emulsion templating. Firstly, gold nanoparticles have been transferred from water to ethyl acetate, a solvent classified as class III by the NIH guidelines (low toxic potential). Next, the formation of nano-emulsions loaded with gold nanoparticles has been performed using a low-energy, the phase inversion composition (PIC) emulsification method, followed by solvent evaporation giving rise to polymeric nanoparticles.

Results

Using this methodology, high concentrations of gold nanoparticles (>100 pM) have been encapsulated. Increasing gold nanoparticle concentration, nano-emulsion and nanoparticle sizes increase, resulting in a decrease on the stability. It is noteworthy that the designed nanoparticles did not produce cytotoxicity neither hemolysis at the required concentration.

Conclusions

Therefore, it can be concluded that a novel and very versatile methodology has been developed for the production of polymeric nanoparticles loaded with gold nanoparticles.
Graphical Abstract Schematic representation of AuNP-loaded polymeric nanoparticles preparation from nano-emulsion templating
  相似文献   

12.

Purpose

Biodegradable polymeric nanoparticles of different architectures based on polyethylene glycol-co-poly(ε-caprolactone) block copolymers have been loaded with noscapine (NOS) to study their effect on its anticancer activity. It was intended to use solubility of NOS in an acidic environment and ability of the nanoparticles to passively target drugs into cancer tissue to modify the NOS pharmacokinetic properties and reduce the requirement for frequent injections.

Methods

Linear and star-shaped copolymers were synthetized and used to formulate NOS loaded nanoparticles. Cytotoxicity was performed using a sulforhodamine B method on MCF-7 cells, while biocompatibility was determined on rats followed by hematological and histopathological investigations.

Results

Formulae with the smallest particle sizes and adequate entrapment efficiency revealed that NOS loaded nanoparticles showed higher extent of release at pH 4.5. Colloidal stability suggested that nanoparticles would be stable in blood when injected into the systemic circulation. Loaded nanoparticles had IC50 values lower than free drug. Hematological and histopathological studies showed no difference between treated and control groups. Pharmacokinetic analysis revealed that formulation P1 had a prolonged half-life and better bioavailability compared to drug solution.

Conclusions

Formulation of NOS into biodegradable polymeric nanoparticles has increased its efficacy and residence on cancer cells while passively avoiding normal body tissues.
Graphical Abstract ?
  相似文献   

13.

Purpose

To overcome multi-drug resistance (MDR) in tumor chemotherapy, a polymer/inorganic hybrid drug delivery platform with tumor targeting property and enhanced cell uptake efficiency was developed.

Method

To evaluate the applicability of our delivery platform for the delivery of different drug resistance inhibitors, two kinds of dual-drug pairs (doxorubicin/buthionine sulfoximine and doxorubicin/tariquidar, respectively) were loaded in heparin-biotin/heparin/protamine sulfate/calcium carbonate nanovesicles to realize simultaneous delivery of an anticancer drug and a drug resistance inhibitor into drug-resistant tumor cells.

Results

Prepared by self-assembly, the drug loaded hybrid nanovesicles with a mean size less than 210 nm and a negative zeta potential exhibit good stability in serum contained aqueous media. The in vitro cytotoxicity evaluation indicates that hybrid nanovesicles with tumor targeting biotin moieties have an enhanced tumor cell inhibitory effect. In addition, dual-drug loaded hybrid nanovesicles exhibit significantly stronger cell growth inhibition as compared with doxorubicin (DOX) mono-drug loaded nanovesicles due to the reduced intracellular glutathione (GSH) content by buthionine sulfoximine (BSO) or the P-glycoprotein (P-gp) inhibition by tariquidar (TQR).

Conclusions

The tumor targeting nanovesicles prepared in this study, which can simultaneously deliver multiple drugs and effectively reverse drug resistance, have promising applications in drug delivery for tumor treatments. The polymer/inorganic hybrid drug delivery platform developed in this study has good applicability for the co-delivery of different anti-tumor drug/drug resistance inhibitor pairs to overcome MDR.
Graphical Abstract A polymer/inorganic hybrid drug delivery platform with enhanced cell uptake was developed for tumor targeting synergistic drug delivery. The heparin-biotin/heparin/protamine sulfate/calcium carbonate nanovesicles prepared in this study can deliver an anticancer drug and a drug resistance inhibitor into drug-resistant tumor cells simultaneously to overcome drug resistance efficiently.
  相似文献   

14.

Purpose

Current topical treatments using lidocaine (LD) for analgesia have limited applications due to their delayed analgesic actions, resulted from slow drug permeation through skin. The aim of this study is to fabricate a large size microneedle (MN) array patch containing LD, with fast onset of action, for the treatment of acute and chronic pain.

Methods

The MN patch was developed through photolithography and tested for its mechanical characteristics. In vitro and in vivo skin permeation, plasma pharmacokinetics, histology and skin irritation testing have also been performed for the MN patches.

Results

The MN have a mechanical strength of 10–30 N and more than 90% of the microneedles on the patch penetrated skin. It was shown that LD permeated through skin within 5 min of patch application. Subsequently, the in vivo skin permeation study using a porcine model showed that LD administrated by the MN patch was able to achieve the therapeutic level locally within 10 min and sustained for 8 h. It shows most of the drug diffuses perpendicularly against skin, with little lateral diffusion. After skin permeation LD remains within skin and unquantifiable amount of LD was found in the plasma of the pigs. Minor skin irritations were observed after 6 h of microneedle contact. However, the skin irritations resolved within 1 day following the removal of MN patch.

Conclusion

The large size MN patches showed fast onset and sustained delivery of LD through skin, potentially useful to increase the application scope of topical LD for pain management.
  相似文献   

15.

Purpose

Although Göttingen minipigs have been widely used for the evaluation of skin absorption, the correlation of minipig skin permeability with human skin absorption remains unclear. This study was designed to investigate the prediction of human plasma concentrations after dermal application of drug products using skin permeability data obtained from minipigs.

Methods

First, in vitro skin permeabilities of seven marketed transdermal drug products were evaluated in minipigs, and compared with in vitro human skin permeability data. Next, plasma concentration-time profiles in humans after dermal applications were simulated using the in vitro minipig skin permeability data. Finally, the in vitro-in vivo correlation of minipig skin permeability was assessed.

Results

The in vitro skin permeabilities in minipigs were correlated strongly with in vitro human skin permeability data for the same drug products, indicating the utility of minipig skin as an alternative to human skin for in vitro studies. The steady-state plasma concentration or the maximum concentration of drugs was within 2-fold of the clinical data. Bioavailability was approximately 3-fold lower than in vitro permeated fraction.

Conclusions

Predictions using in vitro skin permeability data in Göttingen minipig skin can reproduce the human pharmacokinetic profile, although the prediction of in vivo skin absorption underestimates human absorption.
  相似文献   

16.

Purpose

To develop a new intradermal antigen delivery system by coating microneedle arrays with lipid bilayer-coated, antigen-loaded mesoporous silica nanoparticles (LB-MSN-OVA).

Methods

Synthesis of MSNs with 10-nm pores was performed and the nanoparticles were loaded with the model antigen ovalbumin (OVA), and coated with a lipid bilayer (LB-MSN-OVA). The uptake of LB-MSN-OVA by bone marrow-derived dendritic cells (BDMCs) was studied by flow cytometry. The designed LB-MSN-OVA were coated onto pH-sensitive pyridine-modified microneedle arrays and the delivery of LB-MSN-OVA into ex vivo human skin was studied.

Results

The synthesized MSNs demonstrated efficient loading of OVA with a maximum loading capacity of about 34% and the lipid bilayer enhanced the colloidal stability of the MSNs. Uptake of OVA loaded in LB-MSN-OVA by BMDCs was higher than that of free OVA, suggesting effective targeting of LB-MSN-OVA to antigen-presenting cells. Microneedles were readily coated with LB-MSN-OVA at pH 5.8, yielding 1.5 μg of encapsulated OVA per microneedle array. Finally, as a result of the pyridine modification, LB-MSN-OVA were effectively released from the microneedles upon piercing the skin.

Conclusion

Microneedle arrays coated with LB-MSN-OVA were successfully developed and shown to be suitable for intradermal delivery of the encapsulated protein antigen.
  相似文献   

17.

Purpose

Performance of a transdermal delivery system (TDS) can be affected by exposure to elevated temperature, which can lead to unintended safety issues. This study investigated TDS and skin temperatures and their relationship in vivo, characterized the effective thermal resistance of skin, and identified the in vitro diffusion cell conditions that would correlate with in vivo observations.

Methods

Experiments were performed in humans and in Franz diffusion cells with human cadaver skin to record skin and TDS temperatures at room temperature and with exposure to a heat flux. Skin temperatures were regulated with two methods: a heating lamp in vivo and in vitro, or thermostatic control of the receiver chamber in vitro.

Results

In vivo basal skin temperatures beneath TDS at different anatomical sites were not statistically different. The maximum tolerable skin surface temperature was approximately 42–43°C in vivo. The temperature difference between skin surface and TDS surface increased with increasing temperature, or with increasing TDS thermal resistance in vivo and in vitro.

Conclusions

Based on the effective thermal resistance of skin in vivo and in vitro, the heating lamp method is an adequate in vitro method. However, the in vitro-in vivo correlation of temperature could be affected by the thermal boundary layer in the receiver chamber.
  相似文献   

18.

Purpose

To study spatial heterogeneity in phase composition when mannitol is co-lyophilized with non-crystallizing lyoprotectant, such as sucrose or trehalose. To study the influence of formulation composition and processing conditions on the extent of mannitol hemihydrate (MHH) formation in the final lyophile.

Methods

We used synchrotron X-ray diffractometry (XRD) to spatially map and thereby comprehensively characterize mannitol phase composition in unperturbed lyophiles. Low temperature thermal analysis and XRD was used to study phase behavior of frozen systems.

Result

When colyophilized with sucrose, trehalose or lysozyme as a second solute, mannitol crystallized partially as MHH (mannitol hemihydrate). The MHH content, based on the intensity of characteristic MHH peak (d-spacing 4.92 Å), was highest in the middle region of lyophile. This heterogeneity, studied in detail in presence of sucrose, occurred irrespective of cosolute content. Annealing the frozen solution at ?30°C for 2 h essentially eliminated the heterogeneity, accompanied by an overall increase in MHH content. From differential scanning calorimetry it was evident that annealing caused mannitol crystallization while XRD revealed the crystallizing phase to be MHH.

Conclusion

The intra-vial heterogeneity and total MHH content in the final lyophile is a complex interplay of formulation composition and processing conditions.
Graphical Abstract Figure depicting spatial heterogeneity in mannitol hemihydrate content, when mannitol is lyophilized with a cosolute, such as sucrose, trealose or lysozyme.
  相似文献   

19.

Purpose

To develop a long-acting formulation of native human insulin with a similar pharmacodynamics (PD) profile as the insulin analogue insulin glargine (Lantus®, Sanofi-Aventis) with the expectation of retaining native human insulin’s superior safety profile as insulin glargine is able to activate the insulin-like growth factor 1 (IGF-1) receptor and is linked to a number of malignancies at a higher rate than regular human insulin.

Methods

Development of protected graft copolymer (PGC) excipients that bind native human insulin non-covalently and testing blood glucose control obtained with these formulations in streptozotocin-induced diabetic Sprague Dawley rats compared to equally dosed insulin glargine.

Results

PGC-formulations of native human insulin are able to control blood glucose to the same extent and for the same amount of time after s.c. injection as the insulin analogue insulin glargine. No biochemical changes were made to the insulin that would change receptor binding and activation with their possible negative effects on the safety of the insulin.

Conclusion

Formulation with the PGC excipient offers a viable alternative to biochemically changing insulin or other receptor binding peptides to improve PD properties.
Figure Blood glucose development in STZ-diabetic Sprague Dawley rats after s.c. injection of 1 mg/kg regular human insulin formulated with formulations 605c, 421a, and 421b, or an equivalent dose of insulin glargine.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号