首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a search for novel antileishmanial drugs, we investigated the activity of the calcium channel blocker nimodipine against Leishmania spp. and explored the ultrastructural damages of parasites induced by nimodipine after a short period of incubation. Nimodipine was highly effective against promastigotes and intracellular amastigotes of Leishmania (L.) chagasi, with 50% inhibitory concentration values of 81.2 and 21.5 μM, respectively. Nimodipine was about fourfold more effective than the standard pentavalent antimony against amastigotes and showed a Selectivity Index of 4.4 considering its mammalian cells toxicity. Leishmania (L.) amazonensis and Leishmania (L.) major promastigotes were also susceptible to nimodipine in a range concentration between 31 and 128 μM. Ultrastructural studies of L. (L.) chagasi revealed intense mitochondria damage and plasma membrane blebbing, resulting in a leishmanicidal effect as demonstrated by the lack of mitochondrial oxidative metabolism. The amastigote-killing effect suggests other mechanism than macrophage activation, as no upregulation of nitric oxide was seen. This calcium channel blocker is an effective in vitro antileishmanial compound and if adequately studied could be used as a novel drug candidate or as a novel drug lead compound for drug design studies against leishmaniasis.  相似文献   

2.
Parasites of the complexes Leishmania (Leishmania) mexicana, Leishmania (Viannia) braziliensis, and Leishmania (Leishmania) chagasi coexist within the same endemic areas of the American Continent. They produce similar clinical manifestations, yet not all respond well to treatment with anti-leishmania drugs. Thus, high specificity and sensitivity are needed to improve diagnosis and treatment. We developed a highly specific and sensitive polymerase chain reaction based diagnostic method that permits the identification of parasites belonging to the genus Leishmania and the differentiation between parasites belonging to the L. (L.) mexicana and L. (V.) braziliensis complexes and the identification of species of the L. (L.) mexicana complex, such as L. (L.) mexicana, Leishmania (L.) amazonensis, and Leishmania (L.) venezuelensis. This PCR permits the specific identification of Leishmania species in tissues of patients with different clinical forms of leishmaniasis. Its high sensitivity and specificity allow a precise diagnosis in lesions of patients that harbor few parasites, where the microscopic evaluation is unreliable. Additionally, this PCR could be a valuable tool for the identification of Leishmania species in mammalian reservoirs and sand fly vectors present in the American Continent. This work was supported by the CONACyT 47256-M and DGAPA IN221806-3  相似文献   

3.
There are currently no effective vaccines for visceral leishmaniasis, the second most deadly parasitic infection in the world. Here, we describe a novel whole-cell vaccine approach using Leishmania infantum chagasi promastigotes treated with the psoralen compound amotosalen (S-59) and low doses of UV A radiation. This treatment generates permanent, covalent DNA cross-links within parasites and results in Leishmania organisms termed killed but metabolically active (KBMA). In this report, we characterize the in vitro growth characteristics of both KBMA L. major and KBMA L. infantum chagasi. Concentrations of S-59 that generate optimally attenuated parasites were identified. Like live L. infantum chagasi, KBMA L. infantum chagasi parasites were able to initially enter liver cells in vivo after intravenous infection. However, whereas live L. infantum chagasi infection leads to hepatosplenomegaly in mice after 6 months, KBMA L. infantum chagasi parasites were undetectable in the organs of mice at this time point. In vitro, KBMA L. infantum chagasi retained the ability to enter macrophages and induce nitric oxide production. These characteristics of KBMA L. infantum chagasi correlated with the ability to prophylactically protect mice via subcutaneous vaccination at levels similar to vaccination with live, virulent organisms. Splenocytes from mice vaccinated with either live L. infantum chagasi or KBMA L. infantum chagasi displayed similar cytokine patterns in vitro. These results suggest that KBMA technology is a potentially safe and effective novel vaccine strategy against the intracellular protozoan L. infantum chagasi. This approach may represent a new method for whole-cell vaccination against other complex intracellular pathogens.  相似文献   

4.
The present report explores a comparative analysis of nitric oxide (NO·) production by three different species of Leishmania (L. amazonensis, L. braziliensis and L. chagasi). Among these species, L. braziliensis produced the highest amount of NO·, measured in the supernatants of promastigotes cultures as nitrite, a stable by-product derived from NO·. We have previously described the expression of a constitutive nitric oxide synthase (cNOS) in L. amazonensis promastigotes and axenic amastigotes. Comparing those results with the present work, using immunofluorescence assay, it was shown that both L. braziliensis and L. chagasi also express a cNOS. Immunostaining experiments showed that promastigotes from early passages of these species in culture had a strong immunoreactivity against anti-cNOS and anti-endothelial cell NOS, in comparison with the same parasite cultured for long time, suggesting a correlation between the NO· production and the presence of metacyclic forms prominent in those newly isolated parasites. These data corroborate findings of a higher NO· production by those parasites, following the growth curve. The relationship between the two NO·-generating systems in the parasite and in their host cell warrants further investigation. The presence of cNOS raises the possibility of a similar type of cross-talk or down-regulation between the NO· signaling systems in host cells and the lower eukaryotic-like Leishmania sp.  相似文献   

5.
Leishmaniasis, Chagas disease, and malaria affect the poorest population around the world, with an elevated mortality and morbidity. In addition, the therapeutic alternatives are usually toxic or ineffective drugs especially those against the trypanosomatids. In the course of selection of new anti-protozoal compounds from Brazilian flora, the CH2Cl2 phase from MeOH extract obtained from the leaves of Pentacalia desiderabilis (Vell.) Cuatrec. (Asteraceae) showed in vitro anti-leishmanial, anti-malarial, and anti-trypanosomal activities. The chromatographic fractionation of the CH2Cl2 phase led to the isolation of the bioactive compound, which was characterized as jacaranone [methyl (1-hydroxy-4-oxo-2,5-cyclohexandienyl)acetate], by spectroscopic methods. This compound showed activity against promastigotes of Leishmania (L.) chagasi, Leishmania (V.) braziliensis, and Leishmania (L.). amazonensis showing an IC50 of 17.22, 12.93, and 11.86???g/mL, respectively. Jacaranone was also tested in vitro against the Trypanosoma cruzi trypomastigotes and Plasmodium falciparum chloroquine-resistant parasites (K1 strain) showing an IC50 of 13 and 7.82???g/mL, respectively, and was 3.5-fold more effective than benznidazole in anti-Trypanosoma cruzi assay. However, despite of the potential against promatigotes forms, this compound was not effective against amastigotes of L. (L.) chagasi and T. cruzi. The cytotoxicity study using Kidney Rhesus monkey cells, demonstrated that jacaranone showed selectivity against P. falciparum (21.75???g/mL) and a selectivity index of 3. The obtained results suggested that jacaranone, as other similar secondary metabolites or synthetic analogs, might be useful tolls for drug design for in vivo studies against protozoan diseases.  相似文献   

6.
 Tissue eosinophilia was observed in the subcutaneous tissue of mice shortly after their inoculation not only with living but also with lysed promastigotes of Leishmania amazonensis. Intraperitoneal inoculation of lysed promastigotes from five different Leishmania species (L. donovani, L. chagasi, L. tropica, L. amazonensis, and L. braziliensis) induced eosinophil accumulation in the mouse peritoneum. This eosinophil infiltration was also detected in C5-deficient AKR mice, indicating complement independent eosinophil chemotaxis by the parasite. The induced eosinophils were hypodense, suggesting activation of the cells. Finally, we demonstrated in vitro eosinophil chemotactic activity in the promastigote lysates using purified eosinophils and blind well chambers. These results suggest the presence of an eosinophil chemotactic factor in Leishmania, a protozoan parasite. Received: 6 November 1995 / Accepted: 31 January 1996  相似文献   

7.
Human visceral leishmaniasis (HVL) is the most severe clinical form of a spectrum of neglected tropical diseases caused by protozoan parasites of the genus Leishmania. Caused mainly by L. donovani and L. infantum/chagasi, HVL accounts for more than 50 000 deaths every year. Drug therapy is available but costly, and resistance against several drug classes has evolved. Here, we review our current understanding of the immunology of HVL and approaches to and the status of vaccine development against this disease.  相似文献   

8.
Leishmania (L.) infantum (syn. Leishmania chagasi) is a dimorphic protozoan parasite that lives in promastigote and amastigote form in its sandfly vector and mammalian hosts, respectively. Here, we describe an in vitro culture system for the generation of a pure population of L. infantum axenic amastigotes after only 4 days incubation in culture medium supplemented with fetal calf serum, human urine, l-glutamine, and HEPES at 37oC (pH 5.5). Ultrastrutural analysis and infection assays in two macrophage populations (Kupffer cells (KUP) and peritoneal macrophages (PM)) infected with axenic amastigotes demonstrated that they maintained morphological and biochemical (A2 expression) features and a similar infection pattern to tissue-derived L. infantum amastigotes. The susceptibility of the macrophage lines to axenic or tissue-derived amastigotes and promastigotes was investigated. We found a completely different susceptibility profile for KUP and PM. Liver macrophages, both KUP and immigrant macrophages, are intimately involved in the response to L. infantum infection; this difference in susceptibility is probably related to their capacity to eliminate these parasites. Our in vitro system was thus able to generate axenic amastigotes that resemble tissue-derived amastigotes both in morphology and infectivity pattern; this will help in further investigation of the biological characteristics of the host–parasite relationship as well as the process of pathogenesis.  相似文献   

9.
The fractionation through bioguided antileishmanial activity of the dichloromethane extract of Cassia fistula fruits (Leguminosae) led to the isolation of the active isoflavone biochanin A, identified by spectroscopic methods. This compound showed 50% effective concentration (EC50) value of 18.96 μg/mL against promastigotes of Leishmania (L.) chagasi. The cytotoxicity of this substance against peritoneal macrophages resulted in an EC50 value of 42.58 μg/mL. Additionally, biochanin A presented an anti-Trypanosoma-cruzi activity, resulting in an EC50 value of 18.32 μg/mL and a 2.4-fold more effectiveness than benznidazole. These results contribute with novel antiprotozoal compounds for future drug design studies.  相似文献   

10.
In the present study, we selected in vitro populations of Leishmania Viannia guyanensis, L.V. braziliensis, L. Leishmania amazonensis and L.L. infantum chagasi that were resistant to potassium antimony tartrate (SbIII). The resistance index of these populations varied from 4- to 20-fold higher than that of their wild-type counterparts. To evaluate the stability of the resistance phenotype, these four resistant populations were passaged 37 to 47 times in a culture medium without SbIII. No change was observed in the resistance indexes of L.V. guyanensis (19-fold) and L.L. infantum chagasi (4-fold). In contrast, a decrease in the resistance index was observed for L.V. braziliensis (from 20- to 10-fold) and L.L. amazonensis (from 6- to 3-fold). None of the antimony-resistant populations exhibited cross-resistance to amphotericin B and miltefosine. However, the resistant populations of L.V. braziliensis, L.L. amazonensis and L.L. infantum chagasi were also resistant to paromomycin. A drastic reduction was observed in the infectivity in mice for the resistant L.V. guyanensis, L.L. amazonensis and L.V. braziliensis populations. The SbIII-resistant phenotype of L.V. braziliensis was stable after one passage in mice. Although the protocol of induction was the same, the SbIII-resistant populations showed different degrees of tolerance, stability, infectivity in mice and cross-resistance to antileishmanial drugs, depending on the Leishmania species.  相似文献   

11.
We have developed a PCR assay for one-step differentiation of the three complexes of New World Leishmania (Leishmania braziliensis, Leishmania mexicana, and Leishmania donovani). This multiplex assay is targeted to the spliced leader RNA (mini-exon) gene repeats of these organisms and can detect all three complexes simultaneously, generating differently sized products for each complex. The assay is specific to the Leishmania genus and does not recognize related kinetoplastid protozoa, such as Trypanosoma cruzi, Trypanosoma brucei, and Crithidia fasciculata. It correctly identified Leishmania species with a broad geographic distribution in Central and South America. The sensitivity of the PCR amplification ranged from 1 fg to 10 pg of DNA (0.01 to 100 parasites), depending on the complex detected. Crude extracts of cultured parasites, prepared simply by boiling diluted cultures, served as excellent templates for amplification. Crude preparations of clinical material were also tested. The assay detected L. braziliensis in dermal scrapings from cutaneous leishmanial lesions, Leishmania chagasi in dermal scrapings of atypical cutaneous leishmaniasis, and L. mexicana from lesion aspirates from infected hamsters. We have minimized the material requirements and maximized the simplicity, rapidity, and informative content of this assay to render it suitable for use in laboratories in countries where leishmaniasis is endemic. This assay should be useful for rapid in-country identification of Leishmania parasites, particularly where different Leishmania complexes are found in the same geographical area.  相似文献   

12.
Tubercidin (TUB) is an adenosine analog with potent antiparasite action, unfortunately associated with severe host toxicity. Prevention of TUB toxicity can be reached associating nitrobenzylthioinosine (NBMPR), an inhibitor of the purine nucleoside transport, specifically target to the mammal cells. It was demonstrated that this nucleoside transport inhibitor has no significant effect in the in vitro uptake of TUB by Schistosoma mansoni and Trypanosoma gambiense. Seeking to evaluate if the association of these compounds is also effective against leishmania, we analyzed the TUB–NBMPR combined treatment in in vitro cultures of promastigote forms of Leishmania (L.) amazonensis, Leishmania (L.) chagasi, Leishmania (L.) major, and Leishmania (V.) braziliensis as well as in cultures of amastigote forms of L. (L.) amazonensis, mice macrophages infected with L. (L.) amazonensis, and in vivo tests in BALB/c mice infected with L. (L.) amazonensis. We demonstrated that TUB–NBMPR combined treatment can be effective against leishmania cells protecting mammalian cells from TUB toxicity.  相似文献   

13.
Paraffin-embedded samples commonly stored at educational and research institutions constitute tissues banks for follow-up or epidemiological studies; however, the paraffin inclusion process involves the use of substances that can cause DNA degradation. In this study, a PCR protocol was applied to identify Leishmania strains in 33 paraffin-embedded skin samples of patients with American cutaneous leishmaniasis. DNA was obtained by the phenol-chloroform protocol following paraffin removal and then used in PCR or nested PCR based on the nucleotide sequence of the small subunit ribosomal RNA (SSU rDNA). The amplicons obtained were cloned and sequenced to determine the single nucleotide polymorphism that distinguishes between different Leishmania species or groups. This assay allowed to distinguish organisms belonging to the subgenus Viannia and identify L. (Leishmania) amazonensis and L. (L.) chagasi of the Leishmania subgenus. Of the 33 samples, PCR and nested PCR identified 91% of samples. After sequencing the PCR product of 26 samples, 16 were identified as L. (L.) amazonensis, the other 10 contain organisms belonging to the L. (Viannia) sub-genus. These results open a huge opportunity to study stored samples and promote relevant contributions to epidemiological studies.  相似文献   

14.
Leishmania parasites are sensitive to peptides with antimicrobial and ion-channel inhibitory activity. Because scorpion venoms are rich sources of such peptides, the leishmanicidal effect of Tityus discrepans venom was investigated. A negative correlation between cell growth and venom concentration was observed for venom-treated cultures of Leishmania (L.) mexicana mexicana promastigotes; 50% growth inhibition was obtained at 0.4 μg/ml. Light microscopy showed rounded, highly vacuolated L. (L.) m. mexicana cells with impaired flagellar motion after 15 min of incubation at 35 μg/ml. Ultrastructural studies confirmed an intense cytoplasm vacuolation and also enlargement of the flagellar pocket. Survival rates for New World Leishmania promastigotes (75% venom effective concentration, μg/ml) obtained after acute (1 h) venom toxicity tests were: L. (L.) m. mexicana (2.3), Leishmania (V.) braziliensis (11.3), and Leishmania (L.) chagasi (56.2). Heat (90°C) treatment of venom and fraction TdII abolished most of their leishmanicidal effect. Acute toxicity assays performed with Sephadex G-50 fractions indicated that leishmanicidal activity is associated with the venom lowest molecular mass components (2.8–7.4 kDa), as determined by MALDI-TOF mass spectrometry.  相似文献   

15.
A cross-sectional study was conducted to determine the occurrence of anti-Toxoplasma gondii, anti-Neospora caninum, and anti- Leishmania chagasi antibodies in dogs of the state of Pará, Brazil. For this purpose, 129 blood samples were collected from dogs of different ages and gender. Samples of 72 dogs were collected from 39 rural properties from 19 municipalities, and 57 samples were from stray dogs, collected after captivity by the Center of Zoonosis Control from the municipality of Santarém. The sera were analyzed for anti-T. gondii and anti-N. caninum antibodies by indirect fluorescent antibody tests with cutoff values of 1:16 and 1:50, respectively. For the presence of L. chagasi antibodies, enzyme-linked immunosorbent assay was used and positive results were confirmed by immunochromatographic method using the recombinant antigen K39. Of the total of 129 dogs, 90 (69.8%) were positive for T. gondii, 16 (12.4%) for N. caninum, and 30 (23.3%) for L. chagasi. Antibodies for all three parasites were found simultaneously in seven dogs (5.4%), mostly in urban dogs (six of seven). No association was observed related to gender and location (urban or rural) of dogs and occurrence of N. caninum and T. gondii antibodies although, regarding L. chagasi, higher prevalence was found in females (P < 0.02) and in dogs from urban location (P < 0.001). From the 39 farms, in 30 (76.9%) at least one dog was positive for T. gondii or N. caninum or both. Higher occurrence of Leishmania antibodies was observed in N. caninum-negative dogs (P < 0.05).  相似文献   

16.
The antiproliferative effect of julocrotine, an alkaloid isolated from Croton pullei var. glabrior (Euphorbiaceae), was studied in the macrophage amastigote and promastigote stages of the protozoan Leishmania (L.) amazonensis, which causes cutaneous leishmaniasis in the New World. Julocrotine showed a dose-dependent effect against the amastigote and promastigote forms, where 79 μM julocrotine inhibited promastigote growth by 54%, with an IC50 of 67 μM. To analyze the antiamastigote activity of the drug, murine peritoneal macrophages infected with L. amazonensis promastigotes were treated with different concentrations of julocrotine. An 80% inhibition of amastigote development was observed using 79 μM julocrotine for 72 h, with an IC50 of 19.8 μM. In addition, ultrastructural observation of the parasites showed a significant reduction in the number of amastigotes in the parasitophorous vacuoles and morphological changes in promastigotes, such as swelling of the mitochondrion, chromatin condensation, presence of membranous structures near the Golgi complex, and some vesicle bodies in the flagellar pocket. A colorimetric assay (MTT), which measures cytotoxic metabolic activity, showed that macrophages maintain their viability after treatment with the drug. These results suggest that julocrotine effectively inhibits the growth of parasites and does not have any cytototoxic effects on the host cell.  相似文献   

17.
The present work reports the isolation, biochemical characterization, and subcellular location of serine proteases from aqueous, detergent soluble, and culture supernatant of Leishmania chagasi promastigote extracts, respectively, LCSII, LCSI, and LCSIII. The active enzyme molecular masses of LCSII were about 105, 66, and 60 kDa; of LCSI, 60 and 58 kDa; and of LCSIII, approximately 76 and 68 kDa. Optimal pH for the enzymes was 7.0 for LCSI and LCSIII and 8.5 for LCSII, and the optimal temperature for all enzymes was 37°C, using α-N-ρ-tosyl-l-arginine methyl ester as substrate. Assay of thermal stability indicated that LCSIII is the more stable enzyme. Hemoglobin, bovine serum albumin, and ovalbumin were hydrolyzed by LCSII and LCSI but not by LCSIII. Inhibition studies suggested that enzymes belong to the serine protease class modulated by divalent cations. Rabbit antiserum against 56-kDa serine protease of Leishmania amazonensis identified proteins in all extracts of L. chagasi. Furthermore, immunocytochemistry demonstrated that serine proteases are located in flagellar pocket region and cytoplasmic vesicles of L. chagasi promastigotes. These findings indicate that L. chagasi serine proteases differ from L. amazonensis proteases and all known flagellate proteases, but display some similarities with serine proteases from other Leishmania species, suggesting a conservation of this enzymatic activity in the genus.  相似文献   

18.
The current therapy for leishmaniasis, which affects annually about 2 million people, is far from satisfactory. All available drugs require parenteral administration and are potentially toxic. Plant essential oils have been traditionally used in folk medicine and appear as valuable alternative source for chemotherapeutic compounds. In this study, we demonstrated the effect of essential oils from Cymbopogon citratus, Lippia sidoides, and Ocimum gratissimum on growth and ultrastructure of Leishmania chagasi promastigote forms. Steam distillation was used to isolate the essential oils, and their constituents were characterized by gas chromatography coupled to mass spectrometry and nuclear magnetic resonance. All essential oils showed in vitro inhibitory action on L. chagasi promastigotes growth in a dose-dependent way, with IC50/72 h of 45, 89, and 75 μg/mL for C. citratus, L. sidoides, and O. gratissimum, respectively. Drastic morphological alterations were observed in all essential oil-treated parasites, including cell swelling, accumulation of lipid droplets in the cytoplasm, and increase of acidocalcisome volume. Furthermore, aberrant-shaped cells with multi-septate body were observed by scanning electron microscopy, suggesting an additional effect on cytokinesis. Taken together, our data show that these essential oils affect the parasite viability being the C. citratus essential oil the most effective against L. chagasi.  相似文献   

19.
Leishmaniasis is a major health problem worldwide and tools available for their control are limited. Effective vaccines are still lacking, drugs are toxic and expensive, and parasites develop resistance to chemotherapy. In this context, new antimicrobials are urgently needed to control the disease in both human and animal. Here, we report the enzymatic and functional characterization of a Leishmania virulence factor, Leishmania major Protein disulfide isomerase (LmPDI) that could constitute a potential drug target. LmPDI possesses domain structure organization similar to other PDI family members (a, a′, b, b′ and c domains), and it displays the three enzymatic and functional activities specific of PDI family members: isomerase, reductase and chaperone. These results suggest that LmPDI plays a key role in assisting Leishmania protein folding via its capacity to catalyze formation, breakage, and rearrangement of disulfide bonds in nascent polypeptides. Moreover, Bacitracin, a reductase activity inhibitor, and Ribostamycin, a chaperone activity inhibitor, were tested in LmPDI enzymatic assays and versus Leishmania promastigote in vitro cultures and Leishmania amastigote multiplication inside infected THP-1-derived macrophages. Bacitracin inhibited both isomerase and reductase activities, while Ribostamycin had no effect on the chaperone activity. Interestingly, Bacitracin blocked in vitro promastigote growth as well as amastigote multiplication inside macrophages with EC50 values of 39 μM. These results suggest that LmPDI may constitute an interesting target for the development of new anti-Leishmania drugs.  相似文献   

20.
Summary: Parasitic protozoa of the genus Leishmania have provided a useful perspective for immunologists in terms of host defense mechanisms critical for the resolution of infection caused by intracellular pathogens. These organisms, which normally reside in a late endosomal, major histocompatibility complex (MHC) class II+ compartment within host macrophages cells, require CD4+ T‐cell responses for the control of disease. The paradigm for the CD4+ T‐helper 1 (Th1)/Th2 dichotomy is largely based on the curing/non‐curing responses, respectively, to Leishmania major infection. However, this genus of parasitic protozoa is evolutionarily diverse, with the cutaneous disease‐causing organisms of the Old World (L. major) and New World (Leishmania mexicana/ Leishmania amazonensis) having diverged 40–80 million years ago. Further adaptations to survive within the visceral organs (for Leishmania donovani, Leishmania chagasi, and Leishmania infantum) must have been required. Consequently, significant differences in host–parasite interactions have evolved. Different virulence factors have been identified for distinct Leishmania species, and there are profound differences in the immune mechanisms that mediate susceptibility/resistance to infection and in the pathology associated with disease. These variations not only point to interesting features of the host–pathogen interaction and immunobiology of this genus of parasitic protozoa, but also have important implications for immunotherapy and vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号