首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex I inhibitor rotenone is a neurotoxin that has been proposed to induce Parkinson-like degeneration. As the mechanisms of rotenone toxicity are not fully understood, the present study addresses the question of whether rotenone induces NO production and lipid peroxidation-like products, that is, thiobarbituric acid reactive substances (TBARS). Rotenone at a dose of 1.5 mg kg(-1) i.p. was administered to rats daily for 10, 20, 30, and 60 days, and NO and TBARS were measured in the frontal cortex and in the striatum. On the 1st and 10th day, there were no increases in NO and TBARS levels, after 20 days, the NO and TBARS levels were increased in the striatum. After 30 and 60 days, NO and TBARS levels were increased in striatum and frontal cortex. Behaviorally, on days 30 and 60, the rats exhibited akinesia and rigidity in the catalepsy test. These results show that chronic administration of rotenone over a long period is capable of increasing NO and TBARS in the cortex and striatum and mimics Parkinson's disease (PD)-like behavioral symptoms that are akinesia and rigidity in rats.  相似文献   

2.
We have studied the shifts in the activity of Mg2+-, Ca2+-, and HCO 3 ? -dependent ATPases in brain mitochondria of white rats during epileptiform seizures (ES) induced by pentylenetetrazole. Inhibition of the catalytic activity of Mg2+-, Ca2+-, and HCO 3 ? -dependent ATPases was observed during ES. However, a preliminary intraperitoneal injection of proline-rich polypeptide (PRP) restored the activity of the investigated enzymes after ES to the control level. It is possible to assume that PRP has a protective effect on the body intoxication caused by pentylenetetrazole.  相似文献   

3.
The present study was conducted to identify the role of nitric oxide (NO) in the anticonvulsant effects of pyridoxine hydrochloride on penicillin-induced epileptiform activity in rats. A single microinjection of penicillin (500 units) into the left sensorimotor cortex induced epileptiform activity within 2-4 min, progressing to full seizure activity lasting about 3-5h. Thirty minutes after penicillin injection, 20, 40, 80, and 160 mg/kg of pyridoxine hydrochloride was administered intraperitoneally (i.p.). Pyridoxine significantly reduced the frequency of penicillin-induced epileptiform activity. A low dose of pyridoxine (40 mg/kg) was the most effective in reducing both the frequency and amplitude of epileptiform activity. The effect of systemic administration of nitric oxide synthase (NOS) inhibitors, non-selective N(G)-nitro-L-arginine methyl ester (L-NAME), selective neuronal NOS inhibitor, 7-nitroindazole (7-NI) and NO substrate, L-arginine on anticonvulsive effects of pyridoxine was investigated. The administration of L-arginine (500 mg/kg, i.p.) and 7-NI (25 and 50 mg/kg, i.p.) significantly decreased the frequency of epileptiform electrocorticographical (ECoG) activity while administration of L-NAME (60 mg/kg, i.p.) and the inactive form of arginine (D-arginine) did not influence it. The administration of L-NAME (60 mg/kg, i.p.) 15 min before pyridoxine (40 mg/kg i.p.) application reversed the anticonvulsant effects of pyridoxine whereas 7-NI (25 and 50 mg/kg, i.p.) did not influence it. The same dose of its inactive enantiomer N(G)-nitro-D-arginine methyl ester (d-NAME) failed to reverse the anticonvulsant effects of pyridoxine. The administration of L-arginine (500 mg/kg, i.p.) did not affect the frequency of epileptiform ECoG activity in the pyridoxine administered group. L-arginine did not reverse the anticonvulsant effect of 7-NI in the penicillin and pyridoxine administered groups. The results of present study indicate that the inhibitory effect on the anticonvulsant activity of pyridoxine against penicillin-induced epileptiform activity was produced by L-NAME, not by 7-NI, and is probably not related to the decrease of NOS activity in the brain.  相似文献   

4.
A variety of animal seizure models exist which help to document the effects of alpha-tocopherol (Vitamin E) and specify its action. In the present study, we provide further evidence for the functional involvement of NO in the anticonvulsant effects of alpha-tocopherol on penicillin-induced epileptiform electrocorticographical (ECoG) activity in rats. The epileptiform ECoG activity was induced by microinjection of penicillin into the left sensorimotor cortex. Thirty minutes after penicillin injection, the most effective dose of alpha-tocopherol (500 mg/kg) was administrated intramuscularly (i.m.). Alpha-tocopherol decreased the frequency of penicillin-induced epileptiform ECoG activity without changing the amplitude. The effect of systemic administration of nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) and NO substrates, L-arginine and sodium nitro prusside (SNP) on anticonvulsive effects of alpha-tocopherol was investigated. The administration of L-NAME (60 mg/kg, i.p.) did not influence the frequency of epileptiform ECoG activity while administration of L-arginine (500 mg/kg, i.p.) and SNP (6 mg/kg, i.p.) significantly decreased in the penicillin-treated group. The administration of L-NAME (60 mg/kg, i.p.) 10 min after alpha-tocopherol (500 mg/kg, i.m.) application reversed the anticonvulsant effects of alpha-tocopherol. The administration of L-arginine (500 mg/kg, i.p.) and SNP (6 mg/kg, i.p.) did not affect the frequency of epileptiform ECoG activity in alpha-tocopherol supplemented group. L-arginine and SNP did not provide an additional anticonvulsant effect in alpha-tocopherol supplemented group. These results support the involvement of the nitric oxide pathway in the anticonvulsant effect of alpha-tocopherol on the penicillin-induced epileptiform ECoG activity.  相似文献   

5.
The effect of homocysteine (HCY) on lipid peroxidation (LP), a current mechanism of oxidative neurotoxicity, was investigated in rat brain synaptosomes. LP was assessed by measuring the amount of thiobarbituric acid-reactive substances (TBARS) formed from synaptosomal fractions following HCY treatment. Increasing HCY concentrations (5–1000 μM) enhanced the TBARS formation in brain synaptosomes in a concentration-dependent manner. When compared at equimolar concentrations (100 μM), the oxidative potency of HCY was lower than that of the oxidant ferrous sulfate, similar to that produced by glutamate (Glu) and the mitochondrial toxin 3-nitropropionic acid, and higher than that of the Glu agonists, kainate and quinolinate. TheN-methyl-D-aspartate receptor (NMDAr) antagonist dizocilpine (MK-801) completely blocked the HCY-induced LP at concentrations from 5 to 1000 μM, whereas the well-known antioxidantN-acetylcysteine (NAC) was less effective, but still protective against the HCY oxidative toxicity at higher concentrations (400 and 1000 μM). Three nitric oxide synthase (NOS) inhibitors, 7-nitroindazole (7-NI),Nω-nitro-L-arginine (L-NARG) andNω-nitro-L-arginine methyl ester (L-NAME), were also tested on HCY-induced LP at increasing concentrations. Both nonspecific NOS effectively the HCY-induced LP than did the selective neuronal NOS inhibitor, 7-NI. These results show that submillimolar concentrations of HCY can induce oxidative injury to nerve terminals, and this effect involves NMDAr stimulation, NOS activation, and associated free radicals formation.  相似文献   

6.
Glutathione is a major regulator of the redox equilibrium, so its deficit weakens tissue resistance to oxidants. The nervous system is particularly susceptible to oxidative insults and is therefore very dependent on its glutathione content, especially during development, when brain metabolism and growth are maximal. In addition, various pathologies affecting the nervous system involve oxidative stress, possibly associated with a diminution of glutathione concentrations. To study the involvement of glutathione in brain redox homeostasis, we set up an experimental model of chronic glutathione deficit. Developing rats were treated daily with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione synthesis, and their brain levels of glutathione and lipid peroxidation products (TBARS) were measured. BSO induced a 40-50% glutathione deficit in the cortex, diencephalon, and pons/medulla. Despite the glutathione deficit induced by BSO, we did not observe any signs of oxidative stress. Because it is known that rats compensate for a glutathione deficit by enhancing their synthesis and tissue levels of ascorbic acid (AA), we performed the same experiment in osteogenic-disorder Shionogi (ODS) rats, a mutant strain that cannot synthetize AA. Although BSO induced a glutathione deficit of comparable intensity in the two strains of rats, it elevated TBARS levels in the diencephalon and pons/medulla only in ODS and not in nonmutant rats. These results suggest that ODS rats, which closely mimic the human redox regulation, will allow study of the long-term consequences of chronic glutathione deficit observed in various clinical situations.  相似文献   

7.
The effects of ethanol consumption on the levels of lipid peroxidation (TBARS) and reduced glutathione (GSH) in the brain stem of male rats were investigated. The rats randomly divided into eight groups: control, 10%, 25%, 35% ethanol-consuming groups and four groups given vitamin E. Brain stem GSH levels were significantly decreased by 39.74%, 61.57%, 78.23% in rats consuming 10%, 25% and 35% ethanol, respectively. The level of TBARS was increased six-fold, 12-fold and 17-fold in these groups when compared with the control group. The administration of vitamin E (100 mg/kg/day, i.p) to ethanol-consuming rats for 20 days caused a significant increase in glutathione levels and a significant decrease in lipid peroxidation.  相似文献   

8.
We investigated the effect of psychological stress on lipid peroxidation activity in the mouse brain, the mechanism underlying the psychological stress-induced change in the activity, and the effects of anxiolytic and anxiogenic drugs on the activity in psychologically-stressed animals. Psychological stress exposure using a communication box paradigm for 2-16 h significantly increased the content of thiobarbituric acid reactive substance (TBARS), an index of lipid peroxidation activity, in the brain, and the effect was maximal after peaked by a 4-h stress exposure. In the animals stressed for over 4 h, the increased brain TBARS content lasted for 30 min after the stress exposure, while no significant increase of the TBARS content was observed in the liver or serum. Trolox (67.6 mg/kg, i.p.), an antioxidant drug, but not monoamine oxidase inhibitors, clorgyline (2.5-5 mg/kg, i.p.) or 5-(4-benzylphenyl)-3-(2-cyanoethyl)-(3H)-1,3,4-oxadiazol-2-o ne (1-5 mg/kg, i.p.), significantly suppressed the effect of psychological stress. The non-selective nitric oxide (NO) synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 10-100 mg/kg, i.p.) and the selective neuronal NOS inhibitor 7-nitroindazole (25 and 50 mg/kg, i.p.), but not the inducible NOS inhibitor aminoguanidine (1-100 mg/kg, i.p.), dose dependently suppressed the psychological stress-induced enhancement of lipid peroxidation in the brain. L-Arginine (300 mg/kg, i.p.), a substrate of NOS, antagonized the effect of L-NAME. Measurements of NO metabolites revealed a significant increase of NO production in the brains of stressed mice. The benzodiazepine (BZD) receptor agonist diazepam (0.05-0.5 mg/kg, i.p.), the 5-HT(1A) receptor agonists (+/-)-8-hydroxy-di-propylaminotetralin and buspirone (0.1-1 mg/kg, i. p.), but not the 5-HT(3) receptor agonist MDL72222, dose-dependently suppressed the psychological stress-induced enhancement of brain lipid peroxidation. In contrast, the administration of anxiogenic drugs, FG7142 (an inverse BZD agonist: 1-10 mg/kg, i.p.) and 1-(3-chlorophenyl)piperazine (a mixed 5-HT(2A/2B/2C) agonist: 0.1-1 mg/kg, i.p.), potentiated it. The effects of diazepam and FG7142 were abolished by the BZD receptor antagonist flumazenil (10 mg/kg, i.p.). These results indicate that psychological stress causes oxidative damage to the brain lipid via enhancing constitutive NOS-mediated production of NO, and that drugs with a BZD or 5-HT(1A) receptor agonist profile have a protective effect on oxidative brain membrane damage induced by psychological stress.  相似文献   

9.
The free radical hypothesis for the pathogenesis and/or progression of Parkinson's disease (PD) has gained wide acceptance in recent years. Although it is clear that dopamine (DA) agonists cannot completely replace levodopa therapy, they can be beneficial early in the course of PD by reducing the accumulation of DA which undergoes auto-oxidation and generates cytotoxic free radicals. In the present study we demonstrate that pergolide, a widely used DA agonist, has free radical scavenging and antioxidant activities. Using a direct detection system for nitric oxide radical (NO·) by electron spin resonance (ESR) spectrometry in an in vitro ·NO-generating system, we examined the quenching effects of pergolide on the amount of NO· generated. Pergolide dose-dependently scavenged NO·. In the competition assay, the IC50 value for pergolide was estimated to be about 30 μM. Pergolide also dose-dependently attenuated the hydroxyl radical (·OH) signal in an in vitro FeSO4–H2O2 ESR system with an approximate IC50 value of 300 μM. Furthermore, this agent significantly inhibited phospholipid peroxidation of rat brain homogenates in in vitro experiments and after repeated administration (0.5 mg/kg/24 h, i.p. for 7 days). Our findings suggest a neuroprotective role for pergolide on dopaminergic neurons due to its free radical scavenging and antioxidant properties.  相似文献   

10.
Typical and atypical antipsychotics significantly differ in their neurotransmitter receptor affinity profiles, and their efficacy and side effects in schizophrenic patients. Typical antipsychotics have been found to increase the oxidative (i.e. free radical-mediated) cellular injury in rats. Since schizophrenia also involves oxidative injury, the understanding of differential effects of these antipsychotics on expression of antioxidant enzymes and oxidative injury may be very critical. The effect of chronic exposure of haloperidol (HAL), a typical antipsychotic, was compared to effects of risperidone (RIS) or clozapine (CLZ) or olanzapine (OLZ), atypical antipsychotics on antioxidant defense enzymes and lipid peroxidation in the rat brain. The levels of antioxidant enzymes and hydroxyalkenals (HAEs) were measured in rat brain cytosol and fatty acids were measured in brain cell membranes. Chronic HAL treatment for both 45 and 90 days significantly decreased manganese-superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD) and catalase (CAT) activity with parallel marked increase in (HAEs), a marker of lipid peroxidation in rat brain. The levels of enzymatic activity very well correlated with the levels of enzyme proteins indicating that the changes were probably in the expression of net protein. However, RIS, CLZ and OLZ treatments did not produce any alterations in the levels of antioxidant enzymes and HAEs, both after 45 and 90 days. There were no alterations in the levels of saturated as well as polyunsaturated fatty acids in brain membranes. These findings indicate that chronic administration of HAL, but none of the studied atypicals induce oxidative stress by persistent changes in the levels of antioxidant enzymes and cause membrane lipid peroxidation.  相似文献   

11.
We studied three groups of animals: 10-, 20-, and 90-day-old or adult male rats. This age group corresponded to different periods of brain maturation, i.e., periods of cell growth, intense myelination, and complete maturation of the brain. We found that the formation of products of free radical lipid oxidation decreased during ontogeny, whereas the activity of the antioxidant system increased during maturation. The activity of cytoplasmic superoxide dismutase was lower in the brain of developing animals as compared to the adults. The activity of glutathione peroxidase in the cytoplasm also increased during maturation; however, some decrease in this activity was revealed in the 20-day-old rats. Glutathione peroxidase uses reduced glutathione as a source of H+. The content of reduced glutathione increased by 20% during the period studied. The activities of glutathione reductase in the cytoplasmic fractions were significantly higher in comparison with the activities in the mitochondrial fractions in all age groups investigated. The activity of the cytoplasmic enzyme reached its maximum on the 20th day, whereas mitochondrial glutathione reductase decreased its activity at this time point. During maturation, the total contents of nonenzymatic lipid-, and water-soluble antioxidants changed differently. Thus, a decrease in the activities of glutathione-dependent enzymes on the 20th day was accompanied by an increase in the total contents of lipid-soluble antioxidants. The maximal levels of water-soluble antioxidants were revealed on the 10th day of postnatal life.  相似文献   

12.
慢性间断性缺氧诱导一氧化氮合酶表达的研究   总被引:1,自引:0,他引:1  
目的:建立大鼠缺氧模型,检测神经元型一氧化氮合酶(nNOS)及诱导型一氧化氮合酶(iNOS)的表达情况。方法:1.建立缺氧模型:将SD大鼠置于常压低氧舱中,充入氮气调节氧浓度至所需氧浓度。2.动物分组:(1)急性缺氧组:在低氧舱中缺氧1.5小时。(2)慢性间断性缺氧组:每日在低氧舱中6小时。每周缺氧6天,共缺氧28天。3.采用免疫组化法检测nNOS和iNOS的表达。4.统计学分析检验。结果:急性缺氧后,iNOS、nNOS阳性神经元增加;慢性缺氧后,iNOS、nNOS阳性神经元仍持续增多,慢性缺氧时增加iNOS-IR细胞远远多于nNOS-IR细胞。结论:我们的研究表明缺氧可引起iNOS、nNOS阳性神经元增加,NOS亚型表达时间的不同说明其脑损伤具有阶段性。  相似文献   

13.
In the present study, the effects of tramadol on pentylenetetrazole (PTZ)-induced seizures and involvement of nitric oxide (NO) were assessed in mice. To determine the threshold for clonic seizures, PTZ was administered intravenously. Tramadol was administered intraperitoneally (0.5-50mg/kg) 30 minutes prior to induction of seizures. The effects of the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; 0.5, 1, 5, and 10mg/kg), the nitric oxide precursor L-arginine (10, 30, and 60 mg/kg), and the nonspecific opioid receptor antagonist naloxone (0.1, 0.5, 1, and 5mg/kg) on the anticonvulsant effect of tramadol were investigated. Administration of tramadol (1mg/kg) increased the threshold for seizures induced with PTZ in a monophasic, dose-independent, and time-dependent manner. Acute administration of L-NAME (5 and 10mg/kg) inhibited the anticonvulsant effect of tramadol (1mg/kg), whereas L-arginine, in the noneffective dose range (30 and 60 mg/kg), potentiated the seizure threshold when co-administered with a subeffective dose of tramadol (0.5mg/kg). Naloxone partially and dose-independently antagonized the anticonvulsant effect of tramadol (1mg/kg). These results indicate that the anticonvulsant effect of tramadol is mediated by the nitric oxide pathway and also by classic opioid receptors.  相似文献   

14.
This study was designed to investigate the effect of Zen Meditation on serum nitric oxide activity (NO) and oxidative stress (lipid peroxidation). The experimental group included 20 subjects who had practiced the Zen Meditation program in Meditation Center located in Seoul, South Korea. The control group included 20 subjects who did not practice any formal stress management technique and were age and sex matched with experimental group. To provide an assessment of nitric oxide production, the serum level of nitrate/nitrite was determined using the Griess reagent. Malondialdehyde (MDA) concentration was measured as a convenient index of lipid peroxidation by thiobarbituric acid (TBA) method. Meditation group showed a significant higher level of serum nitrate+nitrite concentration and a significant reduced level of serum malondialdehyde (MDA) than control group. A comprehensive randomized controlled trial should be performed to prove the causal relationship between meditation and level of nitric oxide or oxidative stress in reducing cardiovascular risk factors.  相似文献   

15.
Summary. The aim of the present study was to elucidate whether amphetamine modulates the output of the neurotransmitters glutamate, aspartate, GABA and acetylcholine (ACh) in nucleus accumbens (NAc) as well as the formation of lipid peroxidation (LPO) and nitric oxide (NO). D,L-amphetamine (AMPH, 5mg/kg, i.p., 4 times every 2h) was injected into anaesthetized rats and the release of neurotransmitters in the NAc, tissue content of NO and LPO products were determined.While AMPH increased the release of aspartate, GABA and ACh in the NAc, the glutamate release was not affected. Levels of NO and LPO products were elevated in striatum and cortex. Pretreatment with the neuronal NO synthase inhibitor 7-nitroindazole (50mg/kg, i.p.) was highly effective in abating the rise of the neurotransmitter release and NO generation but failed to influence the intensity of LPO elicited by the AMPH administration.These findings suggest that activation of NO synthesis is a potent factor in the AMPH-induced neurotransmitter release and that activation of NO synthesis and LPO by AMPH are not parallel processes.  相似文献   

16.
Sodium metavanadate (2.5, 3.5 or 5.0 mg/kg) administration to rats, intraperitoneally, for 7, 3 or 2 consecutive days was found to enhance lipid peroxidation in various rat brain fractions. However, administration of alpha-tocopherol (335 or 585 mg/kg) in combination with sodium metavanadate decreased the vanadium-stimulated lipid peroxidation. Results revealed that vanadium directly triggered peroxidative reaction and alpha-tocopherol protected against vanadium-stimulated lipid peroxidation.  相似文献   

17.
18.
Summary. The objective of this study was to determine the specific relationship between brain aging and changes in the level of oxidative stress, lipid peroxidation (LPO) and in the activities of antioxidant enzymes. We used four different age groups (2–3 months, 10–11 months, 16–17 months and 20–21 months) which represented young adults, adults, beginning senescence and senescence, respectively. Basal levels of LPO products measured as malondialdehyde increased gradually with age in mouse brain homogenate. The extent of stimulated LPO products, however, was clearly decreased in the brain of adult mice compared to young mice but increased again in the brain of senescent mice. We could not detect any appreciable age-related changes in the basal as well as in stimulated levels of ROS measured with the fluorescent dyes dichlorofluorescein and dihydrorhodamine123. Nevertheless, there was a significant delay in the time course of ROS-generation in brain cells from old mice. The activities of the antioxidant enzymes CuZn-superoxide dismutase and glutathione reductase increased with age whereas glutathione peroxidase remained unchanged. On the basis of our present findings, we envisage a potential model that integrates several divergent findings described in the literature about the role of oxidative stress in brain aging. Received December 18, 2000; accepted March 12, 2001  相似文献   

19.
Ghrelin, a gastric peptide with key action on food intake, has been recently recognized as a potential antiepileptic agent. In the present study, we investigated the involvement of nitric oxide in the effect of ghrelin on penicillin-induced epileptiform activity in rat. Thirty minutes after penicillin injection, ghrelin, at doses of 0.5, 1, 2 μg, was administered intracerebroventricularly (i.c.v.). Ghrelin, at a dose of 1 μg, significantly decreased the mean frequency of epileptiform activity without changing the amplitude whereas other doses of ghrelin (0.5 and 2 μg) did not alter either the mean of frequency or amplitude of epileptiform activity. The effects of systemic administration of nitric oxide synthase (NOS) inhibitors, non-selective NG-nitro-l-arginine methyl ester (l-NAME), selective neuronal NOS inhibitor, 7-nitroindazole (7-NI) and NO substrate, l-arginine on the anticonvulsive effects of ghrelin were investigated. The administration of l-NAME (60 mg/kg, i.p.), 15 min before ghrelin (1 μg) application, reversed the anti-epileptiform effects of ghrelin whereas 7-NI (40 mg/kg, i.p.) did not influence it. The present study provides electrophysiological evidence that the intracerebroventricular injection of ghrelin has an inhibitory effect against epileptiform activity in the penicillin model of epilepsy. The anti-epileptiform activity of ghrelin was reversed by nonspecific nitric oxide synthase inhibitor l-NAME, but not selective neuronal nitric oxide synthase inhibitor 7-NI, indicating that ghrelin requires activation of endothelial-NOS/NO route in the brain.  相似文献   

20.
The effects of the anti-epileptic drugs valproic acid and gamma-vinyl-GABA j(vigabatrin) on the extracellular content of GABA was determined by microdialysis. Probes were implanted in the substantia nigra reticulata (SNR) of rats. It was found that gamma-vinyl-GABA (1000 mg/kg) induced a 4–6-fold increase in the extracellular content of GABA. This increase lasted for at least 72 h. PTZ-induced convulsions were partly antagonized by the GVG treatment. The increase of extracellular GABA after gamma-vinyl-GABA was not affected by infusion of tetrodotoxin. In contrast valproic acid (200 mg/kg), although effective in preventing pentylenetetrazol (PTZ)-induced convulsions, did not affect extracellular GABA in the SNR. PTZ-induced convulsions did not modify extracellular GABA, neither in control rats nor in valproic acid or gamma-vinyl-GABA pretreated animals. The results do not support the idea that extracellular GABA in the SNR plays a significant role in anti-convulsive treatment. However, the present data can also be interpreted that extracellular GABA, as sampled by microdialysis, is not a reliable marker for GABA release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号