首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NIOSH-certified N95 filtering facepiece respirators (FFRs) are used in healthcare settings as a control measure to mitigate exposures to airborne infectious particles. When the outer surface of an FFR becomes contaminated, it presents a contact transmission risk to the wearer. The Centers for Disease Control and Prevention (CDC) guidance recommends that healthcare workers (HCWs) doff FFRs by grasping the straps at the back of the head to avoid contact with the potentially contaminated surface. Adherence to proper doffing technique is reportedly low due to numerous factors including difficulty in locating and grasping the straps. This study compares the impact of tabs placed on FFR straps to controls (without tabs) on proper doffing, ease of use and comfort, and reduction of transfer of contamination to the wearer. Utilizing a fluorescent agent as a tracer to track contamination from FFRs to hand and head areas of 20 human subjects demonstrated that there was no difference in tabbed FFR straps and controls with respect to promoting proper doffing (p = 0.48), but did make doffing easier (p = 0.04) as indicated by 7 of 8 subjects that used the tabs. Seven of the 20 subjects felt that FFRs with tabs were easier to remove, while only 2 of 20 indicated that FFRs without tabs were easier to remove. Discomfort was not a factor for either FFR strap type. When removing an FFR with contaminated hands, the use of the tabs significantly reduced the amount of tracer transfer compared to straps without tabs (p = 0.012). FFRs with tabs on the straps are associated with ease of doffing and significantly less transfer of the fluorescent tracer.  相似文献   

2.
Filtering facepiece respirators (FFRs) are recommended for use as precautions against airborne pathogenic microorganisms; however, during pandemics demand for FFRs may far exceed availability. Reuse of FFRs following decontamination has been proposed but few reported studies have addressed the feasibility. Concerns regarding biocidal efficacy, respirator performance post decontamination, decontamination cost, and user safety have impeded adoption of reuse measures. This study examined the effectiveness of three energetic decontamination methods [ultraviolet germicidal irradiation (UVGI), microwave-generated steam, and moist heat] on two National Institute for Occupational Safety and Health-certified N95 FFRs (3M models 1860s and 1870) contaminated with H5N1. An aerosol settling chamber was used to apply virus-laden droplets to FFRs in a method designed to simulate respiratory deposition of droplets onto surfaces. When FFRs were examined post decontamination by viral culture, all three decontamination methods were effective, reducing virus load by > 4 log median tissue culture infective dose. Analysis of treated FFRs using a quantitative molecular amplification assay (quantitative real-time polymerase chain reaction) indicated that UVGI decontamination resulted in lower levels of detectable viral RNA than the other two methods. Filter performance was evaluated before and after decontamination using a 1% NaCl aerosol. As all FFRs displayed <5% penetration by 300-nm particles, no profound reduction in filtration performance was caused in the FFRs tested by exposure to virus and subsequent decontamination by the methods used. These findings indicate that, when properly implemented, these methods effectively decontaminate H5N1 on the two FFR models tested and do not drastically affect their filtering function; however, other considerations may influence decisions to reuse FFRs.  相似文献   

3.
NIOSH published a Federal Register Notice to explore the possibility of incorporating FDA required filtration tests for surgical masks (SMs) in the 42 CFR Part 84 respirator certification process. There have been no published studies comparing the filtration efficiency test methods used for NIOSH certification of N95 filtering facepiece respirators (N95 FFRs) with those used by the FDA for clearance of SMs. To address this issue, filtration efficiencies of “N95 FFRs” including six N95 FFR models and three surgical N95 FFR models, and three SM models were measured using the NIOSH NaCl aerosol test method, and FDA required particulate filtration efficiency (PFE) and bacterial filtration efficiency (BFE) methods, and viral filtration efficiency (VFE) method. Five samples of each model were tested using each method. Both PFE and BFE tests were done using unneutralized particles as per FDA guidance document. PFE was measured using 0.1 µm size polystyrene latex particles and BFE with ~3.0 µm size particles containing Staphylococcus aureus bacteria. VFE was obtained using ~3.0 µm size particles containing phiX 174 as the challenge virus and Escherichia coli as the host. Results showed that the efficiencies measured by the NIOSH NaCl method for “N95 FFRs” were from 98.15–99.68% compared to 99.74–99.99% for PFE, 99.62–99.9% for BFE, and 99.8–99.9% for VFE methods. Efficiencies by the NIOSH NaCl method were significantly (p = <0.05) lower than the other methods. SMs showed lower efficiencies (54.72–88.40%) than “N95 FFRs” measured by the NIOSH NaCl method, while PFE, BFE, and VFE methods produced no significant difference. The above results show that the NIOSH NaCl method is relatively conservative and is able to identify poorly performing filtration devices. The higher efficiencies obtained using PFE, BFE and VFE methods show that adding these supplemental particle penetration methods will not improve respirator certification.  相似文献   

4.
This study evaluated the filtration performance of four commercially available models of National Institute of Occupational Safety and Health (NIOSH)-certified filtering facepiece respirators (FFR) against both biological and inert aerosols at a flow rate of 85 L/min. Conventional N95 and P100 FFRs and two antimicrobial (AM)-treated FFRs (an N95 and a P95, both with iodine-based AM treatments) were tested for both physical penetration (PEN(P)) and viable penetration (PEN(V)) with three different bioaerosols, including MS2 bacteriophage virus, and the spores and vegetative cells of Bacillus atrophaeus bacteria, in addition to inert sodium chloride (NaCl) aerosol. For each FFR model, the PEN(P) measured with NaCl was predictive of its MS2 PEN(P), and it was observed that spores and bacteria aerosols were also filtered similarly to the inert aerosol. For both conventional FFRs, up to a 1-log reduction in PEN(V) in comparison with PEN(P) was observed and attributed to the experimental variability of the test system. For both models of AM-FFRs, no statistically significant differences between PEN(V) and PEN(P) for any of the three different bioaerosol challenges were observed. Thus, no bioaerosol filtration enhancement over the conventional FFRs was detected for either iodine-based AM-FFR. In the absence of any standardized test methods, we recommend that future studies evaluating the filtration performance of AM-treated FFRs incorporate the experimental best practices described herein.  相似文献   

5.
Contact transmission of pathogens from personal protective equipment is a concern within the healthcare industry. During public health emergency outbreaks, resources become constrained and the reuse of personal protective equipment, such as N95 filtering facepiece respirators, may be needed. This study was designed to characterize the transfer of bacteriophage MS2 and fluorescein between filtering facepiece respirators and the wearer's hands during three simulated use scenarios. Filtering facepiece respirators were contaminated with MS2 and fluorescein in droplets or droplet nuclei. Thirteen test subjects performed filtering facepiece respirator use scenarios including improper doffing, proper doffing and reuse, and improper doffing and reuse. Fluorescein and MS2 contamination transfer were quantified. The average MS2 transfer from filtering facepiece respirators to the subjects' hands ranged from 7.6–15.4% and 2.2–2.7% for droplet and droplet nuclei derived contamination, respectively. Handling filtering facepiece respirators contaminated with droplets resulted in higher levels of MS2 transfer compared to droplet nuclei for all use scenarios (p = 0.007). MS2 transfer from droplet contaminated filtering facepiece respirators during improper doffing and reuse was greater than transfer during improper doffing (p = 0.008) and proper doffing and reuse (p = 0.042). Droplet contamination resulted in higher levels of fluorescein transfer compared to droplet nuclei contaminated filtering facepiece respirators for all use scenarios (p = 0.009). Fluorescein transfer was greater for improper doffing and reuse (p = 0.007) from droplet contaminated masks compared to droplet nuclei contaminated filtering facepiece respirators and for improper doffing and reuse when compared improper doffing (p = 0.017) and proper doffing and reuse (p = 0.018) for droplet contaminated filtering facepiece respirators. For droplet nuclei contaminated filtering facepiece respirators, the difference in MS2 and fluorescein transfer did not reach statistical significance when comparing any of the use scenarios. The findings suggest that the results of fluorescein and MS2 transfer were consistent and highly correlated across the conditions of study. The data supports CDC recommendations for using proper doffing techniques and discarding filtering facepiece respirators that are directly contaminated with secretions from a cough or sneeze.  相似文献   

6.
The objective of this study was to determine if ultraviolet germicidal irradiation (UVGI), moist heat incubation (MHI), or microwave-generated steam (MGS) decontamination affects the fitting characteristics, odor, comfort, or donning ease of six N95 filtering facepiece respirator (FFR) models. For each model, 10 experienced test subjects qualified for the study by passing a standard OSHA quantitative fit test. Once qualified, each subject performed a series of fit tests to assess respirator fit and completed surveys to evaluate odor, comfort, and donning ease with FFRs that were not decontaminated (controls) and with FFRs of the same model that had been decontaminated. Respirator fit was quantitatively measured using a multidonning protocol with the TSI PORTACOUNT Plus and the N95 Companion accessory (designed to count only particles resulting from face to face-seal leakage). Participants' subjective appraisals of the respirator's odor, comfort, and donning ease were captured using a visual analog scale survey. Wilcoxon signed rank tests compared median values for fit, odor, comfort, and donning ease for each FFR and decontamination method against their respective controls for a given model. Two of the six FFRs demonstrated a statistically significant reduction (p < 0.05) in fit after MHI decontamination. However, for these two FFR models, post-decontamination mean fit factors were still ≥ 100. One of the other FFRs demonstrated a relatively small though statistically significant increase (p < 0.05) in median odor response after MHI decontamination. These data suggest that FFR users with characteristics similar to those in this study population would be unlikely to experience a clinically meaningful reduction in fit, increase in odor, increase in discomfort, or increased difficulty in donning with the six FFRs included in this study after UVGI, MHI, or MGS decontamination. Further research is needed before decontamination of N95 FFRs for purposes of reuse can be recommended.  相似文献   

7.
Improved respirator test headforms are needed to measure the fit of N95 filtering facepiece respirators (FFRs) for protection studies against viable airborne particles. A Static (i.e., non-moving, non-speaking) Advanced Headform (StAH) was developed for evaluating the fit of N95 FFRs. The StAH was developed based on the anthropometric dimensions of a digital headform reported by the National Institute for Occupational Safety and Health (NIOSH) and has a silicone polymer skin with defined local tissue thicknesses. Quantitative fit factor evaluations were performed on seven N95 FFR models of various sizes and designs. Donnings were performed with and without a pre-test leak checking method. For each method, four replicate FFR samples of each of the seven models were tested with two donnings per replicate, resulting in a total of 56 tests per donning method. Each fit factor evaluation was comprised of three 86-sec exercises: “Normal Breathing” (NB, 11.2 liters per min (lpm)), “Deep Breathing” (DB, 20.4 lpm), then NB again. A fit factor for each exercise and an overall test fit factor were obtained. Analysis of variance methods were used to identify statistical differences among fit factors (analyzed as logarithms) for different FFR models, exercises, and testing methods. For each FFR model and for each testing method, the NB and DB fit factor data were not significantly different (P > 0.05). Significant differences were seen in the overall exercise fit factor data for the two donning methods among all FFR models (pooled data) and in the overall exercise fit factor data for the two testing methods within certain models. Utilization of the leak checking method improved the rate of obtaining overall exercise fit factors ≥100. The FFR models, which are expected to achieve overall fit factors ≥ 100 on human subjects, achieved overall exercise fit factors ≥ 100 on the StAH. Further research is needed to evaluate the correlation of FFRs fitted on the StAH to FFRs fitted on people.

[Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a file providing detailed information on the advanced head form design and fabrication process.]  相似文献   


8.
Respiratory protection provided by a particulate respirator is a function of particle penetration through filter media and through faceseal leakage. Faceseal leakage largely contributes to the penetration of particles through a respirator and compromises protection. When faceseal leaks arise, filter penetration is assumed to be negligible. The contribution of filter penetration and faceseal leakage to total inward leakage (TIL) of submicron-size bioaerosols is not well studied. To address this issue, TIL values for two N95 filtering facepiece respirator (FFR) models and two surgical mask (SM) models sealed to a manikin were measured at 8 L and 40 L breathing minute volumes with different artificial leak sizes. TIL values for different size (20–800 nm, electrical mobility diameter) NaCl particles representing submicron-size bioaerosols were measured using a scanning mobility particle sizer. Efficiency of filtering devices was assessed by measuring the penetration against NaCl aerosol similar to the method used for NIOSH particulate filter certification. Results showed that the most penetrating particle size (MPPS) was ~45 nm for both N95 FFR models and one of the two SM models, and ~350 nm for the other SM model at sealed condition with no leaks as well as with different leak sizes. TIL values increased with increasing leak sizes and breathing minute volumes. Relatively, higher efficiency N95 and SM models showed lower TIL values. Filter efficiency of FFRs and SMs influenced the TIL at different flow rates and leak sizes. Overall, the data indicate that good fitting higher-efficiency FFRs may offer higher protection against submicron-size bioaerosols.  相似文献   

9.
目的 在新型冠状病毒肺炎疫情背景下,探讨不同通风方式对轿厢式电梯内人员咳嗽飞沫核扩散的影响.方法 基于计算流体力学气固两相流原理,采用Realizable k-ε紊流模型和颗粒轨道模型研究轿厢式电梯内人员咳嗽产生的飞沫核在10 s内的扩散过程,比较三种电梯顶部送风(后部、两侧以及四角通风方式)下的气流速度变化、飞沫核扩...  相似文献   

10.
National Institute for Occupational Safety and Health recommends the use of particulate respirators for protection against nanoparticles (<100 nm size). Protection afforded by a filtering facepiece particulate respirator is a function of the filter efficiency and the leakage through the face-to-facepiece seal. The combination of particle penetration through filter media and particle leakage through face seal and any component interfaces is considered as total inward leakage (TIL). Although the mechanisms and extent of nanoparticle penetration through filter media have been well documented, information concerning nanoparticle leakage through face seal is lacking. A previous study in our laboratory measured filter penetration and TIL for specific size particles. The results showed higher filter penetration and TIL for 50 nm size particles, i.e. the most penetrating particle size (MPPS) than for 8 and 400 nm size particles. To better understand the significance of particle penetration through filter media and through face seal leakage, this study was expanded to measure filter penetration at sealed condition and TIL with artificially introduced leaks for 20-800 nm particles at 8-40 l minute volumes for four N95 models of filtering facepiece respirators (FFRs) using a breathing manikin. Results showed that the MPPS was ~45 nm for all four respirator models. Filter penetration for 45 nm size particles was significantly (P < 0.05) higher than the values for 400 nm size particles. A consistent increase in filter penetrations for 45 and 400 nm size particles was obtained with increasing breathing minute volumes. Artificial leakage of test aerosols (mode size ~75 nm) through increasing size holes near the sealing area of FFRs showed higher TIL values for 45 nm size particles at different minute volumes, indicating that the induced leakage allows the test aerosols, regardless of particle size, inside the FFR, while filter penetration determines the TIL for different size particles. TIL values obtained for 45 nm size particles were significantly (P < 0.05) higher than the values obtained for 400 nm size particles for all four models. Models with relatively small filter penetration values showed lower TIL values than the models with higher filter penetrations at smaller leak sizes indicating the dependence of TIL values on filter penetration. When the electrostatic charge was removed, the FFRs showed a shift in the MPPS to ~150 nm with the same test aerosols (mode size ~75 nm) at different hole sizes and breathing minute volumes, confirming the interaction between filter penetration and face seal leakage processes. The shift in the MPPS from 45 to 150 nm for the charge removed filters indicates that mechanical filters may perform better against nanoparticles than electrostatic filters rated for the same filter efficiency. The results suggest that among the different size particles that enter inside the N95 respirators, relatively high concentration of the MPPS particles in the breathing zone of respirators can be expected in workplaces with high concentration of nanoparticles. Overall, the data obtained in the study suggest that good fitting respirators with lower filter penetration values would provide better protection against nanoparticles.  相似文献   

11.
The primary objective of this study was to compare the filter performance of a representative selection of uncertified dust masks relative to the filter performance of a set of NIOSH-approved N95 filtering face-piece respirators (FFRs). Five different models of commercially available dust masks were selected for this study. Filter penetration of new dust masks was evaluated against a sodium chloride aerosol. Breathing resistance (BR) of new dust masks and FFRs was then measured for 120 min while challenging the dust masks and FFRs with Arizona road dust (ARD) at 25°C and 30% relative humidity. Results demonstrated that a wide range of maximum filter penetration was observed among the dust masks tested in this study (3–75% at the most penetrating particle size (p < 0.001). The breathing resistances of the unused FFRs and dust masks did not vary greatly (8–13 mm H2O) but were significantly different (p < 0.001). After dust loading there was a significant difference between the BR caused by the ARD dust layer on each FFR and dust mask. Microscopic analysis of the external layer of each dust mask and FFR suggests that different collection media in the external layer influences the development of the dust layer and therefore affects the increase in BR differently between the tested models. Two of the dust masks had penetration values < 5% and quality factors (0.26 and 0.33) comparable to those obtained for the two FFRs (0.23 and 0.31). However, the remaining three dust masks, those with penetration > 15%, had quality factors ranging between 0.04–0.15 primarily because their initial BR remained relatively high. These results indicate that some dust masks analysed during this research did not have an expected very low BR to compensate for their high penetration.  相似文献   

12.
Public health organizations, such as the Centers for Disease Control and Prevention (CDC), are increasingly recommending the use of N95 filtering facepiece respirators (FFRs) in health care settings. For infection control purposes, the usual practice is to discard FFRs after close contact with a patient (“single use”). However, in some situations, such as during contact with tuberculosis patients, limited FFR reuse (i.e., repeated donning and doffing of the same FFR by the same person) is practiced. A related practice, extended use, involves wearing the same FFR for multiple patient encounters without doffing. Extended use and limited FFR reuse have been recommended during infectious disease outbreaks and pandemics to conserve FFR supplies. This commentary examines CDC recommendations related to FFR extended use and limited reuse and analyzes available data from the literature to provide a relative estimate of the risks of these practices compared to single use.

Analysis of the available data and the use of disease transmission models indicate that decisions regarding whether FFR extended use or reuse should be recommended should continue to be pathogen- and event-specific. Factors to be included in developing the recommendations are the potential for the pathogen to spread via contact transmission, the potential that the event could result in or is currently causing a FFR shortage, the protection provided by FFR use, human factors, potential for self-inoculation, the potential for secondary exposures, and government policies and regulations. While recent findings largely support the previous recommendations for extended use and limited reuse in certain situations, some new cautions and limitations should be considered before issuing recommendations in the future. In general, extended use of FFRs is preferred over limited FFR reuse. Limited FFR reuse would allow the user a brief respite from extended wear times, but increases the risk of self-inoculation and preliminary data from one study suggest that some FFR models may begin to lose effectiveness after multiple donnings.  相似文献   


13.
The contact area, as well as the contact pressure, is created when a respiratory protection device (a respirator or surgical mask) contacts a human face. A computer-based algorithm for determining the contact area between a headform and N95 filtering facepiece respirator (FFR) was proposed. Six N95 FFRs were applied to five sizes of standard headforms (large, medium, small, long/narrow, and short/wide) to simulate respirator donning. After the contact simulation between a headform and an N95 FFR was conducted, a contact area was determined by extracting the intersection surfaces of the headform and the N95 FFR. Using computer-aided design tools, a superimposed contact area and an average contact area, which are non-uniform rational basis spline (NURBS) surfaces, were developed for each headform. Experiments that directly measured dimensions of the contact areas between headform prototypes and N95 FFRs were used to validate the simulation results. Headform sizes influenced all contact area dimensions (P < 0.0001), and N95 FFR sizing systems influenced all contact area dimensions (P < 0.05) except the left and right chin regions. The medium headform produced the largest contact area, while the large and small headforms produced the smallest.  相似文献   

14.
Breathing frequency (breaths/min) differs among individuals and levels of physical activity. Particles enter respirators through two principle penetration pathways: faceseal leakage and filter penetration. However, it is unknown how breathing frequency affects the overall performance of N95 filtering facepiece respirators (FFRs) and surgical masks (SMs) against viral particles, as well as other health-relevant submicrometer particles. A FFR and SM were tested on a breathing manikin at four mean inspiratory flows (MIFs) (15, 30, 55, and 85 L/min) and five breathing frequencies (10, 15, 20, 25, and 30 breaths/min). Filter penetration (Pfilter) and total inward leakage (TIL) were determined for the tested respiratory protection devices against sodium chloride (NaCl) aerosol particles in the size range of 20 to 500 nm. “Faceseal leakage-to-filter” (FLTF) penetration ratios were calculated. Both MIF and breathing frequency showed significant effects (p < 0.05) on Pfilter and TIL. Increasing breathing frequency increased TIL for the N95 FFR whereas no clear trends were observed for the SM. Increasing MIF increased Pfilter and decreased TIL resulting in decreasing FLTF ratio. Most of FLTF ratios were >1, suggesting that the faceseal leakage was the primary particle penetration pathway at various breathing frequencies. Breathing frequency is another factor (besides MIF) that can significantly affect the performance of N95 FFRs, with higher breathing frequencies increasing TIL. No consistent trend of increase or decrease of TIL with either MIF or breathing frequency was observed for the tested SM. To potentially extend these findings beyond the manikin/breathing system used, future studies are needed to fully understand the mechanism causing the breathing frequency effect on the performance of respiratory protection devices on human subjects.  相似文献   

15.
 目的 建立评估呼吸道传染病经空气传播能力的现场试验研究方法。方法 在典型机械通风病房内雾化含有大肠埃希菌噬菌体的模拟唾液,雾化液滴与咳嗽飞沫具有类似粒径分布的液滴谱系,检测空气中不同粒径液滴核数量并估算其初始液滴的几何尺寸,计算液滴核初始携带的噬菌体数量,通过采集空气生物标本获得液滴核内噬菌体的实际存活量,比较两组数据获得液滴核携带的噬菌体在病房空气中的存活函数。结果 在表面蒸发作用下,模拟唾液雾化液滴所携带的存活噬菌体数量快速损失约83%,在360 s的检测时间段内液滴核内的噬菌体平均存活函数稳定在17%且不随检测点变化,室内空气中液滴核数量的衰减率与空气生物标本中噬菌体数量的衰减率一致,记录雾化液滴核数量即可推算病房空间生物暴露水平。结论 咳嗽飞沫核携带病毒在空气中传播的人工模拟技术,可用于评估呼吸道传染病经空气传播能力的现场试验研究。  相似文献   

16.
The objective of the study was to investigate size-selective concentrations of airborne particles and endotoxin in metalworking fluid (MWF) environments. The experiments were conducted under two conditions: (1) MWF collected in the field was aerosolized with a laboratory-scale simulator (MWF simulator) in the laboratory; and (2) MWFs were aerosolized during routine field operations. All experiments included size-selective measurement of airborne concentrations of particle numbers and endotoxin mass using an electrical low-pressure impactor. During field sampling, the total microbial and endotoxin concentrations in the air were also measured with a BioSampler, and the mass concentration of MWF mists was measured with a photometer. Airborne particle concentrations were highest in the fine particle size ranges in the areas affected by MWFs. Relatively high concentrations of endotoxin were detected at particle size below 0.39 mum, which is smaller than the size of intact bacterial cells. The total microbial and endotoxin analysis revealed high microbial contamination in one sampling site although the total particle mass was not elevated. It was concluded that MWF sites can be contaminated with high concentrations of fine particles, and these fine particles may contain microbial components, such as endotoxin. The results call for the size-selective measurement of particles and endotoxin for more comprehensive exposure assessment in MWF facilities.  相似文献   

17.
The objective of this study was to determine the effect of several simulated air environmental conditions on the particle penetration and the breathing resistance of two N95 filtering facepiece respirator (FFR) models. The particle penetration and breathing resistance of the respirators were evaluated in a test system developed to mimic inhalation and exhalation breathing while relative humidity and temperature were modified. Breathing resistance was measured over 120 min using a calibrated pressure transducer under four different temperature and relative humidity conditions without aerosol loading. Particle penetration was evaluated before and after the breathing resistance test at room conditions using a sodium chloride aerosol measured with a scanning mobility particle sizer. Results demonstrated that increasing relative humidity and lowering external temperature caused significant increases in breathing resistance (p < 0.001). However, these same conditions did not influence the penetration or most penetrating particle size of the tested FFRs. The increase in breathing resistance varied by FFR model suggesting that some FFR media are less influenced by high relative humidity.  相似文献   

18.
To assess the relative importance of different postulated modes of spread of hepatitis B in dialysis units, blood charged with various tracer organisms was used in simulated haemodialysis runs in four laboratories, and the resulting contamination of equipment and environment was measured semi-quantitatively. Some airborne spread of the tracer organism occurred when tubing containing contaminated blood was needled as the "patient" went on and came off the dialyser. Virtually no small airborne particles could be demonstrated however in simulated emergencies in which a blood line was disconnected, or even when bottles of blood were dropped on to a hard floor from a height of 2 metres. Bacillus globigii spores from contaminated blood leaked in small numbers into the dialysing fluid through apparently intact coils. T3 phage, with a particle size of the same order as hepatitis B virus, passed in small quantities through the membrane of a Kiil dialyser from blood to dialysing fluid and also in the reverse direction when added to the header tank. A number of other dialysers were also permeable to phage. Visual assessment of the appropriate moment for inserting the venous line into the "patient" at the onset of dialysis was shown to be unreliable, as the displaced fluid from the end of the venous line was already contaminated before it contained visible red blood cells. Considerable contamination of exposed surfaces and of the buttons on the proportionating unit cabinet occurred. Minor visible splashing of blood was a common-place of the laboratory experiments and was shown to be also a common event during routine haemodialysis in two of the dialysis units taking part in the studies.  相似文献   

19.
The exposure of workers in the near-wake region due to a recirculating airflow was studied experimentally and numerically. A mannequin was installed in an open-ended tunnel and tracer gas was released at several locations downstream to determine the size and location of the reverse flow region. The contaminant transport into the breathing zone was found to depend strongly on the location of the release point. The airflow field was also determined numerically assuming a steady flow and using the standard k-ϵ turbulence model. After calculating the turbulent airflow field, a large number of submicrometre particles were released in different locations downstream of the mannequin to simulate the transport of gaseous contaminants. Although this method does not provide actual exposures, it does predict the tendencies in exposure variations due to different release points quite satisfactorily.  相似文献   

20.
The purpose of this study was to determine the physical collection efficiency of commercially available filters for collecting airborne bacteria, viruses, and other particles in the 10-900 nm (nanometer) size range. Laboratory experiments with various polytetrafluoroethylene (PTFE), polycarbonate (PC) and gelatin filters in conjunction with Button Inhalable samplers and three-piece cassettes were undertaken. Both biological and non-biological test aerosols were used: Bacillus atrophaeus, MS2, polystyrene latex (PSL), and sodium chloride (NaCl). The B.atrophaeus endospores had an aerodynamic diameter of 900 nm, whereas MS2 virion particles ranged from 10 to 80 nm. Monodisperse 350 nm PSL particles were used as this size was believed to have the lowest filtration efficiency. NaCl solution (1% weight by volume) was used to create a polydisperse aerosol in the 10-600 nm range. The physical collection efficiency was determined by measuring particle concentrations size-selectively upstream and downstream of the filters. The PTFE and gelatin filters showed excellent collection efficiency (>93%) for all of the test particles. The PC filters showed lower collection efficiency for small particles especially <100 nm. Among the tested filters, the lowest collection efficiencies, 49 and 22%, were observed for 1 and 3-microm pore size PC filters at the particle sizes of 47 and 63 nm, respectively. The results indicate that the effect of filter material is more significant for the size range of single virions than for bacteria. The effect of filter loading was examined by exposing filters to mixtures of PSL particles, which aimed at mimicking typical indoor dust levels and size distributions. A 4-h loading did not cause significant change in the physical collection efficiency of the tested filters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号