首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
This study examined the positive modulatory properties of 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF) at γ-aminobutyric acid B (GABA(B)) receptors in different brain regions. Using quantitative autoradiography, we measured GABA(B) receptor-stimulated binding of guanosine 5'-O-(3-[3?S]thiotriphosphate) ([3?S]GTPγS) to G proteins in medial prefrontal cortex (mPFC), hippocampus, and cerebellum. CGP7930 and rac-BHFF enhanced baclofen-stimulated [3?S]GTPγS binding similarly in mPFC and hippocampus, but were more effective in cerebellum. CGP7930 (100 μM) increased [3?S]GTPγS binding stimulated by baclofen (30 μM) from 29 to 241% above basal in mPFC and from 13 to 1530% above basal in cerebellum. Likewise, rac-BHFF (10 μM) increased baclofen-stimulated [3?S]GTPγS binding more in cerebellum (from 13 to 1778% above basal) than in mPFC (from 29 to 514% above basal). rac-BHFF (10 μM) in combination with γ-hydroxybutyrate (20 mM) increased [3?S]GTPγS binding in cerebellum but not in mPFC. rac-BHFF also enhanced the effects of 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348). Consistent with its partial agonist properties, CGP35348 stimulated [3?S]GTPγS binding in mPFC when given alone (to 18% above basal), but less extensively than baclofen (140% above basal), and antagonized baclofen when given together. CGP35348 (1 mM) in combination with rac-BHFF (100 μM) produced an increase in [3?S]GTPγS binding that was larger in cerebellum (from 61 to 1260% above basal) than in mPFC (from 18 to 118% above basal). Taken together, the results show that GABA(B) receptor-positive modulators enhance [3?S]GTPγS binding stimulated by GABA(B) receptor agonists in a brain region-dependent manner. This regionally selective enhancement is further evidence of pharmacologically distinct GABA(B) receptor populations, possibly allowing for more selective therapeutic targeting of the GABA(B) system.  相似文献   

2.
The GABA(B) receptor is a G protein-coupled heterodimer composed of GABA(B1) and GABA(B2) subunits. In the present study, experiments were undertaken to examine the relationship between GABA(B) receptor function and subunit expression in the rat lumbar spinal cord following pharmacological and physiological manipulation of this receptor system. Although formalin-induced hind paw inflammation increases the production of GABA(B1) and GABA(B2) protein in the spinal cord within 24 h, there is no change in receptor function, as measured by the baclofen-stimulated guanosine 5'-O-(3-[(35)S]thiotriphosphate) ([(35)S]GTPgammaS) binding assay. Conversely, although chronic (7 days) administration of baclofen, a GABA(B) receptor agonist, abolishes baclofen-stimulated [(35)S]GTPgammaS binding in the spinal cord tissue, causes tolerance to the sedative and antinociceptive effects of the drug, increases the number of formalin-induced hind paw flinches, and induces mechanical hyperalgesia, this treatment had no effect on the levels of GABA(B1) or GABA(B2) mRNAs in the lumbar spinal cord. The results indicate a lack of concordance between expression of GABA(B1) and GABA(B2) subunits and GABA(B) receptor function, suggesting these subunit proteins may serve multiple functions in the cells. Moreover, these findings indicate that nongenomic mechanisms are primarily responsible for the GABA(B) receptor desensitization that occurs during prolonged exposure to receptor agonist.  相似文献   

3.
To determine whether or not presynaptic gamma-aminobutyric acid (GABA) receptors regulate the release of GABA, we examined properties of the presynaptic GABA receptor and compared the findings within the case of the postsynaptic GABA receptor, using the longitudinal muscle with myenteric plexus (L-M) preparation of guinea pig small intestine. Muscimol, but not baclofen, reduced the Ca++-dependent release of [3H]GABA evoked by high K+ in the presence of tetrodotoxin from L-M preparation of the small intestine preloaded with [3H]GABA. Bicuculline, picrotoxin and furosemide antagonized the effect of muscimol. Diazepam, clonazepam and pentobarbital potentiated the muscimol-induced inhibition of high K+-evoked release of [3H]GABA. The potentiating effect of clonazepam was antagonized by Ro 15-1788. Muscimol induced a Ca++-dependent and tetrodotoxin-sensitive release of [3H]acetylcholine from L-M preparation preloaded with [3H]choline. The effect of muscimol was antagonized by bicuculline, picrotoxin and furosemide. Diazepam, clonazepam and pentobarbital potentiated the muscimol-evoked release of [3H]ACh. The potentiation of muscimol effect by clonazepam was inhibited by Ro 15-1788. These results indicate that both the GABA autoreceptor and postsynaptic receptor may possess the same property which is related to benzodiazepine and barbiturate binding sites in the enteric nervous system of the guinea pig small intestine. The benzodiazepine binding site seems to be of central type.  相似文献   

4.
N,N'-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds are described as novel allosteric enhancers of GABA(B) receptor function. They potentiate GABA-stimulated guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding to membranes from a GABA(B)(1b/2)-expressing Chinese hamster ovary cell line at low micromolar concentrations, but do not stimulate [35S]GTPgammaS binding by themselves. Similar effects of GS39783 are seen on native GABA(B) receptors in rat brain membranes. Concentration-response curves with GABA in the presence of different fixed concentrations of GS39783 reveal an increase of both the potency and maximal efficacy of GABA at the GABA(B)(1b/2) heterodimer. In radioligand binding experiments, GS39783 reduces the kinetic rate constants of the association and dissociation of [3H]3-aminopropylphosphinic acid, resulting in a net increase in affinity for the agonist radioligand. In equilibrium binding experiments (displacement of the antagonist ligand [3H]CGP62349), GS39783 increases agonist affinities. Agonist displacement curves are biphasic, probably reflecting the G protein-coupled and uncoupled states of the receptor. The proportion of the high-affinity component is increased by GS39783, suggesting that the G protein coupling of the receptor is also promoted by the positive modulator. We also show that GS39783 has modulatory effects in cellular assays such as GABA(B) receptor-mediated activation of inwardly rectifying potassium channels in Xenopus oocytes and Ca2+ signaling in human embryonic kidney 293 cells. In a more physiological context, GS39783 is shown to suppress paired pulse inhibition in rat hippocampal slices. This effect is reversed by the competitive GABA(B) receptor antagonist CGP55845A and is produced most likely by enhancing the effect of synaptically released GABA at presynaptic GABA(B) receptors.  相似文献   

5.
gamma-Hydroxybutyrate (GHB), a therapeutic for narcolepsy and a drug of abuse, has several mechanisms of action that involve GHB and GABA(B) receptors, metabolism to GABA, and modulation of dopaminergic signaling. The aim of these studies was to examine the role of GHB and GABA(B) receptors in the behavioral effects of GHB. Three approaches were used to synthesize GHB analogs that bind selectively to GHB receptors and are not metabolized to GABA-active compounds. Radioligand binding assays identified UMB86 (4-hydroxy-4-napthylbutanoic acid, sodium salt), UMB72 [4-(3-phenylpropyloxy)butyric acid, sodium salt], UMB73 (4-benzyloxybutyric acid, sodium salt), 2-hydroxyphenylacetic acid, 3-hydroxyphenylacetic acid (3-HPA), and 4-hydroxy-4-phenylbutyric acid as compounds that displace [(3)H]NCS-382 [5-[(3)H]-(2E)-(5-hydroxy-5,7,8,9-tetrahydro-6H-benzo[a][7] annulen-6-ylidene) ethanoic acid] from GHB receptors at concentrations that do not markedly affect [(3)H]GABA binding to GABA(B) receptors. In rats and pigeons, GHB discriminative stimulus effects were not mimicked or attenuated by UMB86, UMB72, or 3-HPA up to doses that decreased responding. In mice, GHB, GHB precursors (gamma-butyrolactone and 1,4-butanediol) and GABA(B) receptor agonists [SKF97541 [3-aminopropyl(methyl)phosphinic acid hydrochloride] and baclofen] dose-dependently produced hypolocomotion, catalepsy, ataxia, and loss of righting. The GABA(B) receptor antagonist CGP35348 (3-aminopropyl(diethoxymethyl)phosphinic acid) attenuated catalepsy and ataxia that was observed after GHB and GABA(B) receptor agonists SKF97541 and baclofen. UMB86, UMB72, UMB73, and 3-HPA, like GHB, produced hypolocomotion, ataxia, and loss of righting; however, catalepsy was never observed with these compounds, which is consistent with the cataleptic effects of GHB being mediated by GABA(B) receptors. Ataxia that was observed with UMB86, UMB72, UMB73, and 3-HPA was not antagonized by CGP35348, suggesting that ataxia induced by these analogs is not mediated by GABA(B) receptors and might involve GHB receptors.  相似文献   

6.
gamma-Hydroxybutyrate (GHB) is used for the treatment of alcoholism and to induce absence seizures in animals, but it has also recently emerged as a drug of abuse. In hippocampal neurons, GHB may activate its own putative receptor as well as GABA(B) receptors to affect synaptic transmission. We used voltage-clamp recordings of rat CA1 pyramidal neurons to characterize the postsynaptic conductances affected by GHB and to further clarify the site of GHB action. Low concentrations of GHB (0.1-1 mM) did not affect postsynaptic properties, but 10 mM GHB elicited an outward current at resting potential by augmenting an inwardly rectifying potassium current and concomitantly decreased the hyperpolarization-activated H-current (I(h)). Like GHB, the selective GABA(B)-receptor agonist baclofen (20 microM) increased a potassium current and decreased I(h). In the presence of 10 mM GHB, the baclofen effects were largely occluded. The selective GABA(B) receptor antagonist CGP 55845 [3-N[1-(S)-(3,4-dichlorophenyl)ethyl]amino-2-(S)-hydroxypropyl-p-benzyl-phosphinic acid] blocked the effects of both GHB and baclofen, whereas the putative GHB receptor antagonist NCS-382 [(2E)-(5-hydroxy-5,7,8,9-tetrahydro-6H-benzo[a][7]annulen-6-ylidene ethanoic acid] was ineffective. The GHB and baclofen effects were prevented in the presence of 200 microM barium, indicating that GHB augments a K(+) conductance, probably a G protein-coupled inwardly rectifying K(+) (GIRK) current. The decrease of I(h) by GHB and baclofen was also prevented by barium, suggesting that the diminution of I(h) is secondary to GIRK augmentation. Our results indicate that high GHB levels, which can be reached during abuse or intoxication, activate only GABA(B) receptors and not GHB receptors at the postsynaptic level to augment an inwardly rectifying K(+) current and decrease I(h).  相似文献   

7.
We found that N-[4-chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl]-2-hydroxybenzamide (CPPHA), is a potent and selective positive allosteric modulator of the metabotropic glutamate receptor subtype 5 (mGluR5). CPPHA alone had no agonist activity and acted as a selective positive allosteric modulator of human and rat mGluR5. CPPHA potentiated threshold responses to glutamate in fluorometric Ca(2+) assays 7- to 8-fold with EC(50) values in the 400 to 800 nM range, and at 10 microM shifted mGluR5 agonist concentration-response curves to glutamate, quisqualate, and (R,S)-3,5-dihydroxyphenylglycine (DHPG) 4- to 7-fold to the left. The only effect of CPPHA on other mGluRs was weak inhibition of mGluR4 and 8. Neither CPPHA nor the previously described 3,3'-difluorobenzaldazine (DFB) affected [(3)H]quisqualate binding to mGluR5, but although DFB partially competed for [(3)H]3-methoxy-5-(2-pyridinylethynyl)pyridine binding, CPPHA had no effect on the binding of this 2-methyl-6-(phenylethynyl)-pyridine analog to mGluR5. Although the binding sites for the two classes of allosteric modulators seem to be different, these different allosteric sites can modulate functionally and mechanistically similar allosteric effects. In electrophysiological studies of brain slice preparations, it had been previously shown that activation of mGluR5 receptors by agonists increased N-methyl-D-aspartate (NMDA) receptor currents in the CA1 region of hippocampal slices. We found that CPPHA (10 microM) potentiated NMDA receptor currents in hippocampal slices induced by threshold levels of DHPG, whereas having no effect on these currents by itself. Similarly, 10 microM CPPHA also potentiated mGluR5-mediated DHPG-induced depolarization of rat subthalamic nucleus neurons. These results demonstrate that allosteric potentiation of mGluR5 increases the effect of threshold agonist concentrations in native systems.  相似文献   

8.
gamma-Hydroxybutyrate (GHB) is an emerging drug of abuse with multiple mechanisms of action. This study is part of an effort to examine the role of GHB, GABA(A), and GABA(B) receptors in the discriminative stimulus (DS) effects of GHB. In pigeons trained to discriminate 100 mg/kg GHB from saline, GHB and its precursors gamma-butyrolactone and 1,4-butanediol produced 80 to 100% GHB-appropriate responding, whereas other compounds such as morphine, naltrexone, cocaine, and haloperidol produced no more than 34%. Compounds interacting with GABA receptors produced different maximal levels of GHB-appropriate responding. For example, the GABA(A) agonist muscimol produced 3%; the GABA(A)-positive modulators diazepam, pentobarbital, and ethanol, and the GABA(B) agonist baclofen produced levels ranging from 54 to 73%; and the benzodiazepine antagonist flumazenil and inverse agonist Ro 15-4513 (ethyl 8-azido-6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-alpha]-[1,4]-benzodiazepine-3-carboxylate) both produced 96%. The putative GHB receptor antagonist (2E)-(5-hydroxy-5,7,8,9-tetrahydro-6H-benzo[a][7]annulen-6-ylidene ethanoic acid (NCS-382) produced 70% GHB-appropriate responding. The GABA(B) antagonist (3-aminopropyl)(diethoxymethyl)phosphinic acid (CGP 35348) completely blocked the GHB-like DS effects of NCS-382 and baclofen at a dose of 56 mg/kg. CGP 35348 also blocked the DS effects of GHB, but incompletely and only at a dose of 560 mg/kg. Together, these results are consistent with a role for diazepam-sensitive and -insensitive GABA(A) and GABA(B) receptors in the DS effects of GHB. Together with previous findings, the present results suggest that diazepam-insensitive GABA(A) receptors are more prominently involved in the DS effects of GHB in pigeons than in rats, whereas GABA(B) receptors are less prominently involved. Exploring the role of GHB receptors with NCS-382 is hampered by its GABA(B) receptor-mediated, GHB-like agonist activity.  相似文献   

9.
GABA(A) receptors mediate fast inhibitory neurotransmission in the central nervous system (CNS), and approximately half of these receptors contain alpha1 subunits. GABA(A) receptor alpha1 subunits are important for receptor assembly and specific pharmacological responses to benzodiazepines. Plasticity in GABA(A) receptor alpha1 subunit expression is associated with changes in CNS excitability observed during normal brain development, in animal models of epilepsy, and upon withdrawal from alcohol and benzodiazepines. To examine the role of alpha1 subunit-containing GABA(A) receptors in vivo, we characterized receptor subunit expression and pharmacological properties in cerebral cortex of knockout mice with a targeted deletion of the alpha1 subunit. The mice are viable but exhibit an intention tremor. Western blot analysis confirms the complete loss of alpha1 subunit peptide expression. Stable adaptations in the expression of several GABA(A) receptor subunits are observed in the fifth to seventh generations, including decreased expression of beta2/3 and gamma2 subunits and increased expression of alpha2 and alpha3 subunits. There was no change in alpha4, alpha5, or delta subunit peptide levels in cerebral cortex. Knockout mice exhibit loss of over half of GABA(A) receptors measured by [(3)H]muscimol, [(3)H]2-(3-carboxyl)-3-amino-6-(4-methoxyphenyl)-pyridazinium bromide ([(3)H]SR-95531), and t-butylbicyclophosphoro[(35)S]thionate ([(35)S]TBPS) binding. [(3)H]Ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate ([(3)H]Ro15-4513) binding is reduced by variable amounts in different regions across brain. GABA(A) receptor alpha1(-/-) mice lose all high-affinity [(3)H]zolpidem binding and about half of [(3)H]flunitrazepam binding in the cerebral cortex. The potency and maximal efficacy of muscimol-stimulated (36)Cl(-) uptake in cerebral cortical synaptoneurosomes are reduced in alpha1(-/-) mice. Furthermore, knockout mice exhibit increased bicuculline-induced seizure susceptibility compared with wild-type mice. These data emphasize the significance of alpha1 subunit expression and its involvement in the regulation of CNS excitability.  相似文献   

10.
Gamma-hydroxybutyrate (GHB) is a drug of abuse with actions at GHB and GABA receptors. This study tried to increase the selectivity of the discriminative stimulus effects of GHB by training animals to discriminate GHB from compounds that share pharmacological mechanisms with GHB. In comparison with a previous GHB versus saline discrimination (group 1), rats were trained to discriminate GHB (200 mg/kg) either from saline and the GABA(B) agonist baclofen (3.2 mg/kg) (group 2) or from saline, baclofen, and the positive GABA(A) modulator diazepam (1 mg/kg) (group 3). In all groups, GHB produced more than 80% GHB-appropriate responding. Baclofen produced 84% GHB-appropriate responding in group 1 but less than 30% in groups 2 and 3. Diazepam produced 68% GHB-appropriate responding in group 1, 30% in group 2, and only 5% in group 3. The GABA(B) receptor antagonists CGP35348 [3-[aminopropyl(diethoxymethyl)phosphinic acid] and CGP52432 [3-[[[((3,4-dichlorophenyl)methyl]amino]propyl]diethoxymethyl)phosphinic acid] attenuated the discriminative stimulus effects of GHB; CGP35348 did so with similar potency in all groups, but CGP52432 was significantly less potent in groups 2 and 3 than in group 1. In all groups, the GHB antagonist NCS-382 [(2E)-(5-hydroxy-5,7,8,9-tetrahydro-6H-benzo[a][7]annulen-6-ylidene ethanoic acid] partially attenuated the discriminative stimulus effects of GHB. The selective GHB receptor ligand UMB86 (4-hydroxy-4-napthylbutanoic acid sodium) tended to attenuate the discriminative stimulus effects of GHB more in group 3 than in the other groups. The finding that animals can discriminate GHB from baclofen is further evidence that the effects of GHB and baclofen are not identical. Effects that GHB does not share with baclofen may involve GHB receptors or differential interactions with GABA(B) receptors.  相似文献   

11.
In rodents, the effect of the beta-carboline derivative isopropyl-6- benzyloxy-4-methoxymethyl-beta-carboline-3-carboxylate (abecarrnil), a new ligand for benzodiazepine receptors possessing anxiolytic and anticonvulsant properties, was evaluated on the function of central gamma-aminobutyric acid (GABA)A receptor complex, both in vitro and in vivo. Added in vitro to rat cortical membrane preparation, abecarnil increased [3H]GABA binding, enhanced muscimol-stimulated 36Cl- uptake and reduced the binding of t-[35S]butylbicyclophosphorothionate ([35S]TBPS). These effects were similar to those induced by diazepam, whereas the partial agonist Ro 16-6028 (tert-butyl-(S)-8-bromo-11,12,13,13a-tetrahydro-9-oxo-9H- imidazo[1,5-a]-pyrrolo-[2,1-c][1,4]benzodiazepine-1-carboxylate) showed very weak efficacy in these biochemical tests. After i.p. injection to rats, abecarnil and diazepam decreased in a time-dependent and dose-related (0.25-20 mg/kg i.p.) manner [35S]TBPS binding measured ex vivo in the cerebral cortex. Moreover, both drugs at the dose of 0.5 mg/kg antagonized completely the convulsant activity and the increase of [35S]TBPS binding induced by isoniazide (350 mg/kg s.c.) as well as the increase of [35S]TBPS binding induced by foot-shock stress. To better correlate the biochemical and the pharmacological effects, we studied the action of abecarnil on [35S]TBPS binding, exploratory motility and on isoniazid-induced biochemical and pharmacological effects in mice. In these animals, abecarnil produced a paralleled dose-dependent (0.05-1 mg/kg i.p.) reduction of both motor behavior and cortical [35S]TBPS binding. Moreover, 0.05 mg/kg of this beta-carboline reduced markedly the increase of [35S]TBPS binding and the convulsions induced by isoniazid (200 mg/kg s.c.).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited [3H]flunitrazepam binding to benzodiazepine receptor, but not [3H]muscimol binding to GABAA receptor as well as t-[3H]butylbicycloorthobenzoate [( 3H] TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively [3H] flunitrazepam binding. On the other hand, the binding of beta-[3H]CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated [3H]muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-[3H]CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for [3H]flunitrazepam, [3H]muscimol and [3H]TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.  相似文献   

13.
Using an extensively washed membrane preparation and standardized incubation conditions, the actions of benzodiazepine (BZ) receptor ligands were evaluated on [3H]flunitrazepam [+/- 10 microM gamma-aminobutyric acid (GABA)], [3H]muscimol (+/- 2.5 microM etazolate) and [35S]butyl bicyclophosphorothionate (TBPS) binding. Classical BZ receptor agonists stimulated [35S]TBPS binding and [3H]muscimol binding in the presence of etazolate. These agents also possessed ratios for [3H]flunitrazepam binding in the absence and presence of GABA (GABA ratio) of 2 to 5. BZ antagonists and inverse agonists had GABA ratios less than 1 and did not alter, or reduced, both [35S]TBPS and [3H]muscimol (+etazolate) binding. The nonsedating BZ agonist/antagonist agents CGS 9896, CL 218872, PK 8165 and PK 9084 all possessed GABA ratios between 1.1 and 1.4 and only stimulated [35S]TBPS and [3H]muscimol (+etazolate) binding to approximately 50% of the level of classical BZ agonists. The BZ partial agonists CGS 9895 and RU 39419 both were unique in that they possessed GABA ratios of 1 or less, stimulated [35S]TBPS binding and had no effect on [3H]muscimol binding (+etazolate). Therefore, by monitoring the major components of the BZ receptor complex (BZ receptor, GABA receptor and chloride channel), we were able to distinguish between different BZ drugs and to support suggestions that these drugs act via unique BZ receptor populations which possess differential couplings to the GABA receptor and chloride channel.  相似文献   

14.
Clinically used benzodiazepine and nonbenzodiazepine sedative-hypnotic agents for the treatment of insomnia produce their therapeutic effects through allosteric enhancement of the effects of the inhibitory neurotransmitter GABA at the GABA(A) receptor. Indiplon is a novel pyrazolopyrimidine sedative-hypnotic agent, currently in development for insomnia. Using radioligand binding studies, indiplon inhibited the binding of [(3)H]Ro 15-1788 (flumazenil) to rat cerebellar and cerebral cortex membranes with high affinity (K(i) values of 0.55 and 0.45 nM, respectively). [(3)H]Indiplon binding to rat cerebellar and cerebral cortex membranes was reversible and of high affinity, with K(D) values of 1.01 and 0.45 nM, respectively, with a pharmacological specificity consistent with preferential labeling of GABA(A) receptors containing alpha1 subunits. In "GABA shift" experiments and in measurements of GABA-induced chloride conductance in rat cortical neurons in culture, indiplon behaved as an efficacious potentiator of GABA(A) receptor function. In both the radioligand binding and electrophysiological experiments, indiplon had a higher affinity than zolpidem or zaleplon. These in vitro properties are consistent with the in vivo properties of indiplon as an effective sedative-hypnotic acting through allosteric potentiation of the GABA(A) receptor.  相似文献   

15.
gamma-Hydroxybutyrate (GHB) is a drug of abuse with actions at GHB and GABA receptors. This study examined whether the relative importance of GABA(A), GABA(B), and GHB receptors in the discriminative stimulus effects of GHB depends on the training dose. In comparison with a previous 100 mg/kg GHB-saline discrimination, pigeons were trained to discriminate either 178 or 56 mg/kg GHB from saline. Increasing the training dose shifted the GHB gradient to the right, and decreasing it shifted the gradient to the left. Similar shifts occurred with the GHB precursor gamma-butyrolactone, which substituted for GHB, and with the GABA(B) agonists baclofen and 3-aminopropyl(methyl)phosphinic acid hydrochloride (SKF97541) and the benzodiazepine diazepam, each of which produced at most 54 to 68% GHB-appropriate responding. The benzodiazepine antagonist flumazenil, the benzodiazepine inverse agonist ethyl 8-azido-6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-alpha]-[1,4]-benzodiazepine-3-carboxylate (Ro 15-4513), and the GHB receptor antagonist (2E)-5-hydroxy-5,7,8,9-tetrahydro-6H-benzo[a][7]annulen-6-ylidene ethanoic acid (NCS-382) produced a maximum of 66 to 97% GHB-appropriate responding in animals discriminating 56 or 100 mg/kg GHB and a maximum of 1 to 49% in animals discriminating 178 mg/kg. NCS-382 did not attenuate the effects of GHB. The GABA(B) antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348) blocked GHB at all training doses. The results suggest that increasing the training dose of GHB increases the pharmacological selectivity of its discriminative stimulus effects. At a high training dose, diazepam-insensitive GABA(A) receptors, for which flumazenil and Ro 15-4513 have affinity, may no longer be involved. Diazepam-sensitive GABA(A) receptors and GABA(B) receptors appear to play a similar role at all training doses. There was no evidence for GHB receptor involvement.  相似文献   

16.
The paraventricular nucleus (PVN) of the hypothalamus is involved in tonic regulation of sympathetic outflow. Impaired GABAergic control of PVN neurons may contribute to the elevated sympathetic drive in hypertension. In this study, we examined the function of GABA(A) and GABA(B) receptors in the PVN in control of sympathetic nerve activity and arterial blood pressure (ABP) in normotensive and hypertensive rats. Lumbar sympathetic activity (LSNA) and ABP were recorded from anesthetized spontaneously hypertensive rats (SHRs), Sprague-Dawley (SD) rats, and Wistar-Kyoto (WKY) rats. Bilateral microinjection of bicuculline (0.01-0.15 nmol), a GABA(A) receptor antagonist, into the PVN increased LSNA and ABP in normotensive WKY and SD rats in a dose-dependent manner. This response was significantly attenuated in SHRs. Furthermore, the decrease in LSNA and ABP induced by a GABA(A) receptor agonist, muscimol (0.05-1.5 nmol), in the PVN was significantly less in SHRs than in normotensive controls. In contrast, microinjection of the GABA(B) receptor agonist baclofen (0.3-4.5 nmol) into the PVN decreased LSNA and ABP in SHRs. However, in WKY and SD rats, baclofen only decreased LSNA and ABP at the highest dose tested. In addition, blockade of GABA(B) receptors in the PVN with CGP52432 (3-[[(3,4-dichlorophenyl)methyl]amino]propyl]diethoxymethyl)phosphinic acid) (0.15-3.0 nmol) dose-dependently increased LSNA and ABP in SHRs but not in normotensive controls. Collectively, this study provides new evidence that GABA(A) receptor function is attenuated, whereas the function of GABA(B) receptors is enhanced, in the PVN of SHRs.  相似文献   

17.
The specific binding of 3H-labeled gamma-aminobutyric acid ([3H]GABA) to synaptic plasma membranes from rat brains was inhibited by various quinolonecarboxylic acid derivatives (quinolones), and these inhibitions were concentration dependent. The binding of [3H]muscimol to GABAA sites was also inhibited. These inhibitory potencies differed widely among the quinolones examined. The Dixon plots showed that a newly developed difluorinated quinolone, NY-198 [1-ethyl-6,8-difluoro-1,4-dihydro-7-(3-methyl-1-piperazinyl)-4-oxo-3- quinolinecarboxylic acid hydrochloride], competitively inhibits the receptor bindings of [3H]GABA and [3H]muscimol. In conclusion, our findings suggest that the inhibition of GABA binding to receptors (including uptake sites) in the brain may be involved in the induction of epileptogenic neurotoxicities by quinolones.  相似文献   

18.
The effect of chronic ethanol treatment, and its withdrawal on the binding of ligands to the benzodiazepine binding sites of gamma-aminobutyric acid (GABA) receptor complex, was investigated in C57BL/6J mice spinal cord cultured neurons. Chronic ethanol (50 mM) treatment increased the specific binding of inverse agonists of the benzodiazepine binding sites, without affecting the binding of agonist or antagonist to this site. Thus, chronic ethanol exposure of the neurons increased the binding of [3H] Ro 15-4513 [ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5-alpha][1,4]benzodiazepine-3-carboxylate] and methyl-1-beta carboline-3-carboxylate [( 3H]beta-CCM), but not the binding of [3H]flunitrazepam or [3H]Ro 15-1788 [ethyl-8-fluro-5-6-dihydro-5-methyl-6-OxO-4H-imidazo[1,5-alpha][1, 4] benzodiazepine-3-carboxylate]. This increase was due to an increase in the number of binding sites for Ro 15-4513 and beta-CCM, and not due to a change in receptor affinity. The increase was observed as early as after a 12-hr exposure of the neurons with ethanol, and remained elevated at 24-hr withdrawal, returning to control values at 48-hr withdrawal. These results further strengthen the notion that Ro 15-4513 and related inverse agonists binding site on the GABA-benzodiazepine receptor complex may be involved in ethanol-s behavioral, biochemical and pharmacological effects which are mediated via GABAA receptor system. The significance of the enhanced binding sites for Ro 15-4513 and beta-CCM in the actions of ethanol, tolerance and withdrawal is discussed.  相似文献   

19.
The discriminative stimulus effects of gamma-hydroxybutyrate (GHB) can be mimicked by GABA(A) receptor-positive modulators (e.g., diazepam) and GABA(B) receptor agonists (e.g., baclofen). The purposes of this study were to see whether stimulus control could be established with baclofen and to further characterize the role of GABAergic mechanisms in the behavioral actions of GHB by evaluating GHB and related compounds in rats discriminating either diazepam or baclofen. Training criteria were satisfied with baclofen and diazepam after 69 and 44 sessions, respectively. GHB and its precursors gamma-butyrolactone and 1,4-butanediol occasioned >80% responding on the drug-associated lever in rats discriminating baclofen and <11% in rats discriminating diazepam. Diazepam and other GABA(A) receptor-positive modulators occasioned intermediate levels of responding on the baclofen lever, whereas baclofen occasioned less than 4% responding on the diazepam lever. The GABA(B) receptor antagonist CGP 35348 [(3-aminopropyl)(diethoxymethyl) phosphinic acid] partially antagonized the effects of baclofen as well as the baclofen-like effects of GHB, and flumazenil partially antagonized the effects of diazepam. This study established stimulus control with baclofen, and substitution data provided direct evidence for a role of GABAergic, especially GABA(B), mechanisms in the discriminative stimulus effects of GHB. The lack of substitution by GHB or its metabolic precursors for diazepam indicates a comparatively smaller role of GABA(A) mechanisms in these effects of GHB. The inability of CGP 35348 to completely attenuate the effects of baclofen and GHB suggests that multiple receptors could be involved in the discriminative stimulus effects of GHB.  相似文献   

20.
There is an emerging body of data purporting a role of gamma-aminobutyric acid (GABA) in the pathophysiology of mood disorders. However, the role of metabotropic GABA(B) receptors in depression is not well defined. The modified forced swim test has recently emerged as an excellent tool to assess behaviorally the role of monoamines in antidepressant action. To assess the role of GABA(B) receptors in antidepressant-related behavior, we examined a number of selective GABA(B) receptor ligands (novel positive modulators and antagonists) on behavior in the modified forced swim test. We demonstrate that the selective GABA(B) receptor antagonists CGP56433A [[3-{1-(S)-[{3-cyclohexylmethyl)hydroxy phosphinyl}-2-(S) hydroxy propyl]amino}ethyl]benzoic acid; 1-10 mg/kg] and [3-[[1-(S)-3-dichlorophenyl)ethyl]amino]-2-(S)-hydroxy-propyl]phenylmethyl-phosphinic acid hydrochloride; 3-10 mg/kg] had a similar profile to the selective serotonin reuptake inhibitor fluoxetine; they decreased immobility and increased swimming behavior. The tricyclic antidepressant desipramine decreased immobility but increased climbing behavior. In contrast, the novel GABA(B) receptor-positive modulator GS39783 (10-40 mg/kg) did not display antidepressant-like activity in the modified forced swim test. To further assess the possible interaction between GABA(B) receptor antagonism and serotonin, rats were pretreated with the tryptophan hydroxylase inhibitor para-chlorophenylalanine. 5-Hydroxytryptamine depletion (>90%) abolished the antidepressant-like behavior of CGP56433A (10 mg/kg) by attenuating the increase in swimming. Together, these data demonstrate that GABA(B) receptor antagonists via an interaction with the serotonergic system display antidepressant-like properties and therefore represent a novel approach for the treatment of depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号