首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
《Genome research》2015,25(7):948-957
Spontaneously arising mouse mutations have served as the foundation for understanding gene function for more than 100 years. We have used exome sequencing in an effort to identify the causative mutations for 172 distinct, spontaneously arising mouse models of Mendelian disorders, including a broad range of clinically relevant phenotypes. To analyze the resulting data, we developed an analytics pipeline that is optimized for mouse exome data and a variation database that allows for reproducible, user-defined data mining as well as nomination of mutation candidates through knowledge-based integration of sample and variant data. Using these new tools, putative pathogenic mutations were identified for 91 (53%) of the strains in our study. Despite the increased power offered by potentially unlimited pedigrees and controlled breeding, about half of our exome cases remained unsolved. Using a combination of manual analyses of exome alignments and whole-genome sequencing, we provide evidence that a large fraction of unsolved exome cases have underlying structural mutations. This result directly informs efforts to investigate the similar proportion of apparently Mendelian human phenotypes that are recalcitrant to exome sequencing.Causative mutation discovery provides the foundation for understanding the pathophysiology of genetic disorders. It also enables development of diagnostic assays and specifies therapeutic targets. Since the early 20th century (Cuenot 1905; Castle and Little 1910), the laboratory mouse has served as the primary model organism for understanding human Mendelian disorders, and in the era of genetic engineering it remains the most economical, genetically tractable model organism for both mechanistic studies and the development of therapeutics. With the convergence of massively parallel DNA sequencing and genome editing technologies, we are poised to enter a new era of disease gene discovery and parallel modeling between man and mouse.In the 5 years since the first demonstrations of whole-exome sequencing (WES) in the context of Mendelian disorders (Choi et al. 2009; Ng et al. 2009), more than 100 underlying causative genes have been discovered using this approach. Similarly, pilot studies in the mouse demonstrated that implementation of WES could significantly increase the rate of Mendelian disease gene discovery in spontaneous mutant strains (Fairfield et al. 2011). These technological advances in mutation discovery have a significant impact in functional genomics since spontaneously arising alleles and allelic series provide more complete recapitulation of disease gene function than can be provided by null alleles alone (Antonarakis and Beckmann 2006).Disease gene discovery by WES has been most successful for rare Mendelian disorders where there is limited locus heterogeneity and, often, supporting genetic data and evidence for causation (e.g., trio-sequencing for de novo mutations or multiple pedigrees for linkage analysis). Success rates have steadily improved as resources for human genetic variation have expanded (The 1000 Genomes Project Consortium 2012; Fu et al. 2013), providing deep reference data for filtering common genetic variation that drives causative gene discovery. However, causative gene discovery in Mendelian disorders still suffers from limitations as evidenced by its <50% success rate (Gilissen et al. 2012; Beaulieu et al. 2014). Possible causes for failed discovery by WES include poor or incomplete gene annotation, inefficient or incomplete exon capture, shortcomings of variant calling tools (particularly with respect to insertions/deletions [indels] and structural variation), insufficient ancillary information to successfully narrow catalogs of potentially causative variation, inaccurate phenotyping, or sample errors. Moreover, regulatory mutations that reside outside of coding regions will escape detection by WES.We previously reported the development and application on a pilot scale of WES for discovery of spontaneous mutations for Mendelian disorders in the laboratory mouse (Fairfield et al. 2011). In contrast to human disease gene discovery, disease gene discovery in the mouse is highly powered by selective breeding, large consanguineous pedigrees, and genetically defined inbred strain backgrounds, each of which minimizes genetic heterogeneity. Moreover, causation can be readily supported through bulk segregation analysis and ultimately proven through complementation testing and/or genetic engineering.Here we report a large-scale effort to identify the causative mutations for 172 distinct Mendelian disorders in laboratory mouse strains with clinically relevant phenotypes. This effort distinguishes itself from other large-scale functional genomic efforts in mice (e.g., The Knockout Mouse Project, KOMP) because it is phenotype driven, and unlike phenotype-driven saturation ENU mutagenesis projects, the molecular nature of spontaneous mutations is directly comparable to naturally occurring mutations in the human genome.  相似文献   

2.
3.
The translation of "next-generation" sequencing directly to the clinic is still being assessed but has the potential for genetic diseases to reduce costs, advance accuracy, and point to unsuspected yet treatable conditions. To study its capability in the clinic, we performed whole-exome sequencing in 118 probands with a diagnosis of a pediatric-onset neurodevelopmental disease in which most known causes had been excluded. Twenty-two genes not previously identified as disease-causing were identified in this study (19% of cohort), further establishing exome sequencing as a useful tool for gene discovery. New genes identified included EXOC8 in Joubert syndrome and GFM2 in a patient with microcephaly, simplified gyral pattern, and insulin-dependent diabetes. Exome sequencing uncovered 10 probands (8% of cohort) with mutations in genes known to cause a disease different from the initial diagnosis. Upon further medical evaluation, these mutations were found to account for each proband's disease, leading to a change in diagnosis, some of which led to changes in patient management. Our data provide proof of principle that genomic strategies are useful in clarifying diagnosis in a proportion of patients with neurodevelopmental disorders.  相似文献   

4.
We sequenced all protein-coding regions of the genome (the "exome") in two family members with combined hypolipidemia, marked by extremely low plasma levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides. These two participants were compound heterozygotes for two distinct nonsense mutations in ANGPTL3 (encoding the angiopoietin-like 3 protein). ANGPTL3 has been reported to inhibit lipoprotein lipase and endothelial lipase, thereby increasing plasma triglyceride and HDL cholesterol levels in rodents. Our finding of ANGPTL3 mutations highlights a role for the gene in LDL cholesterol metabolism in humans and shows the usefulness of exome sequencing for identification of novel genetic causes of inherited disorders. (Funded by the National Human Genome Research Institute and others.).  相似文献   

5.
Fatty acid hydroxylase-associated neurodegeneration due to fatty acid 2-hydroxylase deficiency presents with a wide range of phenotypes including spastic paraplegia, leukodystrophy, and/or brain iron deposition. All previously described families with this disorder were consanguineous, with homozygous mutations in the probands. We describe a 10-year-old male, from a non-consanguineous family, with progressive spastic paraplegia, dystonia, ataxia, and cognitive decline associated with a sural axonal neuropathy. The use of high-throughput sequencing techniques combined with SNP array analyses revealed a novel paternally derived missense mutation and an overlapping novel maternally derived ~28-kb genomic deletion in FA2H. This patient provides further insight into the consistent features of this disorder and expands our understanding of its phenotypic presentation. The presence of a sural nerve axonal neuropathy had not been previously associated with this disorder and so may extend the phenotype.  相似文献   

6.
Distal hereditary motor neuropathies (dHMNs) are a heterogenous group of genetic disorders with length-dependent degeneration of motor axons. Obtaining a genetic diagnosis in patients with dHMN remains challenging. We performed exome sequencing in a diagnostic setting in 12 patients with a clinical diagnosis of dHMN. Potential disease-causing variants in genes associated with dHMN and other forms of inherited neuropathies/motor neuron diseases were validated using Sequenom. The coverage in the genes studied was >95% with an average coverage of >50 times. In none of the patients a mutations was found in genes previously reported to be associated with dHMN. However, in 2/12 patients a recessive mutation in histidine triad nucleotide binding protein 1 (HINT1, recently discovered as a cause of axonal neuropathy with neuromyotonia) was identified. Our results demonstrate the diagnostic value of exome sequencing for patients with inherited neuropathies. The phenotypic spectrum of recessive mutations in HINT1 includes dHMN. HINT1 should be added to the list of genes to check for in dHMN.  相似文献   

7.
8.
Mao H  Yang W  Lee PP  Ho MH  Yang J  Zeng S  Chong CY  Lee TL  Tu W  Lau YL 《Genes and immunity》2012,13(5):437-442
Inflammatory bowel disease is well recognized for a strong genetic involvement in its pathogenesis. Homozygous mutations in interleukin-10 receptor 1 (IL-10R1) identified by linkage analysis were shown to be involved in this disorder. However, the underlying molecular mechanism and the causal nature of the mutations in the disease process remain to be clarified. In this study, using whole exome sequencing, we identified novel compound heterozygous missense mutations in the extracellular domain of IL-10R1 in a Crohn's disease patient from a non-consanguineous family. These mutations did not affect IL-10R1 expression, nor IL-10 binding. However, they abrogated IL-10R1 phosphorylation induced by IL-10, therefore leading to impaired STAT3 activation and suppression of inflammatory responses. After reconstitution with wild-type IL-10R1, the patient cells showed fully restored IL-10R function including IL-10-induced STAT3 activation and expression of suppressor of cytokine signaling 3. Thus, our results demonstrated that the mutations in IL-10R1 extracellular domain impair IL-10R1 activation rather than IL-10 binding, indicating these residues are important in IL-10 signal transduction through IL-10R1. The reconstitution data also confirmed the causality of the IL-10R1 mutations.  相似文献   

9.
目的 应用Ion Torrent PGM半导体测序仪和Ion AmpliSeqTMInherited Disease Panel对3例马凡综合征(Marfan syndrome,MFS)进行致病基因突变检测,明确其致病突变,并评价下一代半导体靶向测序诊断复杂单基因遗传病的效果.方法 在知情同意的基础上采集3例MFS患者及1名正常志愿者外周血,提取基因组DNA,经多重PCR扩增富集目的基因片段.每个样本用特异性序列标签进行标记后,应用Ion One Touch系统进行模板制备、乳化PCR及磁珠颗粒富集;最后用318半导体测序芯片进行高通量测序.用Ion Torrent Suite 3.2软件进行序列比对及SNPs和Indels提取,再用dbSNP 137数据库过滤得到SNPs和indels,剩余的可疑突变经Sanger法测序验证.结果 用一张318芯片得到855.80Mb的总数据量,4个样本的平均测序深度均达到100×以上,对目的区域的覆盖度在98%以上.数据经软件分析及数据库过滤后,在3例MFS患者中分别得到3个FBN1基因可疑突变,并经Sanger法测序验证,一个为已报道FBN1基因错义突变(p.E1811K),另外两个为新发现的突变,包括一个无义突变(p.E2264X),1个插入突变(p.L871FfsX23).结论 在3例MFS患者中都成功检出FBN1基因致病突变,表明半导体靶向测序可对复杂单基因遗传病进行高效、准确的基因诊断.  相似文献   

10.
Detection of low frequency mutations following exposure to mutagens or during the early stages of cancer development is instrumental for risk assessment and molecular diagnosis. We present a sensitive new method to detect trace levels of DNA mutations induced within a large excess of wild-type sequences. The method is based on mutation-induced generation of new restriction enzyme recognition sites. A DNA sequence is amplified from genomic DNA or cDNA using a high fidelity polymerase. The purified PCR product is digested with a restriction enzyme that recognizes the newly generated restriction site, partially dephosphorylated and ligated with an oligonucleotide at the position of the mutation. The ligated oligonucleotide is then utilized in two rounds of PCR to amplify the mutated DNA but not the wild-type allele that contains no restriction site. An A-->T polymorphism in mRNA (tenascin gene, A(2366)-->T, Asn-->Ile) and a G-->A polymorphism in genomic DNA (Ku gene, G(74582)-->A, Val-->Ile), both of which generate a restriction site for the enzyme SAU3A1, demonstrate the application. Eleven patient samples pre-characterized for the G(74582)-->A polymorphism in the repair gene Ku are used to demonstrate the reliability of this approach. This technique quantitatively detects the Ku G-->A polymorphism at a mutant frequency of 1.6x10(-6) relative to the wild-type allele. Mutations in p53 that are frequently induced by mutagens can readily be detected using the present method. As an example, using a second enzyme BbvI, a mutation frequently encountered in human cancers (G(14154)-->A mutation, p53 codon 245, Arg-->Gln) was detected in patient samples. The process does not require radioactivity, utilizes established procedures and overcomes several factors known to produce false positives in RFLP-based assays. The present amplification via primer ligation at the mutation (APRIL-ATM) has potential applications in the detection of mutagen-generated genetic alterations, early detection of tumor marker mutations in bodily discharges and the diagnosis of minimal residual disease.  相似文献   

11.
There are several specific PCR-based methods to detect Mycobacterium leprae DNA, but the amplicons are quite large. For example, primers that target the 36-kDa antigen gene and are in common diagnostic use yield a 530-bp product. This may be a disadvantage when examining samples in which the DNA is likely to be damaged and fragmented. Therefore, two sets of M. leprae-specific nested primers were designed, based on existing primer pairs which have been shown to be specific for M. leprae. Primers that targeted the 18-kDa antigen gene gave an outer product of 136 bp and inner product of 110 bp. The primers based on the RLEP repetitive sequence yielded a 129-bp outer product and 99-bp nested product. With dilutions of a standard M. leprae killed whole-cell preparation as the source of DNA, both single-stage and nested PCR were performed after optimisation of the experimental conditions. Compared with the 36-kDa antigen gene primers, the 18-kDa antigen gene outer primers were 100-fold more sensitive and the RLEP outer primers were 1000-fold more sensitive. As an illustration of two possible applications of these new primers, positive results were obtained from three skin slit samples from treated lepromatous leprosy patients and three archaeological samples from human remains showing typical leprosy palaeopathology. It was concluded that these new primers are a useful means of detecting M. leprae DNA which is damaged or present at a very low level.  相似文献   

12.
The term ‘limb‐girdle myasthenia’ (LGM) was first used to describe three siblings with proximal limb weakness without oculobulbar involvement, but with EMG decrement and responsiveness to anticholinesterase medication. We report here that exome sequencing in the proband of this family revealed several sequence variations in genes linked to proximal limb weakness. However, the only mutations that cosegregated with disease were an intronic IVS7‐8A>G mutation and the previously reported 3′‐UTR c.*22C>A mutation in GFPT1, a gene linked to LGM. A minigene assay showed that IVS7‐8A>G activates an alternative splice acceptor that results in retention of the last seven nucleotides of intron 7 and a frameshift leading to a termination codon 13 nucleotides downstream from the new splice site. An anconeus muscle biopsy revealed mild reduction of the axon terminal size and postsynaptic fold simplification. The amplitudes of miniature endplate potentials and quantal release were also diminished. The DNA of the mildly affected father of the proband showed only the intronic mutation along with sequence variations in other genes potentially relevant to LGM. Thus, this study performed in the family originally described with LGM showed two GFPT1 untranslated mutations, which may cause disease by reducing GFPT1 expression and ultimately impairing protein glycosylation.  相似文献   

13.
Over 100 genetically distinct causal known loci for hereditary ataxia phenotype poses a challenge for diagnostic work-up for ataxia patients in a clinically relevant time and precision. In the present study using next-generation sequencing, we have investigated pathogenic variants in early-onset cerebellar ataxia cases using whole exome sequencing in singleton/family-designed and targeted gene-panel sequencing. A total of 98 index patients were clinically and genetically (whole exome sequencing (WES) in 16 patients and targeted gene panel of 41 ataxia causing genes in 82 patients) evaluated. Four families underwent WES in family based design. Overall, we have identified 24 variants comprising 20 pathogenic and four likely-pathogenic both rare/novel, variations in 21 early onset cerebellar ataxia patients. Among the identified variations, SACS (n = 7) and SETX (n = 6) were frequent, while ATM (n = 2), TTPA (n = 2) and other rare loci were observed. We have prioritized novel pathogenic variants in RARS2 and FA2H loci through family based design in two out of four families.  相似文献   

14.
This study examined perception–action learning in younger adults in their 20s compared to older adults in their 70s and 80s. The goal was to provide, for the first time, quantitative estimates of perceptuo-motor learning rates for each age group and to reveal how these learning rates change between these age groups. We used a visual coordination task in which participants are asked to learn to produce a novel-coordinated rhythmic movement. The task has been studied extensively in young adults, and the characteristics of the task are well understood. All groups showed improvement, although learning rates for those in their 70s and 80s were half the rate for those in their 20s. We consider the potential causes of these differences in learning rates by examining performance across the different coordination patterns examined as well as recent results that reveal age-related deficits in motion perception.  相似文献   

15.
Gene discovery using massively parallel sequencing has focused on phenotypes diagnosed postnatally such as well‐characterized syndromes or intellectual disability, but is rarely reported for fetal disorders. We used family‐based whole‐exome sequencing in order to identify causal variants for a recurrent pattern of an undescribed lethal fetal congenital anomaly syndrome. The clinical signs included intrauterine growth restriction (IUGR), severe microcephaly, renal cystic dysplasia/agenesis and complex brain and genitourinary malformations. The phenotype was compatible with a ciliopathy, but not diagnostic of any known condition. We hypothesized biallelic disruption of a gene leading to a defect related to the primary cilium. We identified novel autosomal recessive truncating mutations in KIF14 that segregated with the phenotype. Mice with autosomal recessive mutations in the same gene have recently been shown to have a strikingly similar phenotype. Genotype–phenotype correlations indicate that the function of KIF14 in cell division and cytokinesis can be linked to a role in primary cilia, supported by previous cellular and model organism studies of proteins that interact with KIF14. We describe the first human phenotype, a novel lethal ciliary disorder, associated with biallelic inactivating mutations in KIF14. KIF14 may also be considered a candidate gene for allelic viable ciliary and/or microcephaly phenotypes.  相似文献   

16.
T‐cell division is central to maintaining a stable T‐cell pool in adults. It also enables T‐cell expansion in neonates, and after depletion by chemotherapy, bone marrow transplantation, or infection. The same signals required for T‐cell survival in lymphoreplete settings, IL‐7 and T‐cell receptor (TCR) interactions with self‐peptide MHC (pMHC), induce division when T‐cell numbers are low. The strength of reactivity for self‐pMHC has been shown to correlate with the capacity of T cells to undergo lymphopenia‐induced proliferation (LIP), in that weakly self‐reactive T cells are unable to divide, implying that T‐cell reconstitution would significantly skew the TCR repertoire toward TCRs with greater self‐reactivity and thus compromise T‐cell diversity. Here, we show that while CD4+ T cells with low self‐pMHC reactivity experience more intense competition, they are able to divide when present at low enough cell numbers. Thus, at physiological precursor frequencies CD4+ T cells with low self‐pMHC reactivity are able to contribute to the reconstitution of the T‐cell pool.  相似文献   

17.
18.
《Genetics in medicine》2014,16(12):962-971
PurposeMitochondrial disorders are a common cause of inherited metabolic disease and can be due to mutations affecting mitochondrial DNA or nuclear DNA. The current diagnostic approach involves the targeted resequencing of mitochondrial DNA and candidate nuclear genes, usually proceeds step by step, and is time consuming and costly. Recent evidence suggests that variations in mitochondrial DNA sequence can be obtained from whole-exome sequence data, raising the possibility of a comprehensive single diagnostic test to detect pathogenic point mutations.MethodsWe compared the mitochondrial DNA sequence derived from off-target exome reads with conventional mitochondrial DNA Sanger sequencing in 46 subjects.ResultsMitochondrial DNA sequences can be reliably obtained using three different whole-exome sequence capture kits. Coverage correlates with the relative amount of mitochondrial DNA in the original genomic DNA sample, heteroplasmy levels can be determined using variant and total read depths, and—providing there is a minimum read depth of 20-fold—rare sequencing errors occur at a rate similar to that observed with conventional Sanger sequencing.ConclusionThis offers the prospect of using whole-exome sequence in a diagnostic setting to screen not only all protein coding nuclear genes but also all mitochondrial DNA genes for pathogenic mutations. Off-target mitochondrial DNA reads can also be used to assess quality control and maternal ancestry, inform on ethnic origin, and allow genetic disease association studies not previously anticipated with existing whole-exome data sets.Genet Med advance online publication 05 June 2014  相似文献   

19.
The CRISPR/Cas technology enables targeted genome editing and the rapid generation of transgenic animal models for the study of human genetic disorders. Here we describe an autosomal recessive human disease in two unrelated families characterized by a split-foot defect, nail abnormalities of the hands, and hearing loss, due to mutations disrupting the SAM domain of the protein kinase ZAK. ZAK is a member of the MAPKKK family with no known role in limb development. We show that Zak is expressed in the developing limbs and that a CRISPR/Cas-mediated knockout of the two Zak isoforms is embryonically lethal in mice. In contrast, a deletion of the SAM domain induces a complex hindlimb defect associated with down-regulation of Trp63, a known split-hand/split-foot malformation disease gene. Our results identify ZAK as a key player in mammalian limb patterning and demonstrate the rapid utility of CRISPR/Cas genome editing to assign causality to human mutations in the mouse in <10 wk.Split-hand/split-foot malformation (SHFM) is a limb anomaly characterized by median clefts with missing or malformed central rays (Elliott et al. 2005). SHFM is clinically and genetically heterogeneous and represents a paradigmatic genetic disorder displaying different modes of inheritance, variable expressivity, and incomplete penetrance (Birnbaum et al. 2012; Klopocki et al. 2012). Submicroscopic duplications at 10q24 and 17p13.3, TP63 mutations, and deletions of exonic enhancers in DYNC1I1 represent major SHFM-causing mechanisms (Ianakiev et al. 2000; de Mollerat et al. 2003; Birnbaum et al. 2012; Klopocki et al. 2012). Mutations in other genes, including WNT10B in an autosomal recessive form, have been reported. However, in up to two thirds of affected individuals, the causative mutation remains unknown (Ugur and Tolun 2008; Tayebi et al. 2014). One of the key challenges in rare Mendelian disorders is to identify additional disease alleles in unrelated families. CRISPR/Cas genome editing can now be used to create a large number of new alleles in the mouse within a few weeks by creating specific mutations and deletions in a gene of interest (Wang et al. 2013; Kraft et al. 2015). Here we report on the combination of whole-exome sequencing in patients with CRISPR/Cas genome editing in mice to identify and validate a novel disease-causing gene and to assign an unexpected role to the protein kinase ZAK in mammalian limb development.  相似文献   

20.
Pathogenic mitochondrial DNA (mtDNA) mutations leading to mitochondrial dysfunction can cause cardiomyopathy and heart failure. Owing to a high mutation rate, mtDNA defects may occur at any nucleotide in its 16 569 bp sequence. Complete mtDNA sequencing may detect pathogenic mutations, which can be difficult to interpret because of normal ethnic/geographic-associated haplogroup variation. Our goal is to show how to identify candidate mtDNA mutations by sorting out polymorphisms using readily available online tools. The purpose of this approach is to help investigators in prioritizing mtDNA variants for functional analysis to establish pathogenicity. We analyzed complete mtDNA sequences from 29 Italian patients with mitochondrial cardiomyopathy or suspected disease. Using MITOMASTER and PhyloTree, we characterized 593 substitution variants by haplogroup and allele frequencies to identify all novel, non-haplogroup-associated variants. MITOMASTER permitted determination of each variant''s location, amino acid change and evolutionary conservation. We found that 98% of variants were common or rare, haplogroup-associated variants, and thus unlikely to be primary cause in 80% of cases. Six variants were novel, non-haplogroup variants and thus possible contributors to disease etiology. Two with the greatest pathogenic potential were heteroplasmic, nonsynonymous variants: m.15132T>C in MT-CYB for a patient with hypertrophic dilated cardiomyopathy and m.6570G>T in MT-CO1 for a patient with myopathy. In summary, we have used our automated information system, MITOMASTER, to make a preliminary distinction between normal mtDNA variation and pathogenic mutations in patient samples; this fast and easy approach allowed us to select the variants for traditional analysis to establish pathogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号