首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

BACKGROUND AND PURPOSE

Gastrointestinal (GI) motility is regulated in part by fatty acid ethanolamides (FAEs), including the endocannabinoid (EC) anandamide (AEA). The actions of FAEs are terminated by fatty acid amide hydrolase (FAAH). We investigated the actions of the novel FAAH inhibitor AM3506 on normal and enhanced GI motility.

EXPERIMENTAL APPROACH

We examined the effect of AM3506 on electrically-evoked contractility in vitro and GI transit and colonic faecal output in vivo, in normal and FAAH-deficient mice treated with saline or LPS (100 µg·kg−1, i.p.), in the presence and absence of cannabinoid (CB) receptor antagonists. mRNA expression was measured by quantitative real time-PCR, EC levels by liquid chromatography-MS and FAAH activity by the conversion of [3H]-AEA to [3H]-ethanolamine in intestinal extracts. FAAH expression was examined by immunohistochemistry.

KEY RESULTS

FAAH was dominantly expressed in the enteric nervous system; its mRNA levels were higher in the ileum than the colon. LPS enhanced ileal contractility in the absence of overt inflammation. AM3506 reversed the enhanced electrically-evoked contractions of the ileum through CB1 and CB2 receptors. LPS increased the rate of upper GI transit and faecal output. AM3506 normalized the enhanced GI transit through CB1 and CB2 receptors and faecal output through CB1 receptors. LPS did not increase GI transit in FAAH-deficient mice.

CONCLUSIONS AND IMPLICATIONS

Inhibiting FAAH normalizes various parameters of GI dysmotility in intestinal pathophysiology. Inhibition of FAAH represents a new approach to the treatment of disordered intestinal motility.  相似文献   

2.

BACKGROUND AND PURPOSE

β-cells express a range of fatty acid-responsive G protein-coupled receptors, including GPR119, which regulates insulin secretion and is seen as a potential therapeutic target in type 2 diabetes. The long-chain unsaturated fatty acid derivative oleoylethanolamide (OEA) is an endogenous agonist of GPR119 and, under certain conditions, some long-chain unsaturated fatty acids can promote β-cell cytoprotection. It is not known, however, if OEA is cytoprotective in β-cells. The present study has examined this and determined whether GPR119 is involved.

METHODS

Clonal rat insulin-secreting cell lines, BRIN-BD11 or INS-1E, were exposed to fatty acids complexed with BSA. cAMP levels, insulin release and cell viability were measured. Protein expression was studied by Western blotting and receptor expression by RT-PCR.

KEY RESULTS

GPR119 was expressed in both BRIN-BD11 and INS-1E cells and OEA was cytoprotective in these cells. However, cytoprotection was not reproduced by any of a range of selective, synthetic ligands of GPR119. The cytoprotective response to OEA was lost during exposure to inhibitors of fatty acid amide hydrolase (FAAH) suggesting that OEA per se is not the cytoprotective species but that release of free oleate is required. Similar data were obtained with anandamide, which was cytoprotective only under conditions favouring release of free arachidonate.

CONCLUSIONS AND IMPLICATIONS

Activation of GPR119 is not required to mediate the cytoprotective actions of OEA in BRIN-BD11 or INS-1E cells. Rather, OEA is internalised and subjected to hydrolysis by FAAH to release free oleate, which then mediates the cytoprotection.  相似文献   

3.

BACKGROUND AND PURPOSE

Inflammatory pain presents a problem of clinical relevance and often elicits allodynia, a condition in which non-noxious stimuli are perceived as painful. One potential target to treat inflammatory pain is the endogenous cannabinoid (endocannabinoid) system, which is comprised of CB1 and CB2 cannabinoid receptors and several endogenous ligands, including anandamide (AEA). Blockade of the catabolic enzyme fatty acid amide hydrolase (FAAH) elevates AEA levels and elicits antinociceptive effects, without the psychomimetic side effects associated with Δ9-tetrahydrocannabinol (THC).

EXPERIMENTAL APPROACH

Allodynia was induced by intraplantar injection of LPS. Complementary genetic and pharmacological approaches were used to determine the strategy of blocking FAAH to reverse LPS-induced allodynia. Endocannabinoid levels were quantified using mass spectroscopy analyses.

KEY RESULTS

FAAH (−/−) mice or wild-type mice treated with FAAH inhibitors (URB597, OL-135 and PF-3845) displayed an anti-allodynic phenotype. Furthermore, i.p. PF-3845 increased AEA levels in the brain and spinal cord. Additionally, intraplantar PF-3845 produced a partial reduction in allodynia. However, the anti-allodynic phenotype was absent in mice expressing FAAH exclusively in the nervous system under a neural specific enolase promoter, implicating the involvement of neuronal fatty acid amides (FAAs). The anti-allodynic effects of FAAH-compromised mice required activation of both CB1 and CB2 receptors, but other potential targets of FAA substrates (i.e. µ-opioid, TRPV1 and PPARα receptors) had no apparent role.

CONCLUSIONS AND IMPLICATIONS

AEA is the primary FAAH substrate reducing LPS-induced tactile allodynia. Blockade of neuronal FAAH reverses allodynia through the activation of both cannabinoid receptors and represents a promising target to treat inflammatory pain.

LINKED ARTICLES

This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7  相似文献   

4.

Background and purpose:

In vitro evidence suggests that metabolism of anandamide by cyclooxygenase-2 (COX-2) may be more important when the primary metabolic pathway [i.e. fatty acid amide hydrolase (FAAH)] is inhibited. Thus, the first aim of the present study was to assess the effects of COX-2 and/or FAAH inhibition, on the cardiovascular actions of anandamide. The second aim was to compare the effects of anandamide with those of the metabolically stable analogue (i.e. methanandamide) and investigate mechanisms involved in responses to the latter in conscious rats.

Experimental approach:

Rats were chronically instrumented for recording blood pressure, heart rate and renal, mesenteric and hindquarters vascular conductances in the freely moving state.

Key results:

Inhibition of FAAH with URB597 (cyclohexycarbamic acid 3′-carbamoyl-biphenyl-3-yl-ester) augmented the haemodynamic actions of anandamide, but there was no effect of COX-2 inhibition with parecoxib, either in the absence or the presence of URB597. Methanandamide caused CB1 receptor-mediated renal and mesenteric vasoconstriction and evoked β2-adrenoceptor-mediated hindquarters vasodilatation.

Conclusions and implications:

No evidence for an involvement of COX-2 in the systemic cardiovascular actions of anandamide could be demonstrated. Vasoconstrictor actions of methanandamide were shown to involve CB1 receptors, whereas no involvement of CB1 receptors in such actions of anandamide has been shown. However, β2-adrenoceptor-mediated hindquarters vasodilatation, independent of CB1 receptors, observed here with methanandamide, has previously been seen with anandamide and differs from previous results with other synthetic cannabinoids for which the response was CB1 receptor-dependent. Thus, mechanisms underlying the cardiovascular actions of endocannabinoids and synthetic analogues appear to be agonist-specific.  相似文献   

5.

Background and purpose:

Inhibitors of fatty acid amide hydrolase (FAAH), the enzyme responsible for the metabolism of the endogenous cannabinoid (CB) receptor ligand anandamide (AEA), are effective in a number of animal models of pain. Here, we investigated a series of isoflavones with respect to their abilities to inhibit FAAH.

Experimental approach:

In vitro assays of FAAH activity and affinity for CB receptors were used to characterize key compounds. In vivo assays used were biochemical responses to formalin in anaesthetized mice and the ‘tetrad’ test for central CB receptor activation.

Key results:

Of the compounds tested, biochanin A was adjudged to be the most promising. Biochanin A inhibited the hydrolysis of 0.5 µM AEA by mouse, rat and human FAAH with IC50 values of 1.8, 1.4 and 2.4 µM respectively. The compound did not interact to any major extent with CB1 or CB2 receptors, nor with FAAH-2. In anaesthetized mice, URB597 (30 µg i.pl.) and biochanin A (100 µg i.pl.) both inhibited the spinal phosphorylation of extracellular signal-regulated kinase produced by the intraplantar injection of formalin. The effects of both compounds were significantly reduced by the CB1 receptor antagonist/inverse agonist AM251 (30 µg i.pl.). Biochanin A (15 mg·kg−1 i.v.) did not increase brain AEA concentrations, but produced a modest potentiation of the effects of 10 mg·kg−1 i.v. AEA in the tetrad test.

Conclusions and implications:

It is concluded that biochanin A, in addition to its other biochemical properties, inhibits FAAH both in vitro and peripherally in vivo.This article is part of a themed issue on Cannabinoids. To view the editorial for this themed issue visit http://dx.doi.org/10.1111/j.1476-5381.2010.00831.x  相似文献   

6.

AIMS

The aim of our study was to describe the time course of endocannabinoids during different anaesthesia protocols in more detail, and to challenge the hypothesis that propofol acts as a FAAH inhibitor.

METHODS

Endocannabinoids were measured during the first hour of anaesthesia in 14 women and 14 men undergoing general anaesthesia with propofol and in 14 women and 14 men receiving thiopental/sevoflurane. We also incubated whole human blood samples ex vivo with propofol and the known FAAH inhibitor oloxa and determined FAAH enzyme kinetics.

RESULTS

Plasma anandamide decreased similarly with propofol and thiopental/sevoflurane anaesthesia, and reached a nadir after 10 min. Areas under the curve for anandamide (mean and 95% CI) were 53.3 (47.4, 59.2) nmol l−1 60 min with propofol and 48.5 (43.1, 53.8) nmol l−1 60 min with thiopental/sevoflurane (P = NS). Anandamide and propofol plasma concentrations were not correlated at any time point. Ex vivo FAAH activity was not inhibited by propofol. Enzyme kinetics (mean ± SD) of recombinant human FAAH were Km= 16.9 ± 8.8 µmol l−1 and Vmax= 44.6 ± 15.8 nmol mg–1 min–1 FAAH without, and Km= 16.6 ± 4.0 µmol l−1 and Vmax= 44.0 ± 7.6 nmol mg–1 min−1 FAAH with 50 µmol l−1 propofol (P = NS for both).

CONCLUSIONS

Our findings challenge the idea that propofol anaesthesia and also propofol addiction are directly mediated by FAAH inhibition, but we cannot exclude other indirect actions on cannabinoid receptors.  相似文献   

7.

Background and purpose:

There are limited options for the treatment of neuropathic pain. Endocannabinoids, such as anandamide and 2-arachidonoyl glycerol (2-AG), are promising pain modulators and there is recent evidence of interactions between anandamide and 2-AG biosynthesis and metabolism. It has been clearly demonstrated that 2-AG degradation is mainly catalysed not only by monoacylglycerol lipase (MGL) but also by a fatty acid amide hydrolase (FAAH). Inhibitors specifically targeting these two enzymes have also been described: URB602 and URB597, respectively. However, the anti-nociceptive effects of the combination of peripherally injected 2-AG, URB602 and URB597 in a neuropathic pain model have not yet been determined. This was performed in the presence or absence of cannabinoid CB1 (AM251) and CB2 (AM630) receptor antagonists.

Experimental approach:

Mechanical allodynia and thermal hyperalgesia were evaluated in 213 male Wistar rats allocated to 32 different groups. Drugs were injected subcutaneously in the dorsal surface of the hind paw (50 μL) 15 min before pain tests.

Key results:

2-AG, URB602 and URB597 significantly decreased mechanical allodynia and thermal hyperalgesia with ED50 of 1.6±1.5 and 127±83 μg for 2-AG and URB602, respectively. These effects were mediated locally and were mostly inhibited by the two cannabinoid antagonists.

Conclusions and implications:

The combination of the three compounds did not produce any greater anti-allodynic or anti-hyperalgesic effects, suggesting that FAAH inhibition could reduce or limit the anti-nociceptive effects of 2-AG. Peripheral administration of endocannabinoids or MGL/FAAH inhibitors is a promising analgesic approach requiring further investigation.  相似文献   

8.
Introduction: Fatty acid amide hydrolase (FAAH) is a key enzyme responsible for the degradation of the endocannabinoid anandamide. FAAH inactivation is emerging as a strategy to treat several CNS and peripheral diseases, including inflammation and pain. The search for effective FAAH inhibitors has thus become a key focus in present drug discovery.

Areas covered: Patents and patent applications published from 2009 to 2014 in which novel chemical classes are claimed to inhibit FAAH.

Expert opinion: FAAH is a promising target for treating many disease conditions including pain, inflammation and mood disorders. In the last few years, remarkable efforts have been made to develop new FAAH inhibitors (either reversible and irreversible) characterized by excellent potency and selectivity, to complete the arsenal of tools for modulating FAAH activity. The failure of PF-04457845 in a Phase II study on osteoarthritis pain has not flattened the interest in FAAH inhibitors. New clinical trials on ‘classical’ FAAH inhibitors are now ongoing, and new strategies based on compounds with peculiar in vivo distribution (e.g., peripheral) or with multiple pharmacological activities (e.g., FAAH and COX) are under investigation and could boost the therapeutic potential of this class in the next future.  相似文献   

9.

BACKGROUND AND PURPOSE

Elevating levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is a major focus of pain research, purported to be a safer approach devoid of cannabinoid receptor-mediated side effects. Here, we have determined the effects of sustained pharmacological inhibition of FAAH on inflammatory pain behaviour and if pharmacological inhibition of FAAH was as effective as genetic deletion of FAAH on pain behaviour.

EXPERIMENTAL APPROACH

Effects of pre-treatment with a single dose, versus 4 day repeated dosing with the selective FAAH inhibitor, URB597 (i.p. 0.3 mg·kg−1), on carrageenan-induced inflammatory pain behaviour and spinal pro-inflammatory gene induction were determined in rats. Effects of pain induction and of the drug treatments on levels of arachidonoyl ethanolamide (AEA), palmitoyl ethanolamide (PEA) and oleolyl ethanolamide (OEA) in the spinal cord were determined.

KEY RESULTS

Single, but not repeated, URB597 treatment significantly attenuated the development of inflammatory hyperalgesia (P < 0.001, vs. vehicle-treated animals). Neither mode of URB597 treatment altered levels of AEA, PEA and OEA in the hind paw, or carrageenan-induced paw oedema. Single URB597 treatment produced larger increases in AEA, PEA and OEA in the spinal cord, compared with those after repeated administration. Single and repeated URB597 treatment decreased levels of immunoreactive N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) in the spinal cord and attenuated carrageenan-induced spinal pro-inflammatory gene induction.

CONCLUSION AND IMPLICATIONS

Changes in the endocannabinoid system may contribute to the loss of analgesic effects following repeated administration of low dose URB597 in this model of inflammatory pain.  相似文献   

10.
11.

Aim

To assess the cardiovascular effects of a new inhaled long-acting β-adrenoceptor agonist PF-00610355 in COPD patients.

Methods

Thirteen thousand and sixty-two heart rate measurements collected in 10 clinical studies from 579 healthy volunteers, asthma and COPD patients were analyzed. The relationship between heart rate profiles and predicted plasma concentration profiles, patient status, demographics and concomitant medication was evaluated using non-linear mixed-effects models. The median heart rate increase in COPD patients for doses of PF-00610355 up to 280 μg once daily was simulated with the final pharmacokinetic/pharmacodynamic (PKPD) model.

Results

An Emax model accounting for delayed on-and off-set of the PF-00610355-induced change in heart rate was developed. The predicted potency in COPD patients was three-fold lower compared with healthy volunteers, while no difference in maximum drug effect was identified. Simulations suggested a maximum placebo-corrected increase of 2.7 (0.90–4.82) beats min−1 in COPD patients for a PF-00610355 dose of 280 μg once daily, with 19% subjects experiencing a heart rate increase of more than 20 beats min−1 compared with 8% in the placebo group.

Conclusions

This PKPD analysis supports the clinical observation that no relevant effects of PF-00610355 on heart rate in COPD patients should be expected for doses up to 280 μg once daily.  相似文献   

12.

AIM

To use non-linear mixed effects modelling and simulation techniques to predict whether PF-04878691, a toll-like receptor 7 (TLR7) agonist, would produce sufficient antiviral efficacy while maintaining an acceptable side effect profile in a ‘proof of concept’ (POC) study in chronic hepatitis C (HCV) patients.

METHODS

A population pharmacokinetic–pharmacodynamic (PKPD) model was developed using available ‘proof of pharmacology’ (POP) clinical data to describe PF-04878691 pharmacokinetics (PK) and its relationship to 2′,5′-oligoadenylate synthetase (OAS; marker of pharmacology) and lymphocyte levels (marker of safety) following multiple doses in healthy subjects. A second model was developed to describe the relationship between change from baseline OAS expressed as fold change and HCV viral RNA concentrations using clinical data available in HCV patients for a separate compound, CPG-10101 (ACTILON™), a TLR9 agonist. Using these models the antiviral efficacy and safety profiles of PF-04878691 were predicted in HCV patients.

RESULTS

The population PKPD models described well the clinical data as assessed by visual inspection of diagnostic plots, visual predictive checks and precision of the parameter estimates. Using these relationships, PF-04878691 exposure and HCV viral RNA concentration was simulated in HCV patients receiving twice weekly administration for 4 weeks over a range of doses. The simulations indicated that significant reductions in HCV viral RNA concentrations would be expected at doses >6 mg. However at these doses grade ≥3 lymphopenia was also predicted.

CONCLUSIONS

The model simulations indicate that PF-04878691 is unlikely to achieve POC criteria and support the discontinuation of this compound for the treatment of HCV.  相似文献   

13.

Background and purpose:

Cannabinoid receptor agonists reduce intestinal propulsion in rodents through the CB1 receptor. In addition to its antagonistic activity at this receptor, rimonabant (N-(piperidino)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxyamide) alone augments intestinal transit. Using rat and guinea-pig ileum MPLM (myenteric plexus-longitudinal muscle) preparations, we investigated whether the latter effect was through inverse agonism or antagonism of endocannabinoid agonist(s).

Experimental approach:

Inverse agonism was investigated by comparing the maximal enhancement of electrically evoked contractions of the MPLM by two CB1 receptor antagonists, AM 251 (N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) and O-2050 [(6aR,10aR)-3-(1-methanesulphonylamino-4-hexyn-6-yl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6-H-dibenzo[b,d]pyran], with that produced by rimonabant. To reveal ongoing endocannabinoid activity, effects of inhibiting endocannabinoid hydrolysis by fatty acid amide hydrolase (FAAH) using AA-5HT (arachidonyl-5-hydroxytryptamine), PMSF (phenylmethylsulphonyl fluoride) or URB-597 (3′-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate), or putative uptake using VDM-11 [(5Z,8Z,11Z,14Z)-N-(4-hydroxy-2-methylphenyl)-5,8,11,14-eicosatetraenamide] was evaluated.

Key results:

The presence of CB1 receptors was revealed by antagonism of exogenous anandamide, arachidonylethanolamide (AEA) and WIN 55,212-2 [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)-pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate] by rimonabant. The rank order of potentiation of contractions was AM 251 > rimonabant > O-2050. Neither the FAAH inhibitors nor VDM-11 affected electrically evoked contractions. Each FAAH inhibitor increased the potency of AEA but not WIN 55,212-2. VDM-11 did not alter the inhibitory effect of AEA.

Conclusions and implications:

The different levels of maximal potentiation of contractions by the CB1 receptor antagonists suggest inverse agonism. The potentiation of the action of AEA by the FAAH inhibitors showed that FAAH was present. The lack of effect of FAAH inhibitors and VDM-11 alone on electrically evoked contractions, and on the potency of exogenous AEA suggests that pharmacologically active endocannabinoids were not released and the endocannabinoid transporter was absent. Thus, the CB1 receptor antagonists behave as inverse agonists.This article is part of a themed issue on Cannabinoids. To view the editorial for this themed issue visit http://dx.doi.org/10.1111/j.1476-5381.2010.00831.x  相似文献   

14.

AIM

To determine the pharmacokinetics, pharmacodynamics, safety and tolerability of multiple oral doses of ticagrelor, a P2Y12 receptor antagonist, in healthy volunteers.

METHODS

This was a randomized, single-blind, placebo-controlled, ascending dose study. Thirty-two subjects received ticagrelor 50–600 mg once daily or 50–300 mg twice daily or placebo for 5 days at three dose levels in two parallel groups. Another group of 16 subjects received a clopidogrel 300 mg loading dose then 75 mg day−1, or placebo for 14 days.

RESULTS

Ticagrelor was absorbed with median tmax 1.5–3 h, exhibiting predictable pharmacokinetics over the 50–600 mg dose range. Mean Cmax and AUC for ticagrelor and its main metabolite, AR-C124910XX, increased approximately dose-proportionately (approximately 2.2- to 2.4-fold with a twofold dose increase) over the dose range. Inhibition of platelet aggregation (IPA) with ticagrelor was greater and better sustained at high levels with ticagrelor twice daily vs. once daily regimens. Throughout dosing, more consistent IPA was observed at doses ≥300 mg once daily and ≥100 mg twice daily compared with clopidogrel. Mean IPA with ticagrelor ≥100 mg twice daily was greater and less variable (93–100%, range 65–100%) than with clopidogrel (77%, range 11–100%) at trough concentrations. No safety or tolerability issues were identified.

CONCLUSIONS

Multiple dosing provided predictable pharmacokinetics of ticagrelor and its metabolite over the dose range of 50–600 mg once daily and 50–300 mg twice daily with Cmax and AUC(0,t) increasing approximately dose-proportionally. Greater and more consistent IPA with ticagrelor at doses ≥100 mg twice daily and ≥300 mg once daily were observed than with clopidogrel. Ticagrelor at doses up to 600 mg day−1 was well tolerated.  相似文献   

15.

BACKGROUND AND PURPOSE

While arachidonyl ethanolamine (anandamide) produces pharmacological effects mediated by cannabinoid CB1 receptors, it is also an agonist at the transient receptor potential vanilloid type 1 (TRPV1) ion channel. This study examined the cellular actions of anandamide in the midbrain periaqueductal grey (PAG), a region implicated in the analgesic actions of cannabinoids, and which expresses both CB1 receptors and TRPV1.

EXPERIMENTAL APPROACH

In vitro whole cell patch clamp recordings of glutamatergic excitatory postsynaptic currents (EPSCs) were made from rat and mouse PAG slices.

KEY RESULTS

Capsaicin (1 µM) increased the rate, but not the amplitude of miniature EPSCs in subpopulations of neurons throughout the rat and mouse PAG. Capsaicin had no effect on miniature EPSCs in PAG neurons from TRPV1 knock-out mice. In mouse PAG neurons, anandamide (30 µM) had no effect on the rate of miniature EPSCs alone, or in the presence of either the CB1 antagonist AM251 (3 µM) or the TRPV1 antagonist iodoresiniferatoxin (300 nM). Anandamide produced a decrease in miniature EPSC rate in the presence of the fatty acid amide hydrolase (FAAH) inhibitor URB597 (1 µM). By contrast, anandamide produced an increase in miniature EPSC rate in the presence of both URB597 and AM251, which was absent in TRPV1 knock-out mice.

CONCLUSIONS AND IMPLICATIONS

These results suggest that the actions of anandamide within PAG are limited by enzymatic degradation by FAAH. FAAH blockade unmasks both presynaptic inhibition and excitation of glutamatergic synaptic transmission which are mediated via CB1 receptors and TRPV1 respectively.  相似文献   

16.

Aims

To characterize pharmacokinetic parameters of MK-0916 and its safety and tolerability in lean, healthy male subjects following single and multiple oral doses. To assess (by stable-isotope labelling) the in vivo inhibition of cortisone-to-cortisol conversion following oral MK-0916.

Methods

Data are presented from two randomized, controlled, double-blind, rising-dose phase I studies. In the first study, subjects received single oral doses of 0.4–100 mg MK-0916 (n = 16). In the second study, subjects received 0.2–225 mg MK-0916 followed by daily doses of 0.2–100 mg for 13 days beginning on day 2 or day 15 (n = 80). Plasma and urine drug concentrations were measured for pharmacokinetic analysis. For pharmacodynamic analysis, concentrations of plasma [13C4]cortisol were measured by high-pressure liquid chromatography and tandem mass spectrometry following a single oral dose of 5 mg [13C4]cortisone.

Results

Doses ≥3 mg were rapidly absorbed (time at which maximal concentration was achieved in plasma, 1.1–1.8 h). Exposure (measured as the area under the concentration–time curve from 0 to 168 h) increased approximately in proportion to dose. Values for the maximal plasma concentration and the plasma concentration at 24 h increased in excess of dose proportionality at doses <6 mg and roughly in proportion to dose at doses >6 mg. In subjects dosed with 6 mg MK-0916 once daily for 14 days, the mean trough plasma concentration was 240 nm and in vivo cortisone-to-cortisol conversion was inhibited by 84%. The relationship between plasma MK-0916 and hepatic 11β-hydroxysteroid dehydrogenase type 1 inhibition was well represented by a simple Emax model with an IC50 of 70.4 nm. Exposure to MK-0916 was generally well tolerated.

Conclusions

These findings indicate that 11β-hydroxysteroid dehydrogenase type 1 is effectively inhibited in human subjects by doses of MK-0916 that are well tolerated.  相似文献   

17.

Aims

The aim of the present study was to evaluate the pharmacokinetics/pharmacodynamics (PK/PD), safety and tolerability of single intravenous (IV) doses of PF-05231023, a long acting fibroblast growth factor 21 (FGF21) analogue being developed for the treatment of type 2 diabetes mellitus (T2DM).

Methods

T2DM subjects (glycosylated haemoglobin: 7.0–10.5%; on stable metformin therapy and/or diet and exercise) were randomized to receive a single dose of placebo or PF-05231023 (0.5–200 mg). Safety evaluations were performed up to 14 days after dosing. PK and PD endpoints were measured and a PK/PD model was developed for triglyceride – an early marker of drug activity.

Results

No antidrug antibody or serious adverse events (AEs) were observed. The most frequent AEs were gastrointestinal but were generally mild. Plasma PF-05231023 levels peaked immediately post-IV dosing, with mean terminal half-lives of 6.5–7.7 h and 66.5– 96.6 h for intact C- and N-termini, respectively. Intact C-terminus exposures increased proportionally with increasing dose, whereas N-terminus exposures appeared to trend higher than dose-proportionally. Although no apparent effect on plasma glucose was seen, dose-dependent decreases in triglyceride were observed, with a maximum reduction of 48.5 ± 10.0% (mean ± standard deviation) for the 200 mg dose compared with a reduction of 19.1 ± 26.4% for placebo, demonstrating proof of pharmacology. Moreover, a reduction in total cholesterol and low-density lipoprotein cholesterol and an increase in high-density lipoprotein cholesterol were observed in the high-dose groups.

Conclusions

Single IV doses of PF-05231023 up to 200 mg were generally safe and well tolerated by subjects with T2DM. The observed early sign of pharmacology supports further clinical testing of PF-05231023 upon repeated administration.  相似文献   

18.

BACKGROUND AND PURPOSE

The endocannabinoid system may regulate glial cell functions and their responses to pathological stimuli, specifically, Alzheimer''s disease. One experimental approach is the enhancement of endocannabinoid tone by blocking the activity of degradative enzymes, such as fatty acid amide hydrolase (FAAH).

EXPERIMENTAL APPROACH

We examined the role of FAAH in the response of astrocytes to the pathologic form of β-amyloid (Aβ). Astrocytes from wild-type mice (WT) and from mice lacking FAAH (FAAH-KO) were incubated with Aβ for 8, 24 and 48 h, and their inflammatory responses were quantified by elisa, western-blotting and real-time quantitative-PCR.

KEY RESULTS

FAAH-KO astrocytes were significantly more responsive to Aβ than WT astrocytes, as shown by the higher production of pro-inflammatory cytokines. Expression of COX-2, inducible NOS and TNF-α was also increased in Aβ-exposed KO astrocytes compared with that in WTs. These effects were accompanied by a differential pattern of activation of signalling cascades involved in mediating inflammatory responses, such as ERK1/2, p38MAPK and NFκ B. PPAR-α and PPAR-γ as well as transient receptor potential vanilloid-1 (TRPV1), but not cannabinoid CB1 or CB2 receptors, mediate some of the differential changes observed in Aβ-exposed FAAH-KO astrocytes. The pharmacological blockade of FAAH did not render astrocytes more sensitive to Aβ. In contrast, exogenous addition of several acylethanolamides (anandamide, palmitoylethanolamide and oleoylethanolamide) induced an antiinflammatory response.

CONCLUSIONS

The genetic deletion of FAAH in astrocytes exacerbated their inflammatory phenotype against Aβ in a process involving PPAR-α, PPAR-γ and TRPV1 receptors.  相似文献   

19.

AIM

To evaluate the bioequivalence of two omega-3 long chain polyunsaturated fatty acid (n-3 LC-PUFA) ethyl ester preparations, previously shown not to be bioequivalent in healthy subjects, with the objective of providing a guideline for future work in this area.

METHOD

A randomized double-blind crossover protocol was chosen. Volunteers with the lowest blood concentrations of n-3 LC-PUFA were selected. They received the ethyl esters in a single high dose (12 g) and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) blood concentrations were analyzed after fingerprick collection at intervals up to 24 h.

RESULTS

Differently from a prior study, the pharmacokinetic analysis indicated a satisfactory bioequivalence: for the AUC(0,24 h) 90% CI of the ratio between the two formulations were in the range for bioequivalence (for EPA 0.98, 1.04 and for DHA 0.99, 1.04) and the same was true for Cmax and tmax (90% CI were 0.95, 1.14 and 1.10, 1.25 for EPA and 0.88, 1.02 and 0.84, 1.24 for DHA).

CONCLUSION

This study shows that, in order to obtain reliable bioequivalence data of products present in the daily diet, certain conditions should be met. Subjects should have low, homogeneous baseline concentrations and not be exposed to food items containing the product under evaluation, e.g. fish. Finally, as in the case of omega-3 fatty acids, selected doses should be high, eventually with appropriate conditions of intake.  相似文献   

20.

AIMS

Sitagliptin is a selective inhibitor of dipeptidyl peptidase-4 (DPP-4) used to treat type 2 diabetes. The present aim was to evaluate pharmacokinetic (PK), pharmacodynamic (PD) and safety characteristics of sitagliptin following single doses in healthy, young Japanese males.

METHODS

In this alternating two-panel, randomized, controlled double-blind study, six healthy Japanese male subjects (aged 20–46 years) in each panel received single oral doses of 5–400 mg sitagliptin and two received placebo. Plasma and urine drug concentrations were measured from 0–48 h post dose and plasma DPP-4 inhibition from 0–24 h post dose. The results were compared with historical data from young, healthy non-Japanese males.

RESULTS

Plasma concentrations of sitagliptin increased approximately in proportion to dose; maximum concentrations occurred 2–6 h post-dose. The mean apparent terminal half-life for plasma sitagliptin was 9–14 h, with the half-life slightly decreasing as the dose increased. The mean dose fraction excreted unchanged in the urine was 0.73–1.00. Ingestion of a traditional Japanese breakfast prior to dosing had only a minor effect on PK parameters. After correction for dilution and competition effects during assay, doses of sitagliptin ≥50 mg resulted in weighted average DPP-4 inhibition from 0–24 h post-dose >94% (without correction, >78%). No clinically meaningful differences in PK and DPP-4 inhibition parameters were found between Japanese and non-Japanese subjects. Sitagliptin was generally well tolerated and there were no serious adverse experiences or episodes of hypoglycaemia.

CONCLUSIONS

The PK and PD findings from this study are consistent with once daily dosing of sitagliptin in Japanese patients with type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号