首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Electrical and chemical stimulation have been studied as potent mechanisms of enhancing nerve regeneration and wound healing. However, it remains unclear how electrical stimuli affect nerve growth, particularly in the presence of neurotrophic factors. The objective of this study was to explore (1) the effect of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) supplementation to support neurite outgrowth in a 3D scaffold, and (2) the effect of brief, low voltage, electrical stimulation (ES) on neurite outgrowth prior to neurotrophin supplementation. Dissociated E11 chick dorsal root ganglia (DRG) were seeded within a 1.5 mg/mL type-I collagen scaffold. For neurotrophin treatments, scaffolds were incubated for 24 h in culture media containing NGF (10 ng/mL) or BDNF (200 ng/mL), or both. For ES groups, scaffolds containing neurons were stimulated for 10 min at 8–10 V/m DC, then incubated for 24 h with neurotrophin. Fixed and labeled neurons were imaged to measure neurite growth and directionality. BDNF supplementation was not as effective as NGF at supporting DRG neurite outgrowth. ES prior to NGF supplementation improved DRG neurite outgrowth compared to NGF alone. This combination of brief ES with NGF treatment was the most effective treatment compared to NGF or BDNF alone. Brief ES had no impact on neurite directionality in the 3D scaffolds. These results demonstrate that ES improves neurite outgrowth in the presence of neurotrophins, and could provide a potential therapeutic approach to improve nerve regeneration when coupled with neurotrophin treatment.  相似文献   

2.
Nerve growth factor expression by PLG-mediated lipofection   总被引:4,自引:0,他引:4  
Whittlesey KJ  Shea LD 《Biomaterials》2006,27(11):2477-2486
Biomaterials capable of efficient gene delivery provide a fundamental tool for basic and applied research models, such as promoting neural regeneration. We developed a system for the encapsulation and sustained release of plasmid DNA complexed with a cationic lipid and investigated their efficacy using in vitro models of neurite outgrowth. Sustained lipoplex release was obtained for up to 50 days, with rates controlled by the fabrication conditions. Released lipoplexes retained their activity, transfecting 48.2+/-8.3% of NIH3T3 cells with luciferase activity of 3.97x10(7)RLU/mg. Expression of nerve growth factor (NGF) was employed in two models of neurite outgrowth: PC12 and primary dorsal root ganglia (DRG) co-culture. Polymer-mediated lipofection of PC12 produced bioactive NGF, eliciting robust neurite outgrowth. An EGFP/NGF dual-expression vector identified transfected cells (GFP-positive) while neurite outgrowth verified NGF secretion. A co-culture model examined the ability of NGF secretion by an accessory cell population to stimulate DRG neurite outgrowth. Polymer-mediated transfection of HEK293T with an NGF-encoding plasmid induced outgrowth by DRG neurons. This system could be fabricated as implants or nerve guidance conduits to support cellular and tissue regeneration. Combining this physical support with the ability to locally express neurotrophic factors will potentiate regeneration in nerve injury and disease models.  相似文献   

3.
Neural tissue engineering may be a promising option for neural repair treatment, for which a well-designed scaffold is essential. Smart materials that can stimulate neurite extension and outgrowth have been investigated as potential scaffolding materials. A piezoelectric polymer polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) was used to fabricate electrospun aligned and random scaffolds having nano- or micron-sized fiber dimensions. The advantage of using a piezoelectric polymer is its intrinsic electrical properties. The piezoelectric characteristics of PVDF-TrFE scaffolds were shown to be enhanced by annealing. Dorsal root ganglion (DRG) neurons attached to all fibrous scaffolds. Neurites extended radially on random scaffolds, whereas aligned scaffolds directed neurite outgrowth for all fiber dimensions. Neurite extension was greatest on aligned, annealed PVDF-TrFE having micron-sized fiber dimensions in comparison with annealed and as-spun random PVDF-TrFE scaffolds. DRG on micron-sized aligned, as-spun and annealed PVDF-TrFE also had the lowest aspect ratio amongst all scaffolds, including non-piezoelectric PVDF and collagen-coated substrates. Findings from this study demonstrate the potential use of a piezoelectric fibrous scaffold for neural repair applications.  相似文献   

4.
Lee JH  Lee HY  Kim HW 《Acta biomaterialia》2012,8(1):165-172
Adhesive proteins existing in the extracellular matrix (ECM) play important roles in the regulation of neuronal cell behavior, including cell adhesion, motility and neurite outgrowth. Herein we show the effects of a series of adhesive proteins on the neurite outgrowth of PC12 cells and elucidate that this is closely related to the activation of focal adhesion kinase (FAK). For this we prepared culture substrates by coating tissue culture plastic with either collagen (Col), fibronectin (FN) or laminin (LN) and investigated the neurite outgrowth behavior. The results demonstrated that neurite outgrowth was highly dependent on the particular type of adhesive protein. While neurite number was comparable on all the coated surfaces, the length of neurites was greater on the FN- and LN-coated ones (greatest on the LN-coated one). In particular, FAK expression was highly up-regulated in the FN- and LN-coated surfaces, as revealed by Western blot analysis. A knock-down experiment further supported the idea that neurite outgrowth was largely suppressed in cells transfected with a FAK knock-down gene. Taken together, the neurite outgrowth of PC12 cells was greatly affected by adhesive proteins of the ECM, particularly FN and LN, and this is considered to be closely related to FAK intracellular signaling. This study may be useful in the consideration and design of nerve guidance and three-dimensional scaffolds which are appropriate to promote neuronal growth and nerve tissue regeneration.  相似文献   

5.
Tissue engineering (TE) techniques to enhance nerve regeneration following nerve damage have had limited success in matching the performance of autografts across short nerve gaps (< 10 mm). For regeneration over longer nerve gaps, TE techniques have been less successful than autografts. Most engineered scaffolds do not present directional cues to the regenerating nerves. In our efforts to design a TE scaffold to replace the autograft, we hypothesize that anisotropic hydrogel scaffolds with gradients of a growth-promoting glycoprotein, laminin-1 (LN-1), may promote directional neurite extension and enhance regeneration. In this study we report the engineering of three-dimensional (3D) agarose scaffolds with photoimmobilized gradients of LN-1 of differing slopes. Dorsal root ganglia (DRG) from chicken embryos were cultured in the agarose scaffolds and their neurite extension rate was determined. DRG neurite extension rates were significantly higher in the anisotropic scaffolds, with a maximal growth rate in an anisotropic scaffold twice that of the maximal growth rate in isotropic scaffolds of LN-1. We suggest that these anisotropic scaffolds, presenting an optimal gradient of LN-1, may significantly impact nerve regeneration. Such anisotropic scaffolds may represent a new generation of tissue engineered materials with built-in directional cues for guided tissue or nerve regeneration.  相似文献   

6.
Remyelination is a major therapeutic goal in peripheral nerve regeneration, serving to restore function of demyelinated axons and provide neuroprotection. In order to apply myelin biogenesis strategies to peripheral nerve defects, the tissue engineered substitutes might be amenable to the promotion of this repair process. Electrospun nanofibers are considered as promising scaffolds for tissue engineering due to extracellular matrix mimicking factor and enhanced electrostatic interaction resulting in a controllable 3?D nanofibrous membrane. In order to explore the role of electrospun silk fibroin (SF) membrane in myelination, co-culture of dorsal root ganglion (DRG) neurons and Schwann cells (SCs) in vitro was established and observed. Scanning electron microscopy was used to observe DRG adhesion to the membranes, the electrospinning SF membrane is more favorable to the adhesion of DRG. The immunofluorescence staining of MAG and NF showed considerable amount of myelin were formed, and the myelin was tightly wrapped around the axons of the neurons, which was confirmed under the scanning electron microscope observation. Real-time quantitative PCR technique was used to determine the gene expression level of DRG neurons cultured at different time points. The results showed that the mRNA levels of N-cadherin, laminin, fibronectin were higher than those in the control group. Our results showed that the electrospun SF nanofibers can provide topographical and chemical cues that mimic (to a certain extent) the extracellular matrix.  相似文献   

7.
Yang F  Murugan R  Wang S  Ramakrishna S 《Biomaterials》2005,26(15):2603-2610
Efficacy of aligned poly(l-lactic acid) (PLLA) nano/micro fibrous scaffolds for neural tissue engineering is described and their performance with random PLLA scaffolds is compared as well in this study. Perfectly aligned PLLA fibrous scaffolds were fabricated by an electrospinning technique under optimum condition and the diameter of the electrospun fibers can easily be tailored by adjusting the concentration of polymer solution. As the structure of PLLA scaffold was intended for neural tissue engineering, its suitability was evaluated in vitro using neural stem cells (NSCs) as a model cell line. Cell morphology, differentiation and neurite outgrowth were studied by various microscopic techniques. The results show that the direction of NSC elongation and its neurite outgrowth is parallel to the direction of PLLA fibers for aligned scaffolds. No significant changes were observed on the cell orientation with respect to the fiber diameters. However, the rate of NSC differentiation was higher for PLLA nanofibers than that of micro fibers and it was independent of the fiber alignment. Based on the experimental results, the aligned nanofibrous PLLA scaffold could be used as a potential cell carrier in neural tissue engineering.  相似文献   

8.
Neuronal activities play critical roles in both neurogenesis and neural regeneration. In that sense, electrically conductive and biocompatible biomaterial scaffolds can be applied in various applications of neural tissue engineering. In this study, we fabricated a novel biomaterial for neural tissue engineering applications by coating electrospun poly(lactic acid) (PLA) nanofibers with a conducting polymer, polypyrole (PPy), via admicellar polymerization. Optimal conditions for polymerization and preparation of PPy-coated electrospun PLA nanofibers were obtained by comparing results from scanning electron microscopy, X-ray photoelectron spectrometer, and surface conductivity tests. In vitro cell culture experiments showed that PPy-coated electrospun PLA fibrous scaffold is not toxic. The scaffold could support attachment and migration of neural progenitor cells. Neurons derived from progenitor exhibited long neurite outgrowth under electrical stimulation. Our study concluded that PPy-coated electrospun PLA fibers had a good biocompatibility with neural progenitor cells and may serve as a promising material for controlling progenitor cell behaviors and enhancing neural repair.  相似文献   

9.
Our long-term goal is to develop an artificial implant as a conduit for axonal regeneration after peripheral nerve injury. In this study, biodegradable, aligned poly-epsilon-caprolactone (PCL) and collagen/PCL (C/PCL) nanofibers designed as guidance structures were produced by electrospinning and tested in cell culture assays. We compared fibers of 100% PCL with fibers consisting of a 25:75% C/PCL blend. To test their biocompatibility, assays of cell adhesion, survival, migration, effects on cell morphology, axonal growth and axonal guidance were performed. Both types of eletrospun fibers supported oriented neurite outgrowth and glial migration from dorsal root ganglia (DRG) explants. Schwann cell migration, neurite orientation, and process formation of Schwann cells, fibroblasts and olfactory ensheathing cells were improved on C/PCL fibers, when compared to pure PCL fibers. While the velocity of neurite elongation from DRG explants was higher on PCL fibers, analysis of isolated sensory neurons showed significantly better axonal guidance by the C/PCL material. The data demonstrate that electrospun fibers composed of a collagen and PCL blend represent a suitable substrate for supporting cell proliferation, process outgrowth and migration and as such would be a good material for artificial nerve implants.  相似文献   

10.
Koh HS  Yong T  Chan CK  Ramakrishna S 《Biomaterials》2008,29(26):3574-3582
Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that mimic extracellular matrix (ECM) surface topography, mechanical stiffness, and chemical composition will be advantageous to promote enhanced cell interactions. Electrospinning can easily produce nano-structured synthetic polymer mats with architecture that structurally resembles the ECM of tissue. Although electrospinning can produce sub-micron fibrous scaffolds, modification of electrospun scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation and differentiation. Incorporation of laminin, a neurite promoting ECM protein, onto the nanofibers is an alternative to further mimic the biochemical properties of the nervous tissue to create a biomimetic scaffold. In this study, we investigated the feasibility to functionalize scaffolds by coupling laminin onto poly(L-lactic acid) (PLLA) nanofibers. Laminin was successfully added to nanofibers using covalent binding, physical adsorption or blended electrospinning procedures. PC12 cell viability and neurite outgrowth assays confirmed that the functionalized nanofibers were able to enhance axonal extensions. Significantly, compared to covalent immobilization and physical adsorption, blended electrospinning of laminin and synthetic polymer is a facile and efficient method to modify nanofibers for the fabrication of a biomimetic scaffold. Using these functionalization techniques, nanofibers can be effectively modified with laminin for potential use in peripheral nerve regeneration applications.  相似文献   

11.
Recently, much attention has been given to the fabrication of tissue-engineering scaffolds with nano-scaled structure to stimulate cell adhesion and proliferation in a microenvironment similar to the natural extracellular matrix milieu. In the present study, blends of gelatin and poly(L-lactide-co-epsilon-caprolactone) (PLCL) (blending ratio: 0, 30, 70 and 100 wt% gelatin to PLCL) were electrospun to prepare nano-structured non-woven fibers for the development of mechanically functional engineered skin grafts. The resulting nanofibers demonstrated the uniform and smooth fibers with mean diameters ranging from approx. 50 to 500 nm with interconnected pores, regardless of the composition. The contact angle decreased with increasing amount of gelatin in the blend and the water content of the nanofibers increased concurrently. PLCL nanofibers retained significant levels of recovery following application of uniaxial stress; GP-3 with 70% PLCL blend returned to the original length within less than 10% of deformation following 200% of uniaxial elongation. The overall tensile strength was inversely affected by increase in the gelatin content and degradation rates of the nanofibers were accelerated as the gelatin concentration increased. When seeded with human primary dermal fibroblasts and keratinocytes on the nanofibers, both initial cell adhesion and proliferation rate increased as a function of the gelatin content in the blend. Additionally, the total cell number was significantly greater on the nanofiber scaffolds than on polymer-coated glasses, indicating that nanofibrous structure facilitates cell proliferation. Taken together, gelatin/PLCL blend nanofiber scaffolds may serve as a promising artificial extracellular matrix for regeneration of mechanically functional skin tissue.  相似文献   

12.
CLP36, a member of the α-actinin-associated LIM protein (ALP)/enigma protein family, plays a role in neurite outgrowth in the peripheral nervous system. However, the underlying molecular mechanisms are not known. In this study, we performed yeast two-hybrid screening of an E18 mouse whole-body cDNA library with CLP36 as the bait and isolated palladin as a CLP36-binding protein. Palladin is an actin-binding protein and it was shown to have a role in the extension of cortical neurons. A coimmunoprecipitation study showed that CLP36 and palladin formed a complex in the dorsal root ganglion (DRG). In addition, CLP36 and palladin were colocalized in the neurites and cell bodies of primary DRG neurons. Furthermore, sciatic nerve transection increased the expression of both CLP36 and palladin mRNAs in DRG neurons, with the increase in CLP36 mRNA being more prominent. This implies that CLP36 has a more specific role in nerve regeneration than palladin. Our results suggest that CLP36 may interact with palladin to influence neurite outgrowth during sciatic nerve regeneration.  相似文献   

13.
Recently, much attention has been given to the fabrication of tissue-engineering scaffolds with nano-scaled structure to stimulate cell adhesion and proliferation in a microenvironment similar to the natural extracellular matrix milieu. In the present study, blends of gelatin and poly(L-lactide-co-ε-caprolactone) (PLCL) (blending ratio: 0, 30, 70 and 100 wt% gelatin to PLCL) were electrospun to prepare nano-structured non-woven fibers for the development of mechanically functional engineered skin grafts. The resulting nanofibers demonstrated the uniform and smooth fibers with mean diameters ranging from approx. 50 to 500 nm with interconnected pores, regardless of the composition. The contact angle decreased with increasing amount of gelatin in the blend and the water content of the nanofibers increased concurrently. PLCL nanofibers retained significant levels of recovery following application of uniaxial stress; GP-3 with 70% PLCL blend returned to the original length within less than 10% of deformation following 200% of uniaxial elongation. The overall tensile strength was inversely affected by increase in the gelatin content and degradation rates of the nanofibers were accelerated as the gelatin concentration increased. When seeded with human primary dermal fibroblasts and keratinocytes on the nanofibers, both initial cell adhesion and proliferation rate increased as a function of the gelatin content in the blend. Additionally, the total cell number was significantly greater on the nanofiber scaffolds than on polymer-coated glasses, indicating that nanofibrous structure facilitates cell proliferation. Taken together, gelatin/PLCL blend nanofiber scaffolds may serve as a promising artificial extracellular matrix for regeneration of mechanically functional skin tissue.  相似文献   

14.
Nerve tissue engineering is one of the most promising methods to restore nerve systems in human health care. Scaffold design has pivotal role in nerve tissue engineering. Polymer blending is one of the most effective methods for providing new, desirable biocomposites for tissue-engineering applications. Random and aligned PCL/gelatin biocomposite scaffolds were fabricated by varying the ratios of PCL and gelatin concentrations. Chemical and mechanical properties of PCL/gelatin nanofibrous scaffolds were measured by FTIR, porometry, contact angle and tensile measurements, while the in vitro biodegradability of the different nanofibrous scaffolds were evaluated too. PCL/gelatin 70:30 nanofiber was found to exhibit the most balanced properties to meet all the required specifications for nerve tissue and was used for in vitro culture of nerve stem cells (C17.2 cells). MTS assay and SEM results showed that the biocomposite of PCL/gelatin 70:30 nanofibrous scaffolds enhanced the nerve differentiation and proliferation compared to PCL nanofibrous scaffolds and acted as a positive cue to support neurite outgrowth. It was found that the direction of nerve cell elongation and neurite outgrowth on aligned nanofibrous scaffolds is parallel to the direction of fibers. PCL/gelatin 70:30 nanofibrous scaffolds proved to be a promising biomaterial suitable for nerve regeneration.  相似文献   

15.
Effect of functionalized micropatterned PLGA on guided neurite growth   总被引:1,自引:0,他引:1  
When coaptation is not possible in the repair of nerve injuries, a bridge of biomaterial scaffold provides a structural support for neuronal cell growth and guides nerve regeneration. Poly(lactide-co-glycolide) (PLGA) scaffolds have been widely investigated for neural tissue engineering applications. In order to investigate guided neurite growth, we have fabricated micropatterns on PLGA films using laser ablation methods. The micropatterned PLGA films were coated with collagen type I or laminin peptide (PPFLMLLKGSTR) to promote axon growth. Micropatterned PLGA films provide a guidance effect on both early stage neurite outgrowth and elongation. Small (5 microm) grooves showed more statistically significant parallel neurite growth compared with larger size grooves (10 microm). Micropatterned PLGA films coated with laminin peptide showed more parallel neurite growth compared with those coated with collagen type I. Primary neurite number and total neurite length per cell decreased on micropatterned PLGA films compared with the controls. Neurites showed a preference for growth in the microgrooves rather than on the spaces. This study indicates that surface micropatterned structures with conjugated functional molecules can be used to guide neurite growth.  相似文献   

16.
Netrin is a neuronal guidance molecule implicated in the development of spinal commissural neurons and cortical neurons. The attractive function of netrin requires the receptor, Deleted in Colorectal Cancer (DCC), while the receptor Unc5h is involved in the repulsive action of netrin during embryonic development. Although the expression of netrin and its receptor has been demonstrated in the adult nervous system, the function of netrin in adult neurons has not yet been elucidated. Here, we show that netrin treatment inhibited neurite outgrowth of adult dorsal root ganglion (DRG) neurons in explant and dissociated cultures. In addition, unc5h1-3 mRNAs, but not the dcc mRNA, are abundantly expressed in the adult DRG. An in situ hybridization study demonstrated that unc5h mRNAs were expressed in DRG neurons. This finding indicates that netrin/Unc5h signaling may play a role in the neurite outgrowth of adult DRG neurons and that netrin may be involved in the regulation of peripheral nerve regeneration.  相似文献   

17.
Secreted Slit proteins have previously been shown to signal through Roundabout (Robo) receptors to negatively regulate axon guidance and cell migration. During vertebrate development, Slit proteins have also been shown to stimulate branching and elongation of sensory axons and cortical dendrites. In this study, Slit1/Robo2 mRNA and protein expressions were detected in adult rat dorsal root ganglion (DRG) and in cultured DRG neurons. Treatment of both models with recombinant, soluble Slit1 protein was found to promote neurite outgrowth and elongation. In contrast, treatment with a recombinant human Robo2/Fc chimera inhibited neurite outgrowth and elongation. When adult DRG and cultured DRG neurons were pretreated with soluble recombinant human Robo2/Fc chimera, neurite outgrowth and elongation was not induced. These findings indicate that Slit1/Robo2 signaling may have a role in regulating peripheral nerve regeneration.  相似文献   

18.
The design of novel biomaterials is crucial for the advancement of tissue engineering in nerve regeneration. In this study we developed and evaluated novel biosynthetic scaffolds comprising collagen crosslinked with a terpolymer of poly(N-isopropylacrylamide) (PNiPAAm) as conduits for nerve growth. These collagen-terpolymer (collagen-TERP) scaffolds grafted with the laminin pentapeptide YIGSR were previously used as corneal substitutes in pigs and demonstrated enhanced nerve regeneration compared to allografts. The purpose of this project was to enhance neuronal growth on the collagen-TERP scaffolds through the incorporation of supporting fibers. Neuronal growth on these matrices was assessed in vitro using isolated dorsal root ganglia as a nerve source. Statistical significance was assessed using a one-way ANOVA. The incorporation of fibers into the collagen-TERP scaffolds produced a significant increase in neurite extension (p<0.05). The growth habit of the nerves varied with the type of fiber and included directional growth of the neurites along the surface of certain fiber types. Furthermore, the presence of fibers in the collagen-TERP scaffolds appeared to influence neurite morphology and function; neurites grown on fibers-incorporated collagen-TERP scaffolds expressed higher levels of Na channels compared to the scaffolds without fiber. Overall, our results suggest that incorporation of supporting fibers enhanced neurite outgrowth and that surface properties of the scaffold play an important role in promoting and guiding nerve regeneration. More importantly, this study demonstrates the potential value of tissue engineered collagen-TERP hybrid scaffolds as conduits in peripheral nerve repair.  相似文献   

19.
Regeneration of neural tissues will require regrowth of axons lost due to trauma or degeneration to reestablish neuronal connectivity. One approach toward this goal is to provide directional cues to neurons that can promote and guide neurite growth. Our laboratory previously reported the formation of aligned monodomain gels of peptide amphiphile (PA) nanofibers over macroscopic length scales. In this work, we modified these aligned scaffolds specifically to support neural cell growth and function. This was achieved by displaying extracellular matrix (ECM) derived bioactive peptide epitopes on the surface of aligned nanofibers of the monodomain gel. Presentation of IKVAV or RGDS epitopes enhanced the growth of neurites from neurons encapsulated in the scaffold, while the alignment guided these neurites along the direction of the nanofibers. After two weeks of culture in the scaffold, neurons displayed spontaneous electrical activity and established synaptic connections. Scaffolds encapsulating neural progenitor cells were formed in situ within the spinal cord and resulted in the growth of oriented processes in vivo. Moreover, dorsal root ganglion (DRG) cells demonstrated extensive migration inside the scaffold, with the direction of their movement guided by fiber orientation. The bioactive and macroscopically aligned scaffold investigated here and similar variants can potentially be tailored for use in neural tissue regeneration.  相似文献   

20.
Development of biosynthetic conduits carrying extracellular matrix molecules and cell lines expressing neurotrophic growth factors represents a novel and promising strategy for spinal cord and peripheral nerve repair. In the present in vitro study, the compatibility and growth-promoting effects of (i) alginate hydrogel, (ii) alginate hydrogel complemented with fibronectin, and (iii) matrigel were compared between olfactory ensheathing cells (OECs), Schwann cells (SCs), and bone marrow stromal cells (BMSCs). Neurite outgrowth from embryonic dorsal root ganglia (DRG) neurons was used to assess the efficacy of the hydrogels alone or in combination with cultured cells to promote axonal regeneration. The result showed that alginate hydrogel transformed OECs, SCs, and BMSCs into atypical cells with spherical shape and inhibited their metabolic activity. Combination of alginate hydrogel with fibronectin promoted only OECs proliferation. Alginate hydrogel also inhibited outgrowth of DRG neurites, although this effect was attenuated by addition of fibronectin, SCs, or BMSCs. In contrast, matrigel stimulated cell proliferation, preserved the typical morphological features of the cultured cells and induced massive sprouting of DRG neurites. Addition of cultured cells to matrigel did not further improve DRG neurite outgrowth. The present findings suggest that addition of extracellular matrix should be considered when engineering biosynthetic scaffolds on the basis of alginate hydrogels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号