首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the amyloid precursor protein (APP) gene are associated with altered production and deposition of amyloid beta (Abeta) peptide in the Alzheimer's disease (AD) brain. The pathways that regulate APP processing, Abeta production and Abeta deposition in different tissues and brain regions remain unclear. To address this, we examined levels of various APP processing products as well as Abeta deposition in a genomic-based (R1.40) and a cDNA-based (Tg2576) transgenic mouse model of AD. In tissues, only brain generated detectable levels of the penultimate precursor to Abeta, APP C-terminal fragment-beta. In brain regions, holoAPP levels remained constant, but ratios of APP C-terminal fragments and levels of Abeta differed significantly. Surprisingly, cortex had the lowest steady-state levels of Abeta compared to other brain regions. Comparison of Abeta deposition in Tg2576 and R1.40 animals revealed that R1.40 exhibited more abundant deposition in cortex while Tg2576 exhibited extensive deposition in the hippocampus. Our results suggest that AD transgenic models are not equal; their unique characteristics must be considered when studying AD pathogenesis and therapies.  相似文献   

2.
Alzheimer's disease (AD) is a complex, neurodegenerative disease characterized by the impairment of cognitive function in elderly individuals. In a recent global gene expression study of APP transgenic mice, we found elevated expression of mitochondrial genes, which we hypothesize represents a compensatory response because of mitochondrial oxidative damage caused by the over-expression of mutant APP and/or amyloid beta (Abeta). We investigated this hypothesis in a series of experiments examining what forms of APP and Abeta localize to the mitochondria, and whether the presence of these species is associated with mitochondrial dysfunction and oxidative damage. Using immunoblotting, digitonin fractionation, immunofluorescence, and electron microscopy techniques, we found a relationship between mutant APP derivatives and mitochondria in brain slices from Tg2576 mice and in mouse neuroblastoma cells expressing mutant human APP. Further, to determine the functional relationship between mutant APP/Abeta and oxidative damage, we quantified Abeta levels, hydrogen peroxide production, cytochrome oxidase activity and carbonyl proteins in Tg2576 mice and age-matched wild-type (WT) littermates. Hydrogen peroxide levels were found to be significantly increased in Tg2576 mice when compared with age-matched WT littermates and directly correlated with levels of soluble Abeta in Tg2576 mice, suggesting that soluble Abeta may be responsible for the production of hydrogen peroxide in AD progression in Tg2576 mice. Cytochrome c oxidase activity was found to be decreased in Tg2576 mice when compared with age-matched WT littermates, suggesting that mutant APP and soluble Abeta impair mitochondrial metabolism in AD development and progression. An increase in hydrogen peroxide and a decrease in cytochrome oxidase activity were found in young Tg2576 mice, prior to the appearance of Abeta plaques. These findings suggest that early mitochondrially targeted therapeutic interventions may be effective in delaying AD progression in elderly individuals and in treating AD patients.  相似文献   

3.
Previously, we reported that the stress associated with chronic isolation was associated with increased beta-amyloid (Abeta) plaque deposition and memory deficits in the Tg2576 transgenic animal model of Alzheimer's disease (AD) [Dong H, Goico B, Martin M, Csernansky CA, Bertchume A, Csernansky JG (2004) Effects of isolation stress on hippocampal neurogenesis, memory, and amyloid plaque deposition in APP (Tg2576) mutant mice. Neuroscience 127:601-609]. In this study, we investigated the potential mechanisms of stress-accelerated Abeta plaque deposition in this Tg2576 mice by examining the relationship between plasma corticosterone levels, expression of glucocorticoid receptor (GR) and corticotropin-releasing factor receptor-1 (CRFR1) in the brain, brain tissue Abeta levels and Abeta plaque deposition during isolation or group housing from weaning (i.e. 3 weeks of age) until 27 weeks of age. We found that isolation housing significantly increased plasma corticosterone levels as compared with group-housing in both Tg+ mice (which contain and overexpress human amyloid precursor protein (hAPP) gene) and Tg- mice (which do not contain hAPP gene as control). Also, isolated, but not group-housed animals showed increases in the expression of GR in the cortex. Furthermore, the expression of CRFR1 was increased in isolated Tg+ mice, but decreased in isolated Tg- mice in both cortex and hippocampus. Changes in the components of hypothalamic-pituitary-adrenal (HPA) axis were accompanied by increases in brain tissue Abeta levels and Abeta plaque deposition in the hippocampus and overlying cortex in isolated Tg+ mice. These results suggest that isolation stress increases corticosterone levels and GR and CRFR1 expression in conjunction with increases in brain tissue Abeta levels and Abeta plaque deposition in the Tg2576 mouse model of AD.  相似文献   

4.
This study was designed to test the hypothesis that Alzheimer's disease (AD) is associated with endothelial dysfunction and that chronic endothelin-1 antagonism preserves endothelial function in mice overexpressing the AD amyloid precursor protein (APP). Three groups of mice were studied: C57BL/6 (normal control, n = 6), transgenic mice overexpressing APP (Tg2576, n = 5), and Tg2576 mice fed Bosentan (100 mg/(kg day)(-1)), a combined endothelin A and B receptor antagonist, for 4 months (Tg2576+Bosentan, n = 5). Mice were sacrificed at the age of 7 months. In vitro, the endothelium-dependent aortic vasorelaxation was significantly attenuated in Tg2576 mice as compared to C57BL/6 and Tg2576+Bosentan mice. In contrast, Tg2576+Bosentan and C57BL/6 mice showed similar endothelium-dependent aortic vasorelaxation. Similarly, endothelium-dependent carotid vasorelaxation was significantly attenuated in Tg2576 mice compared to C57BL/6 and Tg2576+Bosentan mice. There was no difference between the three groups in the response to nitroprusside. The current study demonstrates the presence of endothelial dysfunction in both carotid and aortic arteries in mice overexpressing APP and suggests a pathophysiological role for the endogenous endothelin system in AD.  相似文献   

5.
We examined presynaptic cholinergic markers and beta-secretase activity during progressive central nervous system amyloidogenesis in Tg2576 Alzheimer mice (transgenic for human amyloid precursor protein Swedish mutation; hAPPswe). At 14, 18, and 23 months of age there were no significant differences between wild-type and transgenic mice in four distinct central nervous system cholinergic indices--choline acetyltransferase and acetylcholinesterase activities, and binding to vesicular acetylcholine transporter and Na(+)-dependent high-affinity choline uptake sites. A novel enzyme-linked immunosorbent assay measuring only the secreted human beta-secretase cleavage product (APPsbetaswe) of APPswe also revealed no change with aging in Tg2576 mouse brain. In contrast, transgenic but not wild-type mice exhibited an age-dependent increase in soluble Abeta40 and Abeta42 levels and progressive amyloid deposition in brain. Thus, aging Tg2576 mice exhibited presynaptic cholinergic integrity despite progressively increased soluble Abeta40 and Abeta42 levels and amyloid plaque density in brain. Older Tg2576 mice may best resemble preclinical or early stages of human Alzheimer's disease with preserved presynaptic cholinergic innervation. Homeostatic APPsbetaswe levels with aging suggest that progressive amyloid deposition in brain results not from increased beta-secretase cleavage of APP but from impaired Abeta/amyloid clearance mechanisms.  相似文献   

6.
Alzheimer's disease (AD) is a progressive neurodegenerativedisease characterized by the impairment of cognitive functionsand by beta amyloid (Aß) plaques in the cerebral cortexand the hippocampus. Our objective was to determine genes thatare critical for cellular changes in AD progression, with particularemphasis on changes early in disease progression. We investigatedan established amyloid precursor protein (APP) transgenic mousemodel (the Tg2576 mouse model) for gene expression profilesat three stages of disease progression: long before (2 monthsof age), immediately before (5 months) and after (18 months)the appearance of Aß plaques. Using cDNA microarraytechniques, we measured mRNA levels in 11 283 cDNA clonesfrom the cerebral cortex of Tg2576 mice and age-matched wild-type(WT) mice at each of the three time points. This gene expressionanalysis revealed that the genes related to mitochondrial energymetabolism and apoptosis were up-regulated in 2-month-old Tg2576mice and that the same genes were up-regulated at 5 and 18 monthsof age. These microarray results were confirmed using northernblot analysis. Results from in situ hybridization of mitochondrialgenes—ATPase-6, heat-shock protein 86 and programmed celldeath gene 8—suggest that the granule cells of the hippocampaldentate gyrus and the pyramidal neurons in the hippocampus andthe cerebral cortex are up-regulated in Tg2576 mice comparedwith WT mice. Results from double-labeling in situ hybridizationsuggest that in Tg2576 mice only selective, over-expressed neuronswith the mitochondrial gene ATPase-6 undergo oxidative damage.These results, therefore, suggest that mitochondrial energymetabolism is impaired by the expression of mutant APP and/orAß, and that the up-regulation of mitochondrial genesis a compensatory response. These findings have important implicationsfor understanding the mechanism of Aß toxicity inAD and for developing therapeutic strategies for AD. * To whom correspondence should be addressed at: Neurogenetics Laboratory, Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA. Tel: +1 5034182625; Fax: +1 5034182501; Email: reddyh{at}ohsu.edu  相似文献   

7.
Oxidative stress may play a key role in Alzheimer's disease (AD) neuropathology. Here, the effects of the antioxidant, alpha-lipoic acid (ALA) were tested on the Tg2576 mouse, a transgenic model of cerebral amyloidosis associated with AD. Ten-month old Tg2576 and wild type mice were fed an ALA-containing diet (0.1%) or control diet for 6 months and then assessed for the influence of diet on memory and neuropathology. ALA-treated Tg2576 mice exhibited significantly improved learning, and memory retention in the Morris water maze task compared to untreated Tg2576 mice. Twenty-four hours after contextual fear conditioning, untreated Tg2576 mice exhibited significantly impaired context-dependent freezing. ALA-treated Tg2576 mice exhibited significantly more context freezing than the untreated Tg2576 mice. Assessment of brain soluble and insoluble beta-amyloid levels revealed no differences between ALA-treated and untreated Tg2576 mice. Brain levels of nitrotyrosine, a marker of nitrative stress, were elevated in Tg2576 mice, while F2 isoprostanes and neuroprostanes, oxidative stress markers, were not elevated in the Tg2576 mice relative to wild type. These data indicate that chronic dietary ALA can reduce hippocampal-dependent memory deficits of Tg2576 mice without affecting beta-amyloid levels or plaque deposition.  相似文献   

8.
Phosphatidylethanolamine binding protein (PEBP) is a multifunctional protein, with proposed roles as the precursor protein of hippocampal cholinergic neurostimulating peptide (HCNP), and as the Raf kinase inhibitor protein (RKIP). Previous studies have demonstrated a decrease in PEBP mRNA in CA1 region of AD hippocampus. The current study demonstrates that PEBP is decreased in the hippocampus of 11 month Tg2576 mice, in the absence of change in mRNA levels compared to non-transgenic littermates. The level of PEBP in transgenic mouse hippocampus significantly decreases at 11 months (a time point when Abeta begins accumulating) and 15 months (when Abeta plaques have formed). There was a significant correlation between decreased PEBP expression and accumulation of Abeta. Immunohistochemical studies on Tg2576 and AD brain sections demonstrate that PEBP immunoreactivities are present at the periphery of dense multicore Abeta plaques, and in selective astrocytes, primarily surrounding plaques. These findings suggest that PEBP expression may be influenced by accumulation of Abeta. Down-regulation of PEBP may result in lower levels of HCNP or altered coordination of signal transduction pathways that may contribute to neuronal dysfunction and pathogenesis in AD.  相似文献   

9.
We examined the brains of Tg2576 transgenic mice carrying human amyloid precursor protein with the Swedish mutation and Alzheimer's disease (AD) by means of immunohistochemistry and electron microscopy to clarify the characteristics of amyloid-associated pathology in the transgenic mice. In 12- to 29-month-old Tg2576 mice, congophilic cored plaques in the neocortex and hippocampus were labeled by all of the Abeta1-, Abeta40- and 42-specific antibodies, as seen in the classical plaques in AD. However, large-sized (>50 micro m in core diameter) plaques were seen more frequently in the older mice (18-29 months) than in those with AD (approximately 20% vs 2% in total cored plaques), and Tg2576 mice contained giant plaques (>75 micro m in core diameter), which were almost never seen in the brain of those with AD. Neither thread-like structures nor peripheral coronas were observed in the cored plaques of the transgenic mice in the silver impregnations. Immunohistochemically, plaque-accompanied microglia showed a slight enlargement of the cytoplasm with consistent labeling of Mac-1 and macrosialin (murine CD68), and with partial labeling of Ia antigen and macrophage-colony stimulating factor receptor. Ultrastructurally, the microglia surrounding the extracellular amyloid fibrils in the large, cored plaques showed some organella with phagocytic activity, such as secondary lysosomal, dense bodies, but intracellular amyloid fibrils were not evident. Dystrophic neurites in the plaques of the transgenic mice contained many dense multilaminar bodies, but no paired helical filaments. Our results suggest that giant cored plaques without coronas or paired helical filament-typed, dystrophic neurites are characteristic in Tg2576 mice, and that plaque-associated microglia in transgenic mice are activated to be in phagocytic function but not sufficient enough to digest extracellularly deposited amyloid fibrils.  相似文献   

10.
The progressive deposition of amyloid-β (Aβ) in the brain is a pathologic feature of Alzheimer's disease (AD). This study was aimed to determine whether endogenous tissue plasminogen activator (tPA) modulates the pathogenic process of AD. tPA expression and activity developed around amyloid plaques in the brains of human amyloid precursor protein–overexpressing Tg2576 mice, which were weakened by the genetic ablation of tPA. Although the complete loss of tPA was developmentally fatal to Tg2576 mice, tPA-heterozygous Tg2576 mice expressed the more severe degenerative phenotypes than tPA wild-type Tg2576 mice, including abnormal and unhealthy growth, shorter life spans, significantly enhanced Aβ levels, and the deposition of more and larger amyloid plaques in the brain. In addition, the expression of synaptic function–associated proteins was significantly reduced, which in turn caused a more severe impairment in learning and memory performance in Tg2576 mice. Thus, endogenous tPA, preferentially its aggregate form, could degrade Aβ molecules and maintain low levels of brain Aβ, resulting in the delay of AD pathogenesis.  相似文献   

11.
Transthyretin (TTR) binds amyloid-β (Aβ) and prevents Aβ fibril formation in vitro . It was reported that the lack of neurodegeneration in a transgenic mouse model of Alzheimer's disease (AD) (Tg2576 mouse) was associated with increased TTR level in the hippocampus, and that chronic infusion of anti-TTR antibody into the hippocampus of Tg2576 mice led to increased local Aβ deposits, tau hyperphosphorylation and apoptosis. TTR is, therefore, speculated to prevent Aβ pathology in AD. However, a role for TTR in Aβ deposition is not yet known. To investigate the relationship between TTR and Aβ deposition, we generated a mouse line carrying a null mutation at the endogenous TTR locus and the human mutant amyloid precursor protein cDNA responsible for familial AD (Tg2576 /TTR −/− mouse) by crossing Tg2576 mice with TTR-deficient mice. We asked whether Aβ deposition was accelerated in Tg2576/ TTR −/− mice relative to the heterozygous mutant Tg2576 (Tg2576/ TTR +/−) mice. Contrary to our expectations, the degree of total and vascular Aβ burdens in the aged Tg2576/ TTR −/− mice was significantly reduced relative to the age-matched Tg2576/ TTR +/− mice. Our experiments present, for the first time, compelling evidence that TTR does not suppress but rather accelerates vascular Aβ deposition in the mouse model of AD.  相似文献   

12.
Although anti-human β-amyloid (Aβ) immunotherapy clears brain β-amyloid plaques in Alzheimer's disease (AD), targeting additional brain plaque constituents to promote clearance has not been attempted. Endogenous murine Aβ is a minor Aβ plaque component in amyloid precursor protein (APP) transgenic AD models, which we show is ∼3%–8% of the total accumulated Aβ in various human APP transgenic mice. Murine Aβ codeposits and colocalizes with human Aβ in amyloid plaques, and the two Aβ species coimmunoprecipitate together from brain extracts. In the human APP transgenic mouse model Tg2576, passive immunization for 8 weeks with a murine-Aβ-specific antibody reduced β-amyloid plaque pathology, robustly decreasing both murine and human Aβ levels. The immunized mice additionally showed improvements in two behavioral assays, odor habituation and nesting behavior. We conclude that passive anti-murine Aβ immunization clears Aβ plaque pathology—including the major human Aβ component—and decreases behavioral deficits, arguing that targeting minor endogenous brain plaque constituents can be beneficial, broadening the range of plaque-associated targets for AD therapeutics.  相似文献   

13.
A mouse and human brain-enriched micro-RNA-146a (miRNA-146a) is known to be important in modulating the innate immune response and inflammatory signaling in certain immunological and brain cell types. In this study we examined miRNA-146a levels in early-, moderate- and late-stage Alzheimer's disease (AD) neocortex and hippocampus, in several human primary brain and retinal cell lines, and in 5 different transgenic mouse models of AD including Tg2576, TgCRND8, PSAPP, 3xTg-AD and 5xFAD. Inducible expression of miRNA-146a was found to be significantly up-regulated in a primary co-culture of human neuronal-glial (HNG) cells stressed using interleukin1-beta (IL-1β), and this up-regulation was quenched using specific NF-кB inhibitors including curcumin. Expression of miRNA-146a correlated with senile plaque density and synaptic pathology in Tg2576 and in 5xFAD transgenic mouse models used in the study of this common neurodegenerative disorder.  相似文献   

14.
Alzheimer's disease and Fragile X syndrome both display synaptic phenotypes, and based on recent studies, likely share dendritic over expression of amyloid precursor protein (APP) and beta-amyloid (Abeta). In order to create a mouse model to specifically study the effects of APP and Abeta at synapses, we crossed Tg2576, which over-express human APP with the Swedish mutation (hAPPsw), with fmr-1 KO mice. The progeny, named FRAXAD, displayed increased mortality (23% by 30 days of age) compared to Tg2576 (3%) and WT and fmr-1 KO littermate controls (0%) consistent with a developmental defect. By 60 days of age, both the Tg2576 and FRAXAD mice approached a 40% mortality rate compared to 0% for WT and fmr-1 KO littermates. To understand the mechanism underlying increased mortality in APP over-expressing mice, we assessed seizure thresholds in response to pentylenetetrazol (PTZ). Both the Tg2576 and FRAXAD mice had a lower threshold to PTZ-induced seizures (average seizure score of >/=4.0) in comparison to nontransgenic littermates (average seizure score 1.9-2.9). Seizures are a major phenotype of AD, FXS, Down syndrome, autism and epilepsy, and these data suggested that developmental over-expression of dendritic APP or Abeta increased seizure susceptibility.  相似文献   

15.
Transgenic mice (Tg2576) overexpressing human beta-amyloid precursor protein with the Swedish mutation (APP695SWE) develop Alzheimer's disease-like amyloid beta protein (Abeta) deposits by 8 to 10 months of age. These mice show elevated levels of Abeta40 and Abeta42, as well as an age-related increase in diffuse and compact senile plaques in the brain. Senile plaque load was quantitated in the hippocampus and neocortex of 8- to 19-month-old male and female Tg2576 mice. In all mice, plaque burden increased markedly after the age of 12 months. At 15 and 19 months of age, senile plaque load was significantly greater in females than in males; in 91 mice studied at 15 months of age, the area occupied by plaques in female Tg2576 mice was nearly three times that of males. By enzyme-linked immunosorbent assay, female mice also had more Abeta40 and Abeta42 in the brain than did males, although this difference was less pronounced than the difference in histological plaque load. These data show that senescent female Tg2576 mice deposit more amyloid in the brain than do male mice, and may provide an animal model in which the influence of sex differences on cerebral amyloid pathology can be evaluated.  相似文献   

16.
Previous studies have described altered expression of metallothioneins (MTs) in neurodegenerative diseases like multiple sclerosis (MS), Down syndrome, and Alzheimer's disease (AD). In order to gain insight into the possible role of MTs in neurodegenerative processes and especially in human diseases, the use of animal models is a valuable tool. Several transgenic mouse models of AD amyloid deposits are currently available. These models express human beta-amyloid precursor protein (AbetaPP) carrying different mutations that subsequently result in a varied pattern of beta-amyloid (Abeta) deposition within the brain. We have evaluated the expression of MT-I and MT-III mRNA by in situ hybridization in three different transgenic mice models of AD: Tg2576 (carrying AbetaPP harboring the Swedish K670N/M671L mutations), TgCRND8 (Swedish and the Indiana V717F mutations), and Tg-SwDI (Swedish and Dutch/Iowa E693Q/D694N mutations). MT-I mRNA levels were induced in all transgenic lines studied, although the pattern of induction differed between the models. In the Tg2576 mice MT-I was weakly upregulated in cells surrounding Congo Red-positive plaques in the cortex and hippocampus. A more potent induction of MT-I was observed in the cortex and hippocampus of the TgCRND8 mice, likely reflecting their higher amyloid plaques content. MT-I upregulation was also more significant in Tg-SwDI mice, especially in the subiculum and hippocampus CA1 area. Immunofluorescence stainings demonstrate that astrocytes and microglia/macrophages surrounding the plaques express MT-I&II. In general, MT-I regulation follows a similar but less potent response than glial fibrillary acidic protein (GFAP) expression. In contrast to MT-I, MT-III mRNA expression was not significantly altered in any of the models examined suggesting that the various MT isoforms may have different roles in these experimental systems, and perhaps also in human AD.  相似文献   

17.
目的:观察骨髓间充质干细胞(BMSCs)脑内移植对阿尔茨海默病(AD)小鼠学习记忆能力及病理改变的影响,并对其分子机制进行探讨。方法:将C57/BL6野生型(WT)小鼠和C57/BL6 APP/PS1转基因(Tg)小鼠随机分为4组:WT/PBS组、WT/BMSCs组、Tg/PBS组及Tg/BMSCs组,侧脑室注射法将PBS或BMSCs注入小鼠脑内。术后第3天起进行持续8 d的Morris水迷宫实验以检测小鼠认知能力。术后第10天取材,组织免疫荧光染色检测小鼠脑内小胶质细胞的激活;real-time PCR检测CX3C趋化因子配体1(CX3CL1)、CX3C趋化因子受体1(CX3CR1)、IL-1β、TNF-α、Nurr1、YM1、胰岛素降解酶(IDE)和基质金属蛋白酶9(MMP9)的mRNA表达;ELISA检测脑组织匀浆CX3CL1和Aβ42的含量;Western blot检测突触后致密蛋白95(PSD95)、突触小泡蛋白(SYP)、p85和p110蛋白表达以及Akt磷酸化水平的变化。结果:术后第10天,在APP/PS1小鼠海马区附近观察到移植的BMSCs。水迷宫实验结果显示,与WT/PBS组小鼠相比,Tg/PBS组小鼠逃避潜伏期明显延长(P0.01),BMSCs移植治疗后APP/PS1小鼠逃避潜伏期明显缩短(P0.05);与Tg/PBS组相比,Tg/BMSCs组CX3CL1在海马区的mRNA水平(P0.01)及皮质区的蛋白水平(P0.05)明显增加;BMSCs移植可以促进WT和Tg小鼠脑内小胶质细胞的激活,同时M2型小胶质细胞表面标志物YM1的mRNA表达上调(P0.05)。Tg/PBS组与WT/PBS组相比,皮质区和海马区TNF-α的mRNA表达明显升高(P0.05),皮质区Nurr1的mRNA表达降低(P0.01);而与Tg/PBS组相比,Tg/BMSCs组皮质区的TNF-α(P0.01)mRNA表达降低,CX3CR1和Nurr1的mRNA表达明显上调(P0.05),海马区TNF-α和IL-1β的mRNA明显下调(P0.05),CX3CR1和Nurr1的mRNA表达明显增加(P0.05)。此外,Tg/BMSCs组的PSD95、p85和p110蛋白表达及Akt的磷酸化水平均较Tg/PBS组明显增加(P0.05)。与Tg/PBS组比,BMSCs移植降低了APP/PS1小鼠脑内Aβ42蛋白的水平(P0.05),增加了海马区Aβ清除相关酶IDE和MMP9的表达(P0.05)。结论:BMSCs移植可以调控神经炎症因子分泌,促进神经保护因子和突触蛋白的表达,从而改善APP/PS1小鼠的学习记忆能力,其分子机制可能是BMSCs移植上调CX3CL1后激活了PI3K/Akt通路。  相似文献   

18.
目的 探讨Tg2576转基因小鼠发育过程中海马CA1区小胶质细胞增殖和血管变化的规律。方法 取不同发育时间(P0、P7、P30、P180、P360) Tg2576转基因模型鼠与同时间点野生鼠,通过应用免疫组织化学、TUNEL、墨汁灌注、RT-PCR和透射电镜等方法研究海马发育过程中小胶质细胞和血管的变化。结果 随着小鼠的生长发育,P180后转基因组海马CA1区小胶质细胞密度和血管体密度高于对照组小鼠,RT-PCR结果显示,P360时转基因组海马CA1区小胶质细胞更多处于激活状态。 结论 小胶质细胞与血管改变的共同作用加重了阿尔茨海默病。  相似文献   

19.
To investigate the consequences of mutant presenilin-1 (PS-1) expression under the control of the normal PS-1 gene, a gene-targeted mouse bearing the FAD mutation P264L was made. Gene-targeted models are distinct from transgenic models because the mutant gene is expressed at normal levels, in the absence of the wild-type protein. PS-1(P264L/P264L) mice had normal expression of PS-1 mRNA, but levels of the N- and C-terminal protein fragments of PS-1 were reduced while levels of the holoprotein were increased. When crossed into Tg(HuAPP695.K670N/M671L)2576 mice, the PS-1(P264L) mutation accelerated the onset of amyloid (Abeta) deposition in a gene-dosage dependent manner. Tg2576/PS-1(P264L/P264L) mice also had Abeta deposition that was widely distributed throughout the brain and spinal cord. APP(NLh/NLh)/PS-1(P264L/P264L) double gene-targeted mice had elevated levels of Abeta42, sufficient to cause Abeta deposition beginning at 6 months of age. Abeta deposition increased linearly over time in APP(NLh/NLh)/PS-1(P264L/P264L) mice, whereas the increase in Tg2576 mice was exponential. The APP(NLh/NLh)/PS-1(P264L/P264L) double gene-targeted mouse represents an animal model that exhibits Abeta deposition without overexpression of APP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号