首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aim of this study was to evaluate entrance skin dose (ESD), organ dose and effective dose to patients undergoing catheter ablation for cardiac arrhythmias, based on the dosimetry in an anthropomorphic phantom. ESD values associated with mean fluoroscopy time and digital cine frames were in a range of 0.12–0.30 Gy in right anterior oblique (RAO) and 0.05–0.40 Gy in left anterior oblique (LAO) projection, the values which were less than a threshold dose of 2 Gy for the onset of skin injury. Organs that received high doses in ablation procedures were lung, followed by bone surface, esophagus, liver and red bone marrow. Doses for lung were 24.8–122.7 mGy, and effective doses were 7.9–34.8 mSv for mean fluoroscopy time of 23.4–92.3 min and digital cine frames of 263–511. Conversion coefficients of dose-area product (DAP) to ESD were 8.7 mGy/(Gy·cm2) in RAO and 7.4 mGy/(Gy·cm2) in LAO projection. The coefficients of DAP to the effective dose were 0.37 mSv/(Gy·cm2) in RAO, and 0.41 mSv/(Gy·cm2) in LAO projection. These coefficients enabled us to estimate patient exposure in real time by using monitored values of DAP.  相似文献   

2.
Estimates of mean organ doses from cardiac and carotid digital subtraction angiography (DSA) are obtained from measurements done using a Rando-Alderson tissue-equivalent phantom. Thermoluminescent dosemeter chips and discs were calibrated and used for all measurements in the primary and scattered radiation fields. Skin doses as well as mean doses received by the thyroid, lung, lens of the eye, breast, uterus and the ovaries were measured. A 30 degree right anterior oblique (RAO) cardiac DSA study produces a beam entrance dose of about 121 mGy at a rate of 0.48 mGy/frame. The highest mean organ dose from cardiac DSA was to the lung with a value of 14.4 mGy. The rest of the organs received doses below 1 mGy. In carotid DSA, the mean entrance doses resulted from the RAO, left anterior oblique, and the Towne's view projections give an average of 168 mGy at a rate of 8.4 mGy/frame. The highest mean organ dose from the three projections, 21 mGy, was received by the thyroid. The uterus and ovaries received the lowest doses from both procedures with values below 0.04 mGy. Patient and phantom surface exposures were compared using an exposure area product system. Hence, exposure conditions used for measuring organ doses on the phantom were adjusted to resemble those used for patients.  相似文献   

3.
PURPOSE: To evaluate radiation exposure to patients and radiologists during transcatheter arterial embolization(TAE) for hepatocellular carcinoma. MATERIALS AND METHODS: In 39 TAE procedures performed at eight institutes, skin doses were evaluated with thermoluminescence dosimeters at the patient's back(entrance surface) and lower abdomen, and at the radiologist's forehead and abdomen. Real-time dosimeters were also used to evaluate patient skin dose. RESULTS: The patients' mean entrance surface dose was 973 +/- 681 mGy(range, 185 to 3543 mGy) with the mean fluoroscopic time of 21 minutes and 6 digital subtraction angiography(DSA) acquisitions. The dose at the patients' lower abdomen was 0.98 +/- 0.77 mGy. Doses for the radiologists were 0.04 +/- 0.04 mGy at the forehead and 0.15 +/- 0.19 mGy and 0.005 +/- 0.01 mGy at the abdomen over and under the apron, respectively. Fifty-six percent of the patients' skin dose was from DSA and 44% from fluoroscopy. CONCLUSIONS: Patient skin dose may occasionally exceed the dose for transient erythema. Because a patient may have repeated TAEs, skin doses or X-ray conditions should be recorded. The exposed doses of radiologists were considered to be acceptable with proper techniques. Further efforts to reduce radiation should be directed toward both DSA and fluoroscopy.  相似文献   

4.
《Medical Dosimetry》2014,39(2):190-193
The purpose of this study was to investigate the delivered dose from a kilovoltage cone-beam computed tomography (kV-CBCT) acquired in breast treatment position for a left and right breast setup. The dose was measured with thermoluminescent dosimeters positioned within a female anthropomorphic phantom at organ locations. Imaging was performed on an Elekta Synergy XVI system with the phantom setup on a breast board. The image protocol involved 120 kVp, 140 mAs, and a 270° arc rotation clockwise 0° to 270° for the left breast setup and 270° to 180° for the right breast setup (maximum arc rotations possible). The dose delivered to the left breast, right breast, and heart was 5.1 mGy, 3.9 mGy, and 4.0 mGy for the left breast setup kV-CBCT, and 6.4 mGy, 6.0 mGy, and 4.8 mGy for the right breast setup kV-CBCT, respectively. The rotation arc of the kV-CBCT influenced the dose delivered, with the right breast setup kV-CBCT found to deliver a dose of up to 4 mGy or 105% higher to the treated breast′s surface in comparison with the left breast setup. This is attributed to the kV-CBCT source being more proximal to the anterior of the phantom for a right breast setup, whereas the source is more proximal to the posterior of the patient for a left-side scan.  相似文献   

5.
The objective of this study was to compare the radiation exposure delivered by helical CT and pulmonary angiography (PA) for the detection of pulmonary embolism (PE), with an anthropomorphic phantom. A preliminary survey defined a representative standard procedure for helical CT and PA (n=148) by choosing the exposure settings most frequently used. Then, radiation doses were measured with thermoluminescent dosimeters TLD 100 (Lif) introduced into the depth of an anthropomorphic phantom. Average doses were approximately five times smaller with helical CT than with PA (6.4±1.5 and 28±7.6 mGy, respectively). The most important doses were abreast the pulmonary apex for CT, and abreast the pulmonary arteries for PA. Compared with PA, helical CT dose distribution was relatively uniform (10–13 mGy). Finally, concerning abdomen and pelvis, doses were more important for PA than for CT scan (0.06–2.86 and 0.2–11.5 mGy, respectively). For the diagnostics of PE, radiation exposure is five times smaller with helical CT than with pulmonary angiography.  相似文献   

6.
目的 研究数字化X射线胸部高千伏摄影曝光剂量与图像质量的关系,确定数字化X射线摄影最佳曝光剂量。方法 选择胸部高千伏摄影管电压120 kV,摄影mAs从1 mAs逐档增加至25 mAs,对模拟人体胸部厚度摄影体模与CDRAD 2.0对比度细节体模进行摄影,测量体模表面X射线入射剂量,由5位观察者独立阅读体模影像,比较任意两曝光条件组之间的图像质量因子(IQF),确定高千伏胸部摄影最佳条件。比较4和10 mAs条件下正常人体胸部摄影图像质量评分。结果 胸部高千伏摄影体模曝光条件从1 mAs增加到25 mAs,体模表面X射线入射剂量从0.067 mGy增加至1.468 mGy。随着X射线入射剂量的增加,影像质量影响因子IQF值不断减小,观察者阅读体模信号的IQF差异有统计学意义(F=31.00,P<0.05),曝光剂量条件选择在1~4 mAs时所对应的IQF均值差异有统计学意义(F=15.3,P<0.05),4~10 mAs时所对应的IQF差异无统计学意义,10~25 mAs时所对应的IQF均值差异有统计学意义(F=9.74,P<0.05)。曝光剂量条件选择4和10 mAs所对应的体模表面入射剂量为0.250和0.606 mGy,两种条件下胸部图像质量的综合评分分别为(24.8±1.64)、(25.8±2.05)分,差异无统计学意义。结论 随着数字化X射线摄影剂量的增加所获得图像信息量增加。满足临床诊断的标准人体胸部高千伏数字化X摄影最佳剂量为0.250 mGy左右。  相似文献   

7.
A study was performed to evaluate the total entrance skin dose (ESD) of patients during diagnostic and interventional radiology procedures (IVR) and to estimate ESD with body mass index (BMI) and fluoroscopy time. The study included 26 cases of transcatheter arterial embolization therapy (TAE) for hepatocellular carcinoma (HCC) and 19 cases of diagnostic digital subtraction angiography (DSA) for HCC. The ESD of patients was evaluated with a zinc-cadmium sensor linked to a digital counter (SDM: skin dose monitor). Exposure doses were measured with SDM attached to the front of the X-ray beam-limiting device like a dose area product monitor. ESD was calculated from the measured exposure dose. In 26 TAE for HCC, ESD was 1793.7+/-739.1 mGy, with the mean fluoroscopic time of 23.5 minutes and 4.4 DSA acquisitions. The fluoroscopic dose rate was 52.4+/-11.5 mGy/min. In 19 diagnostic DSA for HCC, ESD was 962.9+/-375.2 mGy, with the mean fluoroscopic time of 11.1 minutes and 4.0 DSA acquisitions. The fluoroscopic dose rate was 32.7+/-12.7 mGy/min. Although 33.2% of ESD was from fluoroscopy in diagnostic procedures, the figure was 68.8% in TAE procedures. It was demonstrated that the increase in ESD during IVR was caused by the rise of fluoroscopy dose rate caused by high-magnification fluoroscopy and the extension of fluoroscopy time. In order to reduce ESD, it is necessary to use a low fluoroscopy dose rate with low-rate pulse fluoroscopy, in addition to shortening fluoroscopy time. Fluoroscopy time was a poor predictor of risk because it did not correlate well with ESD during IVR (diagnostic procedures r(2)= 0.897, IVR r(2)= 0.594). However, ESD correlated well with the product of BMI and fluoroscopy time (diagnostic procedures r(2)= 0.910, IVR r(2)= 0.783). The linear relationship between ESD and the product of BMI and fluoroscopy time provides a simple monitoring mechanism of the ESD delivered to the patient during interventional radiology procedures. This linear relationship needs to be established for other types of interventional procedures.  相似文献   

8.
The objective of this study was to compare the effective radiation dose of perineural and epidural injections of the lumbar spine under computed tomography (CT) or fluoroscopic guidance with respect to dose-reduced protocols. We assessed the radiation dose with an Alderson Rando phantom at the lumbar segment L4/5 using 29 thermoluminescence dosimeters. Based on our clinical experience, 4–10 CT scans and 1-min fluoroscopy are appropriate. Effective doses were calculated for CT for a routine lumbar spine protocol and for maximum dose reduction; as well as for fluoroscopy in a continuous and a pulsed mode (3–15 pulses/s). Effective doses under CT guidance were 1.51 mSv for 4 scans and 3.53 mSv for 10 scans using a standard protocol and 0.22 mSv and 0.43 mSv for the low-dose protocol. In continuous mode, the effective doses ranged from 0.43 to 1.25 mSv for 1–3 min of fluoroscopy. Using 1 min of pulsed fluoroscopy, the effective dose was less than 0.1 mSv for 3 pulses/s. A consequent low-dose CT protocol reduces the effective dose compared to a standard lumbar spine protocol by more than 85%. The latter dose might be expected when applying about 1 min of continuous fluoroscopy for guidance. A pulsed mode further reduces the effective dose of fluoroscopy by 80–90%.  相似文献   

9.
The purpose of this study was to measure the cumulated activity and absorbed dose in organs after intravenous administration of 2-[F-18]fluoro-2-deoxy-d-glucose (18F-FDG) using whole-body positron emission tomography (PET) and magnetic resonance imaging (MRI). Whole-body dynamic emission scans for 18F-FDG were performed in six normal volunteers after transmission scans. The total activity of a source organ was obtained from the activity concentration of the organ measured by whole-body PET and the volume of that organ measured by whole-body T1-weighted MRI. The cumulated activity of each source organ was calculated from the time-activity curve. Absorbed doses to the individuals were estimated by the MIRD (medical internal radiation dosimetry) method using S-values adjusted to the individuals. Another calculation of cumulated activities and absorbed doses was performed using the organ volumes from the MIRD phantom and the ”Japanese reference man” to investigate the discrepancy of actual individual results against the phantom results. The cumulated activities of 18 source organs were calculated, and absorbed doses of 27 target organs estimated. Among the target organs, bladder wall, brain and kidney received the highest doses for the above three sets of organ volumes. Using measured individual organ volumes, the average absorbed doses for those organs were found to be 3.1×10–1, 3.7×10–2 and 2.8×10–2 mGy/MBq, respectively. The mean effective doses in this study for individuals of average body weight (64.5 kg) and the MIRD phantom of 70 kg were the same, i.e. 2.9×10–2 mSv/MBq, while for the Japanese reference man of 60 kg the effective dose was 2.1×10–2 mSv/MBq. The results for measured organ volumes derived from MRI were comparable to those obtained for organ volumes from the MIRD phantom. Although this study considered 18F-FDG, combined use of whole-body PET and MRI might be quite effective for improving the accuracy of estimations of the cumulated activity and absorbed dose of positron-labelled radiopharmaceuticals. Received 23 October 1997 and in revised form 31 January 1998  相似文献   

10.
心血管病介入操作时患者受照剂量研究   总被引:1,自引:1,他引:0       下载免费PDF全文
目的 对心血管介入手术中患者所受辐射剂量及与辐射剂量相关的指标进行采集和分析,为改善患者的辐射防护提供依据.方法 对在省属三级甲等医院进行的26例完整的心血管介入手术的患者进行临床数据采集,按手术类别分成冠状动脉血管造影术(CA)及行冠状动脉血管造影术(CA)后继续行经皮穿刺腔内冠状动脉成形术(PTCA)两组,采用TLD个人剂量计照射野矩阵测量法,检测患者荧光照射时间、入射皮肤剂量(ESD)、最高皮肤剂量(PSD)、剂量-面积乘积(DAP)等指标,用TLD测量在模拟心血管手术条件下体模器官剂量.结果 荧光透视时间为(17.7±15.6)min,范围为0.80~42.4 min;ESD范围为(159±138)mGy,4.40~459 mGy;PSD范围为(769±705)mGy,22.6~2.43×103mGy.CA+PTCA组的荧光照射时间、ESD、PSD均大于CA组,差异有统计学意义.最大皮肤受照剂量与透视时间有较好的相关性(r=0.84,P<0.01).结论 心血管病放射性介入操作时,可通过透视时间来估算最大皮肤受照剂量.
Abstract:
Objective To collect and analyze the radiation dose to patients in cardiovascular interventional procedures and the radiation dose-related indicators,in order to provide a basis for improving radiation protection of patients.MethodsThe clinical data of 26 cases of complete cardiovascular interventional procedures was collected in the municipal Grade A Class Three hospitals,including coronary angiography (CA) and percutaneous transluminal coronary angioplasty (PTCA),and the patient-received radiation doses and other related factors was studied.TLD personal dosimeter radiation field matrix method was used to measure fluorescence time,the entrance skin dose (ESD),the peak skin dose (PSD),dosearea product (DAP) and other indicators.TLD was used to measure the organ dose of the phantom under the cardiovascular interventional procedure condition.ResultsThe fluoroscopy time was (17.7 ±15.6) min during the range of 0.80-42.4 min.The average entrance skin dose (ESD) was (159 ± 138)mGy during the range of 4.40-459 mGy.The peak skin dose (PSD) was (769 ± 705) mGy during the range of 22.6 - 2.43 × 103mGy.The fluorescence time,entrance skin dose (ESD) ,peak skin dose (PSD) of the group CA + PTCA are greater than the group CA and the difference has statistical significan.The peak skin dose and the fluoroscopy time have good linear correlation (r = 0.84,P < 0.01 ).Conclusion The peak skin dose the patient received in cardiovascular interventional radiological operation can be estimated through the fluoroscopy time.  相似文献   

11.
OBJECTIVE: It is necessary to reduce the exposure doses from both fluoroscopy and angiocardiography. Pulsed fluoroscopy clearly reduces patients' exposure. By contrast, whether digital acquisition reduces patients' exposure is not clear. This study simulated the skin radiation doses of patients in cardiac catheterization laboratories with various radiography systems used in percutaneous transluminal coronary angioplasty to determine whether digital acquisition reduces patient exposure as compared with cine film recording. MATERIALS AND METHODS: The entrance surface doses with cineangiography and fluoroscopy of acrylic phantoms were compared for 11 radiography systems at seven facilities; each performs more than 100 cardiac intervention procedures per year. The entrance surface dose for an acrylic plate (20 cm thick) was measured using a skin-dose monitor. RESULTS: The maximum dose exceeded the minimum dose by 6.44 times for cineangiography and by 3.42 times for fluoroscopy. The entrance surface dose with acrylic plate was lower with digital-only acquisition (mean +/- SD, 3.07 +/- 0.84 mGy/sec) than with film recording (6.00 +/- 3.04 mGy/sec). By contrast, the entrance surface frame dose, after correction for the cine frame rate, tended to be higher with digital acquisition than with film recording (0.210 +/- 0.053 vs 0.179 +/- 0.058 mGy/frame, respectively). CONCLUSION. The entrance surface dose was approximately 50% less with digital-only acquisition than with film recording. However, after correcting the dose for cine frame rate, filmless acquisition did not in itself reduce the exposure. For the surface dose to be reduced for cardiac interventional radiography, even with digital filmless radiography systems, a low recording speed is necessary for angiocardiography.  相似文献   

12.
The purpose of this study was to determine the gonadal dose, effective dose and relevant radiogenic risks associated with pediatric patients undergoing voiding cystourethrography (VCUG). Exposure parameters were monitored in 118 consecutive children undergoing VCUG. The entrance surface dose (ESD) was determined by thermoluminescent dosimeters (TLDs). For male patients, the gonadal dose was determined by TLDs attached on the anterior scrotum. For female patients, the gonadal dose was estimated by converting ESD to the ovarian dose. ESD-to-ovarian dose conversion factors were determined by thermoluminescence dosimetry and physical anthropomorphic phantoms representing newborn and 1-, 5- and 10-year-old individuals. The effective dose was estimated by using ESD and data obtained from the literature. The mean fluoroscopy time and number of radiographs during VCUG were 0.73 min and 2.3 for female and 0.91 min and 3.0 for male pediatric patients, respectively. The gonadal dose range was 0.34–5.17 mGy in boys and 0.36–2.57 mGy in girls. The corresponding ranges of effective dosage were 0.12–1.67 mSv and 0.15–1.45 mSv. Mean radiation risks for genetic anomalies and carcinogenesis following VCUG during childhood were estimated to be up to 15 per million and 125 per million, respectively. Radiation risks associated with pediatric patients undergoing VCUG should not be disregarded if such a procedure is to be justified adequately.  相似文献   

13.
The objectives of the present study were to (a) estimate the conceptus radiation dose and risks for pregnant women undergoing posteroanterior and anteroposterior (AP) chest radiographs, (b) study the conceptus dose as a function of chest thickness of the patient undergoing chest radiograph, and (c) investigate the possibility of a conceptus to receive a dose of more than 10 mGy, the level above which specific measurements of conceptus doses may be necessary. Thermoluminescent dosimeters were used for dose measurements in anthropomorphic phantoms simulating pregnancy at the three trimesters of gestation. The effect of chest thickness on conceptus dose and risk was studied by adding slabs of lucite on the anterior and posterior surface of the phantom chest. The conceptus risk for radiation-induced childhood fatal cancer and hereditary effects was calculated based on appropriate risk factors. The average AP chest dimension (da) was estimated for 51 women of childbearing age from chest CT examinations. The value of da was estimated to be 22.3 cm (17.4–27.2 cm). The calculated maximum conceptus dose was 107×10–3 mGy for AP chest radiographs performed during the third trimester of pregnancy with maternal chest thickness of 27.2 cm. This calculation was based on dose data obtained from measurements in the phantoms and da estimated from the patient group. The corresponding average excess of childhood cancer was 10.7 per million patients. The risk for hereditary effects was 1.1 per million births. Radiation dose for a conceptus increases exponentially as chest thickness increases. The conceptus dose at the third trimester is higher than that of the second and first trimesters. The results of the current study suggest that chest radiographs carried out in women at any time during gestation will result in a negligible increase in risk of radiation-induced harmful effects to the unborn child. After a properly performed maternal chest X-ray, there is no need for individual conceptus dose estimations. Electronic Publication  相似文献   

14.
A set of patient dose reference levels (RLs) for fluoroscopically guided interventional procedures was obtained in a survey launched by the National Society of Interventional Radiology (IR), involving 10 public hospitals, as recommended by the European Medical Exposures Directive. A sample of 1391 dose values (kerma area product [KAP]) was collected randomly during clinical procedures for seven of the most frequent procedures. Third quartiles of the KAP distributions were used to set the RLs. A regular quality control of the X-ray systems and a calibration of the dose meters were performed during the survey. The fluoroscopy time and total number of digital subtraction angiography images per procedure were also analyzed. The RL values proposed were 12 Gy cm2 for fistulography (hemodialysis access; sample of 180 cases), 73 Gy cm2 for lower limb arteriography (685 cases), 89 Gy cm2 for renal arteriography (55 cases), 80 Gy cm2 for biliary drainage (205 cases), 289 Gy cm2 for hepatic chemoembolization (151 cases), 94 Gy cm2 for iliac stent (70 cases), and 236 Gy cm2 for uterine embolization (45 cases). The provisional national RL values are lower than those obtained in a similar survey carried out in the United States from 2002 to 2004. These new values could be used to improve the practice of centers consistently working with doses higher than the RLs. This national survey also had a positive impact, as it helped increase the awareness of the members of the National Society of IR on a topic as crucial as patient dose values and programs on radiation protection. This paper was accepted as a scientific poster at the CIRSE annual meeting in Copenhagen, September 2008.  相似文献   

15.
Despite a number of efforts being put into the radiological protection of both patient and staff during interventional radiological (IR) procedures during recent years, information about radiation exposure during endoscopic retrograde cholangiopancreatography (ERCP) procedures remains scarce. The purpose of this study was to estimate both patient and staff radiation doses during therapeutic ERCP procedures by direct measurement and to compare these results with data from other IR procedures. For 54 patients, effective dose and skin dose were estimated by measuring the dose-area product. For staff, entrance surface doses to the lens of the eye, thyroid and hands were estimated by thermoluminescent dosemeters. A median effective dose of 7.3 mSv and a median entrance surface dose of 271 mGy per procedure were estimated for patients. The gastroenterologist received a median dose of 0.34 mGy to the lens of the eye, 0.30 mGy to the skin at the level of the thyroid and 0.44 mGy to the skin of the hands, per procedure. When comparing the dosimetric quantities presented in this study with data from other IR procedures, it is clear that patient skin doses and doses to staff are high owing to the use of inappropriate X-ray equipment. ERCP requires the same radiation protection practice as all IR procedures. It should be consistently included in future multicentre IR patient and staff dose survey studies at national or international level.  相似文献   

16.
希氏束起搏与普通起搏术中患者射线暴露的比较   总被引:1,自引:1,他引:0       下载免费PDF全文
目的 比较希氏束起搏(HBS)和右心室心尖起搏射线暴露的差异。方法 回顾性记录无锡市人民医院2018年8月至2020年1月并分析30例希氏束起搏患者(HIS组)的手术总体及各阶段皮肤表面累积入射剂量(CD)和透视时间,并与同期右心室心尖植入心室电极的双腔起搏器(RVA)的32例患者(RVA组)对比。结果 HIS组和RVA组的手术操作时间为(76.8±13.1)和(66.0±10.8)min(t=3.386,P<0.001)、透视时间为(698.2±113.7)和(293.3±63.9)s(t=14.709,P<0.001)、透视剂量为(391.3±70.0)和(162.3±40.5)mGy(t=13.694,P<0.001);与右心室心尖电极植入过程相比,希氏束电极植入过程的透视时间[(501.2±112.3)和(103.4±30.6)s]及透视剂量[(279.9±65.0)和(57.3±13.8)mGy]明显增加(t=15.864,Z=-6.524,P<0.001)。结论 与右心室心尖起搏术相比,希氏束起搏手术时间更长,辐射剂量更大,需谨慎选择。  相似文献   

17.
Thermoluminescent dosimetry studies were performed on a Rando Humanoid head phantom to compare radiation dosages used in temporomandibular joint examinations. Studies included transaxial and direct sagittal high-resolution CT, reduced milliamperage dynamic CT, tomoarthrography, pluridirectional and linear tomography, pantomography, transcranial plain films, and fluoroscopy. Radiation doses were determined for the brain, lens, pituitary gland, condylar marrow, and thyroid gland. Condylar marrow received doses of 64 and 52 mGy, respectively, for the GE 9800 and 8800 high-resolution scans; 21 and 17 mGy, respectively, for the dynamically sequenced scans; and 26 mGy for the GE 9800 direct sagittal sections. Tomoarthrography yielded 31 mGy and fluoroscopy 12 mGy. Other lower doses showed 5 mGy for polytomography, 3 mGy for ipsilateral joint linear tomography, 1.9 mGy for the GE 9800 slow ScoutView, 1.8 mGy for xeroradiography, 0.9 mGy for contralateral joint linear tomography, 0.3-0.4 mGy for transcranial plain films and pantomography, and 0.2 mGy for the GE 8800 ScoutView. The estimated error in this study was calculated to be +/- 15%. On a relative scale, the radiation doses from high-resolution CT and tomoarthrography are high, dynamic CT yields a medium dose, and all other tomographic and plain-film techniques yield low doses.  相似文献   

18.
The purpose of this study was to assess the ability of low-dose/low-frame fluoroscopy/angiography with a flat-panel detector angiographic suite to reduce the dose delivered to patients during uterine fibroid embolization (UFE). A two-step prospective dosimetric study was conducted, with a flat-panel detector angiography suite (Siemens Axiom Artis) integrating automatic exposure control (AEC), during 20 consecutive UFEs. Patient dosimetry was performed using calibrated thermoluminescent dosimeters placed on the lower posterior pelvis skin. The first step (10 patients; group A) consisted in UFE (bilateral embolization, calibrated microspheres) performed using the following parameters: standard fluoroscopy (15 pulses/s) and angiography (3 frames/s). The second step (next consecutive 10 patients; group B) used low-dose/low-frame fluoroscopy (7.5 pulses/s for catheterization and 3 pulses/s for embolization) and angiography (1 frame/s). We also recorded the total dose-area product (DAP) delivered to the patient and the fluoroscopy time as reported by the manufacturer’s dosimetry report. The mean peak skin dose decreased from 2.4 ± 1.3 to 0.4 ± 0.3 Gy (P = 0.001) for groups A and B, respectively. The DAP values decreased from 43,113 ± 27,207 μGy m2 for group A to 9,515 ± 4,520 μGy m2 for group B (P = 0.003). The dose to ovaries and uterus decreased from 378 ± 238 mGy (group A) to 83 ± 41 mGy (group B) and from 388 ± 246 mGy (group A) to 85 ± 39 mGy (group B), respectively. Effective doses decreased from 112 ± 71 mSv (group A) to 24 ± 12 mSv (group B) (P = 0.003). In conclusion, the use of low-dose/low-frame fluoroscopy/angiography, based on a good understanding of the AEC system and also on the technique during uterine fibroid embolization, allows a significant decrease in the dose exposure to the patient.  相似文献   

19.
The aim of this study was to determine ovarian dose, effective dose and associated radiogenic risks from hysterosalpingography (HSG), and to provide data for the estimation of radiogenic risks related to HSG studies performed in any laboratory. The fluoroscopy time, number of radiographs taken and entrance surface dose were measured in a series of 78 consecutive patients undergoing HSG as part of their infertility work-up. Organ-dose values per radiograph and per minute of fluoroscopy were separately determined using an anthropomorphic phantom and thermoluminescence dosimetry. The radiogenic risk for deleterious effects on a possible future embryo and the radiogenic risk for cancer induction on the patient undergoing HSG were estimated. The average HSG procedure in our laboratory involves a mean fluoroscopic time of 0.3 min and a mean number of radiographs of 3.2. The dose to female gonads from an average HSG procedure was 2.7 mGy and the patient effective dose was 1.2 mSv. The risk for radiogenic anomalies in a future embryo of the woman undergoing an average HSG procedure and the risk for radiogenic fatal cancer induction in the exposed woman were estimated to be less than 10–3 of the correspondent nominal risks. Radiation risks from a typical HSG are low, but they may be elevated if fluoroscopic and/or radiographic exposures are prolonged for any reason. Present data allow the estimation of radiogenic risks associated with HSG procedures performed in other laboratories with use of different equipment, screening time and number of radiographs taken.  相似文献   

20.
骨盆数字化X射线摄影曝光剂量的优化研究   总被引:14,自引:2,他引:12       下载免费PDF全文
目的研究直接数字化X射线摄影照射剂量与成像质量的关系,确定骨盆X射线摄影的最佳摄影条件。方法以对比度一细节体模CDRAD2.0在不同照射剂量下所获取的影像的图像质量因子IQF,进行ANOVA及SNK统计学分析,确定最佳照射条件。应用X射线摄影模拟人拍摄骨盆X射线影像,按照欧共体(CEC)图像质量标准验证最佳摄影条件与常规摄影条件下照射剂量与成像质量的差别。结果不同照射剂量条件下,对比度一细节体模影像质量因子IQF有显著性差别(P=0.0001),照射剂量大于0.61mGy时,不同剂量组间IQF差异无统计学意义。对以最佳照射条件和常规照射条件所拍摄的X射线摄影模拟人影像按照CEC标准评判,两者影像质量的差异无统计学意义。结论直接数字化X射线摄影时通过增大照射剂量可以提高影像质量,但是当曝光剂量达到足够大时,再增大曝光剂量并不能显著改善图像质量,影像质量与曝光剂量间存在一个优化剂量。标准体模骨盆X射线摄影的优化剂量为0.61mGy。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号