首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data on the dynamic process and time-point of manifestation of exercise-induced diaphragmatic fatigue (DF) are lacking. Therefore, this study was aimed assessing dynamic changes of diaphragmatic strength during exercise and determining the time-point of DF manifestation. Fourteen trained subjects (maximal oxygen uptake (VO2(max)) 59.3+/-5.5 ml/min/kg) performed standardized exercise protocols (maximal workload: 85% VO2(max)) followed by recovery (6 min). Ergospirometric data and twitch transdiaphragmatic pressure (TwPdi) were consecutively assessed. DF was induced (TwPdi-rest: 2.34+/-0.26 versus TwPdi-end-recovery 2.01+/-0.21 kPa, p<0.01). TwPdi progressively increased during exercise (TwPdi-rest: 2.34+/-0.26 versus TwPdi-maximal-workload: 3.28+/-0.38 kPa, p<0.001). DF was detectable immediately after exercise-termination (TwPdi-maximal-workload: 3.28+/-0.38 versus TwPdi-early-recovery 2.55+/-0.34 kPa, p<0.001). TwPdi during exercise was highly correlated to workload, VO2(max) and dyspnea (r=0.96/r=0.92/r=0.97; all p<0.0001). In conclusion, diaphragmatic strength progressively increases with increasing workload, and DF manifests after - rather than during - exercise. In addition, TwPdi is highly correlated to key-measures of ergospirometry, approving the physiological thesis that muscle strength is progressively enhanced and escapes fatiguing failure during high-intensity exercise performance.  相似文献   

2.
Six males performed cycle ergometer exercise on two occasions in random order. Each exercise was preceded by a 2-h period in which matched capsules were administered orally, containing either starch (C) or NaHCO3 (E) in a dose of a 0.2 g.kg-1 body wt; pre-exercise blood pH and [HCO3-] were 7.34 +/- 0.01 and 23.7 +/- 0.5 mM (mean +/- S.E.) for the C study, and 7.41 +/- 0.01 and 28.6 +/- 1.3 mM for the E study (p less than 0.001 and p less than 0.01, respectively). Exercise was continuous and maintained for 10 min at 40% of maximal oxygen uptake (40% VO2max), followed by 15 min at 12 W above the respiratory compensation threshold ([+RCT]) which was determined by the increase of the ventilatory equivalent for carbon dioxide (VE.VCO2(-1)), and for as long as possible at 95% VO2max. Endurance time at 95% VO2max was significantly longer in E than in C (2.98 +/- 0.64 min vs. 2.00 +/- 0.44 min, p less than 0.05). The rate of increase in arterialized venous lactate (LA) was higher in E than in C from rest to exercise at [+RCT], while there was no significant difference in the hydrogen ions ([H+]). Consequently, [H+].LA-1 (nM.mM-1) was significantly lower in E than in C. The change of VE.VCO2(-1) was shifted downward in E compared to C during exercise with the lowest value being observed at the same exercise stage. These results suggest that the respiratory responses to exercise are not affected by the higher level of [HCO3-] induced by NaHCO3 ingestion, and appear to reflect the net change of plasma [HCO3-] or [H+]. Also, induced metabolic acidosis has little effect on [H+] appearance in blood.  相似文献   

3.
Our previous work showed that breathing low density gases during exercise with the self-contained breathing apparatus (SCBA) improves maximal ventilation (V(E)) and maximal oxygen consumption (VO(2)max). This suggests that the SCBA limits exercise by adding a resistive load to breathing. In this study we compared VO(2)max with and without the various components comprising the SCBA to determine their impact on VO(2)max. Twelve males performed 4 randomly ordered incremental exercise tests to exhaustion on a treadmill: (1) low-resistance breathing valve only (CON); (2) full SCBA (SCBA); (3) SCBA regulator only (REG); and (4) carrying the cylinder and harness assembly but breathing through a low-resistance breathing valve (PACK). Compared to CON, VO(2)max was reduced to a similar extent in the SCBA and REG trials (14.9% and 13.1%, respectively). The PACK condition also reduced VO(2)max, but to a lesser extent (4.8 +/- 5.3%). At VO(2)max, VE was decreased and expiratory mouth pressure and external breathing resistance (BR) were increased in both the SCBA and REG trials. There was a significant correlation between the change in maximal V(E)and VO(2)max with the SCBA. The results show that the SCBA reduces VO(2)max by limiting V(E) secondary to the increased BR of the SCBA regulator.  相似文献   

4.
We tested the hypothesis that prolonged administration of moderate doses of recombinant human erythropoietin (r-HuEPO) accelerates the initial rate of rise in pulmonary O2 uptake (VO2) in response to submaximal exercise and increases the maximal rate of O2 uptake (VO(2,max)). Sixteen endurance-trained athletes were divided into two groups: r-HuEPO- (n=9) or placebo-treated (n=7). r-HuEPO or placebo (saline) injections were given s.c. 3 times a week for 4 weeks. Exercise testing, before and after the 4 weeks, comprised incremental maximal tests and several transitions from rest to 10-min cycling exercise at 65% VO(2,max). VO2 was measured breath-by-breath during all tests. In the r-HuEPO group, resting haemoglobin concentration (+9.6%) and haematocrit (+8.3%), as well as VO(2,max) (+7.0%) and power output (+7.2%) increased significantly (P<0.05) after the 4 weeks, whereas no change was observed in the control group. The time constant of the primary VO2 response was significantly faster (+18%) after the 4 weeks r-HuEPO treatment than before (mean+/-SD; 29.3+/-4.5 vs. 35.7+/-7.4 s, respectively, P<0.05) but was unaffected in the placebo group (34.5+/-7.3 vs. 33.4+/-7.9 s). Collectively, our findings suggest that r-HuEPO contributes both to an acceleration of the dynamic response of VO2 to submaximal exercise and to an increase in maximal exercise capacity.  相似文献   

5.
To examine the mechanism of exercise limitation associated with chest wall restriction (CWR), we compared the ramp (1 W/3 s) exercise performance of six untrained subjects with ankylosing spondylitis (AS) and six healthy subjects matched for age and body size. Subjects with AS had CWR (maximum rib cage expansion : 1.4 +/- 0.2 cm; means +/- sem). The maximum oxygen uptake (VO2max) of AS subjects (2.15 +/- 0.2 1-stpd) was less than their predicted VO2max (2.68 +/- 0.13 1-stpd; p less than 0.03) and the measured VO2max of matched healthy subjects (2.78 +/- 0.22 1-stpd; p less than 0.03). Subjects with AS achieved 95 percent of predicted maximum heart rate, and their maximum voluntary ventilation exceeded their maximum exercise ventilation by at least 15 l X min-1 unless parenchymal pulmonary disease was present. We conclude that maximum ramp exercise performance of AS subjects with CWR is decreased. Deconditioning or cardiovascular impairment rather than ventilatory impairment appears responsible for the observed reduction of VO2max.  相似文献   

6.
We investigated the effects of short-term endurance training and detraining on sweating and cutaneous vasodilatation during exercise in young women, taking into account changes in maximal oxygen uptake (VO2max) and the phase of the menstrual cycle. Eleven untrained women participated in endurance training; cycle exercise at approximately 60% VO2max for 60 min day(-1), 4-5 days week(-1) (30 degrees C, 45% relative humidity) for three complete menstrual cycles. The standard exercise test consisted of exercise at 50% VO2max for 30 min (25 degrees C, 45% relative humidity), and was conducted before training (Pre), during training sessions (T1, T2 and T3) and after cessation of training (D1 and D2). Values of VO2max increased significantly from 32.7 +/- 1.2 to 37.8 +/- 1.2 ml min(-1) kg(-1) at the end of the training. Local sweat rate in the chest and thigh, but not in the back and forearm, were significantly greater during T1 and T2 only in women who started training from the midfollicular phase. Cutaneous blood flow did not change with training. The threshold oesophageal temperatures for heat loss responses were significantly decreased during T1 versus Pre (averaged values for each body site: sweating, 37.49 +/- 0.08 versus 37.22 +/- 0.12 degrees C; and cutaneous vasodilatation, 37.40 +/- 0.07 versus 37.17 +/- 0.10 degrees C) and maintained through T3; the sensitivities of heat loss responses were not altered. These changes returned to the Pre level by D1. Our data indicate that physical training improves heat loss responses by decreasing the threshold temperatures and that these effects occur within a month of training and disappear within a month after cessation of training. The degree of increase in sweating with training differs among body sites and might be affected by the phase of the menstrual cycle.  相似文献   

7.
In healthy subjects expiratory flow limitation (EFL) during exercise can lower O(2) delivery to the working muscles. We hypothesized that if this affects exercise performance it should influence O(2) kinetics at the end of exercise when the O(2) debt is repaid. We performed an incremental exercise test on six healthy males with a Starling resistor in the expiratory line limiting expiratory flow to approximately 1 l s(-1) to determine maximal EFL exercise workload (W (max)). In two more square-wave exercise runs subjects exercised with and without EFL at W (max) for 6 min, while measuring arterial O(2) saturation (% SaO(2)), end-tidal pressure of CO(2) (P (ET)CO(2)) and breath-by-breath O(2) consumption VO2 taking into account changes in O(2) stored in the lungs. Over the last minute of EFL exercise, mean P (ET)CO(2) (54.7 +/- 9.9 mmHg) was significantly higher (P < 0.05) compared to control (41.4 +/- 3.9 mmHg). At the end of EFL exercise %SaO(2) fell significantly by 4 +/- 3%. When exercise stopped, EFL was removed, and we continued to measure VO2. During recovery, there was an immediate step increase in [Formula: see text] so that repayment of EFL O(2) debt started at a higher VO2 than control. Recovery VO2 kinetics after EFL exercise was best characterized by a double-exponential function with fundamental and slow time constants of 27 +/- 11 and 1,020 +/- 305 s, compared to control values of 41 +/- 10 and 1,358 +/- 320 s, respectively. EFL O(2) debt was 52 +/- 22% greater than control (2.19 +/- 0.58 vs. 1.49 +/- 0.38 l). We conclude that EFL exercise increases the O(2) debt and leads to hypoxemia in part due to hypercapnia.  相似文献   

8.
Five subjects cycled on an ergometer at power outputs corresponding to 20, 40, 60 and 80% of their maximal oxygen uptake (VO2 max). On one occasion the transition from rest to work was direct (D), while on the other occasion the power output was increased slowly (S) in a stepwise manner for 6-15 min prior to exercise at the predetermined intensity. Oxygen uptake (VO2) was measured, and O2 deficit and O2 debt were calculated. Oxygen deficit increased with the exercise intensities, the peak values being 2.1 +/- 0.2 and 1.9 +/- 0.1 litres (mean +/- SEM) at 80% of VO2 max after D and S respectively. No significant difference was observed in O2 deficit or O2 debt between D and S at any exercise intensity (P less than 0.05). The O2 debt was similar to the O2 deficit at 20, 40 and 60% of VO2 max but lower than the O2 deficit (P less than 0.05) at 80% of VO2 max. Femoral venous blood lactate remained unchanged at 20% of VO2 max but increased at the higher exercise intensities, reaching peak values of 7.6 +/- 0.6 and 7.4 +/- 1.1 mmol l-1 at 80% of VO2 max after D and S respectively. Blood lactate was not significantly different between D and S at any exercise intensity (P greater than 0.05). It is concluded that O2 deficit, O2 debt and blood lactate are not affected by the rate of transition from rest to submaximal exercise. The data contradict the hypothesis that O2 deficit is caused by an inadequate O2 transport at the onset of exercise.  相似文献   

9.
Maximal exercise performance is decreased when breathing from a self-contained breathing apparatus (SCBA), owing to a ventilatory limitation imposed by the increased expiratory resistance. To test the hypothesis that decreasing the density of the breathing gas would improve maximal exercise performance, we studied 15 men during four graded exercise tests with the SCBA. Participants breathed a different gas mixture during each test: normoxia (NOX; 21% O2, 79% N2), hyperoxia (HOX; 40% O2, 60% N2), normoxic helium (HE-OX; 21% O2, 79% He), and hyperoxic helium (HE-HOX; 40% O2, 60% He). Compared to NOX, power output at the ventilatory threshold and at maximal exercise significantly increased with both hyperoxic mixtures. Minute ventilation was increased at peak exercise with both helium mixtures, and maximal aerobic power (VO2max) was significantly increased by 12.9 +/- 5.6%, 10.2 +/- 6.3%, and 21.8 +/- 5.6% with HOX, HE-OX, and HE-HOX, respectively. At peak exercise, the expired breathing resistance imposed by the SCBA was significantly decreased with both helium mixtures, and perceived respiratory distress was lower with HE-HOX. The results show that HE-OX improved maximal exercise performance by minimizing the ventilation limitation. The performance-enhancing effect of HOX may be explained by increased arterial oxygen content. Moreover, HE-HOX appeared to combine the effects of helium and hyperoxia on VO2max.  相似文献   

10.
It was been shown that physical exercise increases plasma atrial natriuretic peptide (ANP) level. This effect was attributed to the hemodynamic changes of exercise which could increase atrial volume and result in ANP secretion. On the other hand, it was evidenced that morphine and opiate peptides greatly stimulate ANP release. To evaluate to what extent the endogenous opioid secretion during exercise induces the ANP release, six healthy volunteers male trained subjects were submitted to two maximal exercise tests with and without (placebo) opiate receptors blockade by naltrexone (50 mg per os). Blood samples were drawn before (rest) and after maximal exercise in order to measure by radioimmunological methods human atrial natriuretic peptide (alpha-h-ANP), beta-endorphin, plasma aldosterone (ALD), plasma renin activity (PRA) and corticotrophin (ACTH). Expired gas was collected during exercise to measure oxygen consumption. Subjects reached the same value of maximal oxygen consumption (VO2 max) at the end of exercise whatever treatment. Plasma ANP level at rest decreases slightly after administration of naltrexone (32.8 +/- 6.3 pg/ml with placebo versus 21.3 +/- 4.6 pg/ml with naltrexone) but the response to physical exercise was significantly reduced by naltrexone (73.3 +/- 14.9 pg/ml with placebo versus 46.9 +/- 8.6 pg/ml with naltrexone) (p less than 0.05). There was no statistical difference according to the treatment between the plasma levels of beta-endorphin, PRA and ACTH at rest as well as at the end of a maximal exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effect of endurance training on skeletal muscle myoglobin concentration in man was investigated. 8 healthy sedentary males (20-31 yrs) trained on cycle ergometers 40 min/day, 4 days a week for 8 weeks. The work consisted of continuous exercise at a work load that during the last 5 weeks corresponded to 75% of the pretraining maximal oxygen uptake (VO2 max). The training program resulted in a 7% increase in VO2 max (p less than 0.01). The activities of the mitochondrial enzymes citrate synthase (CS), succinate dehydrogenase (SDH) and cytochrome c oxidase (Cyt-c-ox) in the quadriceps femoris muscle, as indicators of muscle respiratory capacity, increased by 62-82% (p less than 0.01). The metabolic adaptation of skeletal muscle was further indicated by a 17% increase in the work load corresponding to a blood lactate concentration of 4 mmol/l, as determined by a progressive exercise test (p less than 0.05). There was, however, no change in the myoglobin concentration of the thigh muscle with training (-1%, NS). It is suggested that endurance exercise in man at 75% of the maximal oxygen uptake does not severely tax the functions of myoglobin in skeletal muscle.  相似文献   

12.
Exercise-induced diaphragmatic fatigue (DF) manifests after - rather than during - exercise. This suggests that DF reflects post-exercise diaphragm-shielding. This study tested the physiological hypothesis that diaphragmatic force-generation undergoes similar regulations during either whole-body-exercise or controlled hyperventilation, but differs during recovery. Ten trained subjects (VO2(max) 60.3+/-6.4 ml/kg/min) performed: I, cycling exercise (maximal workload: 85% VO2(max)); II, controlled hyperventilation (exercise breathing pattern) followed by recovery. Ergospirometric data and twitch transdiaphragmatic pressure (TwPdi) were consecutively assessed. DF occurred following exercise, while hyperventilation enhanced diaphragmatic force-generation (TwPdi-rest 2.28+/-0.58 vs. 2.52+/-0.54, TwPdi-end-recovery: 1.94+/-0.32 kPa vs. 2.81+/-0.49 kPa, both p<0.05). TwPdi was comparable between the two protocols until recovery (p>0.05, RM-ANOVA) whereby it underwent a progressive increase. In conclusion, TwPdi progressively increases and is subject to similar regulations during exercise versus controlled hyperventilation, but differs markedly during recovery. Here, DF occurred after exercise while TwPdi increased subsequent to hyperventilation. Therefore, ventilatory demands regulate diaphragmatic force-generation during exercise, whereas DF must be attributed to non-ventilatory controlled feedback mechanisms.  相似文献   

13.
In healthy man, conditions that change muscle O2 delivery affect the achievable maximum rate of O2 uptake as well as the metabolic (e.g. lactate threshold, LT) and gas exchange (e.g. gas exchange threshold, Tge) responses to incremental exercise. Inclined (I) compared to level (L) running increases locomotory muscle EMG at a given speed in the horse, indicative of elevated metabolic demand. To our knowledge, the effect of treadmill incline on VO2,max, LT and Tge has not been addressed in the exercising quadruped. We used blood sampling and breath-by-breath expired gas analysis to test the hypothesis that I (10% gradient) would increase VO2,max and the rate of O2 uptake (VO2) at LT and Tge in six Thoroughbred horses during incremental running to volitional fatigue. VO2,max was significantly higher for I (I, 77.8 +/- 4.1; L, 65.5 +/- 5.3 1 min(-1); P < 0.05), but peak plasma lactate concentration was not (I, 28.0 +/- 3.7; L, 25.9 +/- 3.0 mM). Arterial Pco2 increased to 62.1 +/- 3.3 and 57.9 +/- 2.7 Torr (I vs. L; P < 0.05), yet despite this relative hypoventilation, a distinct Tge was present. This Tge occurred at a significantly different absolute (I, 49.6 +/- 3.2; L, 42.4 +/- 3.21 min(-1); P < 0.05), but nearly identical relative VO2 (I, 63.6 +/- 1.2; L, 63.9 +/- 1.6% VO2max) in I and L. Similarly, LT occurred at a significantly greater absolute VO2 (I, 37.3 +/- 2.8; L, 26.9 +/- 2.1 1 min(-1)), but a relative VO2 that was not different (I, 47.9 +/- 2.1; L, 43.9 +/- 4.5% VO2,max). In addition, Tge occurred at a significantly higher (P < or = 0.05) absolute and relative VO2 than LT for both I and L tests. In conclusion, VO2,max is higher during inclined than level running and both LT and Tge in the horse occur at a similar percentage of VO2,max irrespective of the absolute level of VO2,max. In contrast to humans, LT is a poor analogue of Tge in the horse.  相似文献   

14.
Changes in physiological variables during a 60-min continuous test at maximal lactate steady state (MLSS) were studied using highly conditioned cyclists (1 female and 9 males, aged 28.3 +/- 8.1 years). To determine power at MLSS, we tested at 8-min increments and interpolated the power corresponding to a blood lactate value of 4 mmol/L. During the subsequent 60-min exercise at MLSS, we observed a sequential increase of physiological parameters, in contrast to stable blood lactate. Heart rate drifted upward from beginning to end of exercise. This became statistically significant after 30 min. From 10-60 min of exercise, a change of +12.6 +/- 3.2 bpm was noted. Significant drift was seen after 30 min for the respiratory exchange ratio, after 40 min for the rate of perceived exertion using the Borg scale, and after 50 min for % VO(2)max/kg and minute ventilation. This slow component of VO(2)max may be the result of higher recruitment of type II fibers.  相似文献   

15.
Brain activity and fatigue during prolonged exercise in the heat   总被引:13,自引:0,他引:13  
We hypothesized that fatigue due to hyperthermia during prolonged exercise in the heat is in part related to alterations in frontal cortical brain activity. The electroencephalographic activity (EEG) of the frontal cortex of the brain was measured in seven cyclists [maximal O2 uptake (VO2max) 4.8 +/- 0.1 (SE) 1 min-1] cycling at 60% VO2max in a hot (H, 42 degrees C) and a cool (C, 19 degrees C) environment. Fast Fourier transformation of the EEG was used to obtain power spectrum areas in the alpha (8-13 Hz) and beta (13-30 Hz) frequencies. The ratio alpha/beta was calculated as an index of arousal level; an elevated alpha/beta index reflects suppressed arousal. In H, subjects fatigued after 34.4 +/- 1.4 min coinciding with an oesophageal temperature (Toes) of 39.8 +/- 0.1 degrees C, an almost maximal heart rate (HR 192 +/- 3 beats.min-1), a rating of perceived exertion (RPE) of 19.0 +/- 0.8 and significantly elevated alpha/beta index (188 +/- 71% of the value after 2 min of exercise; P < 0.05). In C, subjects cycled for a similar period while Toes was below 38 degrees C, HR and RPE were low, and the alpha/beta index was not significantly elevated (59 +/- 27% of 2 min value; P = NS). Increases in the alpha/beta index were strongly correlated to increases in Toes (r2 = 0.98; P = 0.0001).  相似文献   

16.
Improvement of exercise capacity by continuous (CT) versus interval training (IT) remains debated. We tested the hypothesis that CT and IT might improve peripheral and/or central adaptations, respectively, by randomly assigning 10 healthy subjects to two periods of 24 trainings sessions over 8 weeks in a cross-over design, separated by 12 weeks of detraining. Maximal oxygen uptake (VO2max), cardiac output (Qmax) and maximal arteriovenous oxygen difference (Da-vO2max) were obtained during an exhaustive incremental test before and after each training period. VO2max and Qmax increased only after IT (from 26.3 +/- 1.6 to 35.2 +/- 3.8 ml min(-1) kg(-1) and from 17.5 +/- 1.3 to 19.5 +/- 1.8 l min(-1), respectively; P < 0.01). Da-vO2max increased after both protocols (from 11.0 +/- 0.8 to 12.7 +/- 1.0; P < 0.01 and from 11.0 +/- 0.8 to 12.1 +/- 1.0 ml 100 ml(-1), P < 0.05 in CT and IT, respectively). At submaximal intensity a significant rightward shift of the Q/Da-vO2 relationship appeared only after CT. These results suggest that in isoenergetic training, central and peripheral adaptations in oxygen transport and utilization are training-modality dependant. IT improves both central and peripheral components of Da-vO2max whereas CT is mainly associated with greater oxygen extraction.  相似文献   

17.
Endogenous nitric oxide (NO) is an important mediator of vasodilatation, bronchodilatation and lung inflammation. We hypothesised that the exhaled NO level may be modified in some endurance-trained athletes during and after intense exercise. Nine athletes with exercise-induced hypoxaemia (EIH), 12 athletes without EIH and 10 untrained subjects exercised for 15 min at 90% maximal oxygen consumption (VO(2)max). Exhaled NO was measured during exercise, and after 1 h and 22 h of recovery. Exhaled NO concentration ( C(NO)) decreased significantly during exercise in all subjects and returned to basal values after 1 h of recovery with no further modification. Exhaled NO output (V(NO)) rose significantly during exercise, rapidly dropped down following exercise and was similar to resting values after 1 h and 22 h of recovery. The results also showed that C(NO) and V(NO) were significantly lower in the athletes with EIH in comparison with the untrained subjects (V(NO) was 5.32 +/- 0.77 nmol/min versus 3.61 +/- 0.72 nmol/min at rest, 18.52 +/- 1.50 nmol/min versus 15.00 +/- 2.06 nmol/min during heavy exercise, and 5.52 +/- 1.04 nmol/min versus 3.79 +/- 0.76 nmol/min after 22 h recovery, in untrained subjects and EIH athletes, respectively). These findings do not confirm the hypothesis of pulmonary inflammation associated with EIH. However, potential NO epithelial down-regulation may occur and contribute to the development of gas exchange abnormality in some endurance-trained athletes.  相似文献   

18.
The aim of this study was to determine the influence of prolonged exercise repeated for 4 days on sleeping heart rate (SHR) and metabolic rate (SMR). Eleven young untrained men exercised at moderate intensity 5 hrs daily for 4 days, alternately on a cycle ergometer (57.0 +/- 1.3% .VO2max) and a treadmill (64.7 +/- 1.6% .VO2max). They spent the night prior to the exercise period (control, C) and the 4 nights following exercise days (N1 to N4) in room calorimeters for the measurement of SHR, SMR, and respiratory quotient (RQ) from midnight until 6 a.m. Every morning, before the exercise bouts, plasma-free epinephrine (E) and norepinephrine (NE) levels were measured. After exercise, all SHR values were significantly higher than at C level (52 +/- 1 bpm, p < 0.001) and the highest value was observed on N2 (61 +/- 2 bpm). SMR increased by 11.2 +/- 1.5% from C to N1, p < 0.001, and then plateaued up to N4, whereas RQ decreased from C (0.833 +/- 0.009) to N2 (0.798 +/- 0.005) and then plateaued. Plasma NE levels were higher the morning after each day of exercise and peaked on N2, whereas no significant variations were found for E. Variations of SHR between C and N2, and N3 and N4 were correlated with changes of SMR. No significant relationships were found between morning plasma NE, and either SMR or SHR variations. To conclude, prolonged exercise repeated for 4 days was associated with increases in SHR and SMR during the night following each day of exercise concomitantly with an enhanced lipid oxidation. The sustained stimulation of the sympathetic nervous system may be partly responsible for these effects.  相似文献   

19.
Muscle carnitine metabolism during incremental dynamic exercise in humans   总被引:6,自引:0,他引:6  
The changes in muscle content of carnitine and acetylcarnitine have been studied during incremental dynamic exercise. Six subjects exercised for 10 min on an ergometer at 40 and 75% of their maximal oxygen uptake (VO2 max) and to fatigue at 100% of VO2 max (about 4 min). Muscle samples were taken from the quadriceps femoris muscle at rest and after exercise. Muscle content of free carnitine was (means +/- SE) 15.9 +/- 1.7 mmol kg-1 d.wt (dry weight) at rest and remained unchanged after exercise at low intensity but decreased to 5.9 +/- 0.6 and 4.6 +/- 0.5 mmol kg-1 d.wt after exercise at 75 and 100% of VO2 max respectively. Acetylcarnine content at rest was 6.9 +/- 1.9 mmol kg-1 d.wt and increased during exercise in correspondence with the decrease in free carnitine. Muscle content of pyruvate and lactate was unchanged after exercise at 40% of VO2 max but increased at the higher intensities. The parallel increases in acetylcarnitine, pyruvate and lactate indicate that formation of acetylcarnitine is augmented when the availability of glycolytic three-carbon metabolites is high and is consistent with the idea that acetylcarnitine provides a sink for pyruvate and acetyl CoA. This could be of importance for the maintenance of an adequate level of CoA and thus function of the tricarboxylic acid cycle.  相似文献   

20.
The purpose of this study was to characterise, for the first time, the pulmonary O2 uptake (V(O2)) on-kinetic responses to step transitions to moderate and heavy intensity rowing ergometer exercise, and to compare the responses to those observed during upright cycle ergometer exercise. We hypothesised that the recruitment of a greater muscle mass in rowing ergometer exercise (Row) might limit muscle perfusion and result in slower Phase II V(O2) kinetics compared to cycle exercise (Cyc). Eight healthy males (aged 28+/-5 years) performed a series of step transitions to moderate (90% of the mode-specific gas exchange threshold, GET) and heavy (50% of the difference between the mode-specific GET and V(O2) max) work rates, for both Row and Cyc exercise. Pulmonary V(O2) was measured breath-by-breath and the V(O2) on-kinetics were described using standard non-linear regression techniques. With the exception of delta V(O2)delta WR which was approximately 12% greater for Row, the V(O2) kinetic responses were similar between the exercise modes. There was no significant difference in the time constant describing the Phase II V(O2) kinetics between the exercise modes for either moderate (rowing: 25.9+/-6.8 s versus cycling: 25.7+/-8.6 s) or heavy (rowing: 26.5+/-3.0 s versus cycling: 27.8+/-5.1s) exercise. Furthermore, there was no significant difference in the amplitude of the V(O2) slow component between the exercise modes (rowing: 0.34+/-0.13 L min(-1) versus cycling: 0.35+/-0.12 L min(-1)). These data suggest that muscle V(O2) increases towards the anticipated steady-state requirement at essentially the same rate following a step increase in ATP turnover in the myocytes, irrespective of the mode of exercise, at least in subjects with no particular sport specialism. The recruitment of a greater muscle mass in rowing compared to cycling apparently did not compromise muscle perfusion sufficiently to result either in slower Phase II V(O2) kinetics or a greater V(O2) slow component amplitude during heavy exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号