首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restle A  Janz C  Wiesmüller L 《Oncogene》2005,24(27):4380-4387
Phosphorylation of p53 on serine 15 by ATM or ATR is a frequent modification and initiates a cascade of post-translational modifications. To identify possible mechanisms that modulate p53 functions in recombination surveillance, we compared the nuclear localization of p53 phosphorylated on serine 15 (p53pSer15) and the key enzymes of homologous recombination (HR) after replication fork stalling. We demonstrate an almost mutually exclusive subcompartmentalization with Rad52, while p53pSer15 was colocalizing with 40-60% of the Rad51 and Mre11 foci. Therefore, possible sites of p53pSer15-dependent regulation seem to be sites of Rad51- rather than Rad52-dependent HR processes. Remarkably, the association of p53pSer15 with repair complexes containing Rad51 or Mre11 was transient, because less than 20% of the Rad51 and Mre11 foci overlapped with p53pSer15 after 6 h. When we examined colocalization and co-immunoprecipitation of p53pSer15 and the RecQ helicase BLM with recombination surveillance and proapoptotic functions, we observed colocalization within a fraction of approximately 70% of the BLM foci and stable physical interactions until 6 h after replication arrest. Our data suggest that p53pSer15 plays a dual role in the functional interactions with early complexes of Rad51-dependent recombination and with BLM-associated surveillance and signalling complexes within distinct nuclear subcompartments.  相似文献   

2.

Purpose

The purpose of this study was to examine whether the epidermal growth factor receptor (EGFR) may be used as a general target to modulate DNA double strand break (DSB) repair in tumor cells.

Material and methods

Experiments were performed with human tumor cell lines A549, H1299 and HeLa and primate cell line CV1. EGF, ARG and TGFα were used for EGFR activation, cetuximab or erlotinib for inhibition. Overall DSB repair was assessed by γH2AX/53BP1 co-immunostaining and non-homologous end-joining (NHEJ) and homologous recombination (HR) by using NHEJ and HR reporter cells; cell cycle distribution was determined by flow cytometry and protein expression by Western blot.

Results

EGFR activation was found to stimulate overall DSB repair as well as NHEJ regardless of the ligand used. This stimulation was abolished when EGFR signaling was blocked. This regulation was found for all cell lines tested, irrespective of their p53 or K-Ras status. Stimulation and inhibition of EGFR were also found to affect HR.

Conclusions

Regulation of DSB repair by EGFR involves both the NHEJ and HR pathway, and appears to occur in most tumor cell lines regardless of p53 and K-Ras mutation status.  相似文献   

3.
Balanced regulation of DNA double-strand break (DSB) repair is crucial for genetic integrity and cell survival. Cells perform DSB repair either by homologous recombination (HR) or by non-homologous end joining (NHEJ). Either option carries risk for DNA instability. The presence in the cell of the tumour suppressor p53 has been shown to suppress the levels of HR; however, the effect of p53 on DNA EJ is less well understood. Here we demonstrate dramatically increased DNA EJ activity in cell-free extracts from p53(-/-) mouse embryo fibroblasts (MEFs) compared with p53(+/+) MEFs. The addition of wild-type (wt) p53 to p53(-/-) MEFs extracts inhibited DNA EJ in a dose-dependent manner. Binding of wt p53 to DNA ends in vitro protected them from exonuclease attack and inhibited T4 DNA ligase-dependent EJ. This inhibitory effect was markedly enhanced for p53 R175H, a cancer-derived mutant of p53. In contrast, inhibition was negated in the presence of p53 S15D, a phosphorylation-mimicking mutant protein. Interestingly, p53 S15D stimulated in vitro DNA EJ of the blunt-ended DNA by T4 DNA ligase. Here we discuss the possibility that, in conjunction with its ability to control levels of HR, p53 may also serve to suppress DNA EJ in cells under normal conditions. This suppression may be associated with DNA-dependent protein kinases or ATM kinases, providing potential crosstalk between major cellular pathways of DNA repair and cell-cycle checkpoint mechanisms.  相似文献   

4.
Commonly used antitumor agents, such as DNA topoisomerase I/II poisons, kill cancer cells by creating nonrepairable DNA double-strand breaks (DSBs). To repair DSBs, error-free homologous recombination (HR), and/or error-prone nonhomologous end joining (NHEJ) are activated. These processes involve the phosphatidylinositol 3'-kinase-related kinase family of serine/threonine enzymes: ataxia telangiectasia mutated (ATM), ATM- and Rad3-related for HR, and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) for NHEJ. Alterations in these repair processes can cause drug/radiation resistance and increased genomic instability. beta-Lapachone (beta-lap; also known as ARQ 501), currently in phase II clinical trials for the treatment of pancreatic cancer, causes a novel caspase- and p53-independent cell death in cancer cells overexpressing NAD(P)H:quinone oxidoreductase-1 (NQO1). NQO1 catalyzes a futile oxidoreduction of beta-lap leading to reactive oxygen species generation, DNA breaks, gamma-H2AX foci formation, and hyperactivation of poly(ADP-ribose) polymerase-1, which is required for cell death. Here, we report that beta-lap exposure results in NQO1-dependent activation of the MRE11-Rad50-Nbs-1 complex. In addition, ATM serine 1981, DNA-PKcs threonine 2609, and Chk1 serine 345 phosphorylation were noted; indicative of simultaneous HR and NHEJ activation. However, inhibition of NHEJ, but not HR, by genetic or chemical means potentiated beta-lap lethality. These studies give insight into the mechanism by which beta-lap radiosensitizes cancer cells and suggest that NHEJ is a potent target for enhancing the therapeutic efficacy of beta-lap alone or in combination with other agents in cancer cells that express elevated NQO1 levels.  相似文献   

5.
Caffeine exposure sensitizes tumor cells to ionizing radiation and other genotoxic agents. The radiosensitizing effects of caffeine are associated with the disruption of multiple DNA damage-responsive cell cycle checkpoints. The similarity of these checkpoint defects to those seen in ataxia-telangiectasia (A-T) suggested that caffeine might inhibit one or more components in an A-T mutated (ATM)-dependent checkpoint pathway in DNA-damaged cells. We now show that caffeine inhibits the catalytic activity of both ATM and the related kinase, ATM and Rad3-related (ATR), at drug concentrations similar to those that induce radiosensitization. Moreover, like ATM-deficient cells, caffeine-treated A549 lung carcinoma cells irradiated in G2 fail to arrest progression into mitosis, and S-phase-irradiated cells exhibit radioresistant DNA synthesis. Similar concentrations of caffeine also inhibit gamma- and UV radiation-induced phosphorylation of p53 on Ser15, a modification that may be directly mediated by the ATM and ATR kinases. DNA-dependent protein kinase, another ATM-related protein involved in DNA damage repair, was resistant to the inhibitory effects of caffeine. Likewise, the catalytic activity of the G2 checkpoint kinase, hChk1, was only marginally suppressed by caffeine but was inhibited potently by the structurally distinct radiosensitizer, UCN-01. These data suggest that the radiosensitizing effects of caffeine are related to inhibition of the protein kinase activities of ATM and ATR and that both proteins are relevant targets for the development of novel anticancer agents.  相似文献   

6.
7.
The ATM gene, mutated in the cancer-prone and radiation-sensitive syndrome ataxia-telangiectasia (AT), could predispose to breast cancer (BC) development and adverse radiotherapy responses. Sixteen ATM variants were genotyped in 254 BC cases, 70 of whom were adverse radiotherapy responders (RS-BC), and 312 control subjects and the ATM haplotypes were constructed. Constitutive ATM protein, cell survival, and the p53 response after exposure to ionizing radiation were compared in lymphoblastoid cell lines (LCLs) established from the BC cases, AT, and normal individuals. The tightly linked intronic ATM polymorphisms IVS22-77 T>C and IVS48 + 238 C>G, in the homozygote state were associated with increased BC risk [IVS22-77 CC versus TT odds ratio (OR), 1.67; 95% confidence interval (CI), 1.00-2.81], and in the heterozygote state with clinical radioprotection (IVS22-77 CT versus TT OR, 0.45; 95% CI, 0.24-0.85). Homozygote carriers of the G5557A variant were over-represented in RS-BC cases compared with non-RS-BC cases (OR, 6.76; 95% CI, 1.19-38.43). These three single nucleotide polymorphisms were associated with the three major ATM haplotypes present in >80% of the study population. BC LCLs treated with ionizing radiation exhibited an intermediate cell survival and p53 response between that of normal and AT LCLs, with the response in the RS-BC LCLs being more compromised than in the non-RS-BC LCLs. Our study suggests a general pattern of increased BC risk associated with carrying any one of the ATM variants studied, with a significant association being observed in individuals carrying variants on both ATM alleles (OR, 1.75; 95% CI, 1.09-2.81) and that ATM variants may impact on radiation sensitivity.  相似文献   

8.
The therapeutic efficacy of temozolomide (TMZ) is hindered by inherent and acquired resistance. Biomarkers such as MGMT expression and MMR proficiency are used as predictors of response. However, not all MGMTlow/−ve/MMRproficient patients benefit from TMZ treatment, indicating a need for additional patient selection criteria. We explored the role of ATR in mediating TMZ resistance and whether ATR inhibitors (ATRi) could reverse this resistance in multiple cancer lines. We observed that only 31% of MGMTlow/−ve/MMRproficient patient-derived and established cancer lines are sensitive to TMZ at clinically relevant concentrations. TMZ treatment resulted in DNA damage signaling in both sensitive and resistant lines, but prolonged G2/M arrest and cell death were exclusive to sensitive models. Inhibition of ATR but not ATM, sensitized the majority of resistant models to TMZ and resulted in measurable DNA damage and persistent growth inhibition. Also, compromised homologous recombination (HR) via RAD51 or BRCA1 loss only conferred sensitivity to TMZ when combined with an ATRi. Furthermore, low REV3L mRNA expression correlated with sensitivity to the TMZ and ATRi combination in vitro and in vivo. This suggests that HR defects and low REV3L levels could be useful selection criteria for enhanced clinical efficacy of an ATRi plus TMZ combination.  相似文献   

9.
Zhang J  Lahti JM  Bruce A  He L  Parihar K  Fan C  Grenet J  Liu L  Kidd VJ  Cormier S  Tang D 《Oncogene》2006,25(41):5601-5611
Bcl-2 can both promote and attenuate tumorigenesis. Although the former function is relatively well characterized, the mechanism of the latter remains elusive. We report here that enforced Bcl-2 expression in MCF7 cells stabilizes p53, induces phosphorylation of p53 serine 15 (p53pSer15) and inhibits MCF7 cell growth. Consistent with p53 Ser15 being a target of ataxia telangiectasia mutated protein(ATM)/ATR (ATM- and rad3-related) in the DNA damage response, Bcl-2 activates ATM by inducing ATM Ser1981 phosphorylation, which is accompanied with the phosphorylaton of two additional ATM substrates, Chk2 Thr68 and H2AX Ser139. Downregulation of ATM using a specific small interference RNA fragment (ATMRNAi) abolished Bcl-2-induced p53pSer15 and Bcl-2-mediated growth inhibition of MCF7 cells. Ectopic expression of a dominant-negative p53 mutant, p53175H, partially rescued this growth inhibition. Taken together, these observations demonstrate the contribution of ATM-p53 function to Bcl-2-mediated inhibition of MCF7 cell growth, indicating an ATM-mediated surveillance system for regulating Bcl-2 overexpression. Consistent with this concept, we found that MCF7 cells express Bcl-2 heterogeneously with 34.5% of cells being Bcl-2 negative. In general, Bcl-2-positive MCF7 cells proliferate slower than those of Bcl-2 negative. Thus, we provide evidence suggesting that activation of ATM suppresses Bcl-2-induced tumorigenesis, and that attenuation of ATM function may be an important event in breast cancer progression.  相似文献   

10.
This study identifies ataxia-telangiectasia mutated (ATM) as a further component of the complex signaling network of radiation-induced DNA damage in nontargeted bystander cells downstream of ataxia-telangiectasia and Rad3-related (ATR) and provides a rationale for molecular targeted modulation of these effects. In directly irradiated cells, ATR, ATM, and DNA-dependent protein kinase (DNA-PK) deficiency resulted in reduced cell survival as predicted by the known important role of these proteins in sensing DNA damage. A decrease in clonogenic survival was also observed in ATR/ATM/DNA-PK-proficient, nonirradiated bystander cells, but this effect was completely abrogated in ATR and ATM but not DNA-PK-deficient bystander cells. ATM activation in bystander cells was found to be dependent on ATR function. Furthermore, the induction and colocalization of ATR, 53BP1, ATM-S1981P, p21, and BRCA1 foci in nontargeted cells was shown, suggesting their involvement in bystander DNA damage signaling and providing additional potential targets for its modulation. 53BP1 bystander foci were induced in an ATR-dependent manner predominantly in S-phase cells, similar to gammaH2AX foci induction. In conclusion, these results provide a rationale for the differential modulation of targeted and nontargeted effects of radiation.  相似文献   

11.
Eymin B  Leduc C  Coll JL  Brambilla E  Gazzeri S 《Oncogene》2003,22(12):1822-1835
Until recently, the ability of ARF (human p14(ARF), murine p19(ARF)) tumour-suppressor protein, encoded by the INK4A/ARF locus, to inhibit cell growth in response to various stimuli was related to its ability to stabilize p53 through the so-called ARF/MDM2/p53 pathway. However, recent data have demonstrated that ARF is not implicated in this unique p53-dependent pathway. By use of transient and stable expression, we show here that human p14(ARF) inhibits the growth of human tumoral cells lacking functional p53 by inducing a transient G(2) arrest and subsequently apoptosis. This p14(ARF)-induced G(2) arrest was correlated with inhibition of CDC2 activity, inactivation of CDC25C phosphatase and induction of the CDK inhibitor p21(WAFI). Apoptosis was demonstrated using Hoechst 33352 staining, proteolytic activation of caspase-3 and PARP cleavage. Similar results were obtained in experiments with cells synchronized by hydroxyurea block. Importantly, we were able to reproduce these effects 'in vivo' by showing that p14(ARF) inhibits the growth of p53 nullizygous human tumours in nude mice and induces the regression of p53 -/- established tumours. In these experiments, tumoral regression was associated with inhibition of cell proliferation as well as induction of apoptosis confirming the data obtained in cell lines.  相似文献   

12.
Purpose: Severe acute toxicity limits the effective use of radiotherapy in patients who are radiosensitive, and it is not usually possible to identify these radiohypersensitive (R-H) individuals before treatment commences. Five such R-H patients were detected over a 3-year period. We undertook this study to determine whether the severe acute radiohypersensitivity of these five individuals showed any correlation with cellular and molecular parameters known to be abnormal in radiosensitivity-related syndromes such as ataxia–telangiectasia (A-T).

Methods and Materials: Lymphoblastoid cells were isolated from fresh blood from the 5 R-H individuals who had previously demonstrated clinical R-H at least 9 months prior to sampling. Lymphoblastoid cell lines (LCLs) were established to determine the extent of postradiation chromosomal aberrations, cell cycle delay, cell proliferation, and tumor suppressor p53 protein stabilization. The polymerase chain reaction (PCR) and protein truncation (PTT) assays were used to test for the possibility of mutations in the gene mutated in A-T, termed ATM.

Results: LCLs derived from R-H subjects retained a significantly higher degree of radiation-induced chromosomal aberrations when compared to normal control LCLs. p53 stabilization by ionizing radiation appeared normal in all but one R-H subject. There was no evidence of A-T gene truncation mutations in any of the R-H subjects tested.

Conclusions: All R-H subjects in this study had their cellular radiosensitivity confirmed by the chromosomal aberration assay. Delayed p53 stabilization at 4 hours postirradiation in one R-H subject suggested that different etiologies may apply in the radiohypersensitivity investigated in this study.  相似文献   


13.
14.
Armata HL  Garlick DS  Sluss HK 《Cancer research》2007,67(24):11696-11703
The p53 tumor suppressor is phosphorylated at multiple sites within its NH(2)-terminal region. One of these phosphorylation sites (mouse Ser(18) and human Ser(15)) is a substrate for the ataxia telangiectasia-mutated (ATM) and ATM-related (ATR) protein kinases. Studies of p53(S18A) mice (with a germ-line mutation that replaces Ser(18) with Ala) have indicated that ATM/ATR phosphorylation of p53 Ser(18) is required for normal DNA damage-induced PUMA expression and apoptosis but not for DNA damage-induced cell cycle arrest. Unlike p53-null mice, p53(S18A) mice did not succumb to early-onset tumors. This finding suggested that phosphorylation of p53 Ser(18) was not required for p53-dependent tumor suppression. Here we report that the survival of p53(S18A) mice was compromised and that they spontaneously developed late-onset lymphomas (between ages 1 and 2 years). These mice also developed several malignancies, including fibrosarcoma, leukemia, leiomyosarcoma, and myxosarcoma, which are unusual in p53 mutant mice. Furthermore, we found that lymphoma development was linked with apoptotic defects. In addition, p53(S18A) animals exhibited several aging-associated phenotypes early, and murine embryonic fibroblasts from these animals underwent early senescence in culture. Together, these data indicate that the ATM/ATR phosphorylation site Ser(18) on p53 contributes to tumor suppression in vivo.  相似文献   

15.
Take a break--resveratrol in action on DNA   总被引:1,自引:0,他引:1  
  相似文献   

16.
McLaughlin LM  Demple B 《Cancer research》2005,65(14):6097-6104
When nitric oxide (NO) is produced at micromolar concentrations, as during inflammation, exposure to surrounding cells is potentially cytotoxic. The NO-dependent signaling pathways that initiate cell death are thought to involve the tumor suppressor protein p53, but the degree to which this factor contributes to NO-induced cell death is less clear. Various reports either confirm or negate a role for p53 depending on the cell type and NO donor used. In this study, we have used several pairs of cell lines whose only differences are the presence or absence of p53, and we have treated these cell lines with the same NO donor, spermineNONOate (SPER/NO). Treatment with SPER/NO induced such apoptotic markers as DNA fragmentation, nuclear condensation, poly(ADP-ribose) polymerase cleavage, cytochrome c release, and Annexin V staining. p53 was required for at least 50% of SPER/NO-induced apoptotic cell death in human lymphoblastoid cells and for almost all in primary and E1A-tranformed mouse embryonic fibroblasts, which highlights the possible importance of DNA damage for apoptotic signaling in fibroblasts. In contrast, p53 did not play a significant role in NO-induced necrosis. NO treatment also induced the phosphorylation of p53 at Ser15; pretreatment with phosphoinositide-3 kinase (PI3K) family inhibitors, wortmannin, LY294002, and caffeine, blocked such phosphorylation, but the p38 mitogen-activated protein kinase inhibitor, SB203580, did not. Pretreatment with the PI3K family inhibitors also led to a switch from NO-induced apoptosis to necrosis, which implicates a PI3K-related kinase such as ataxia telangiectasia mutated (ATM) or ATR (ATM and Rad3 related) in p53-dependent NO-induced apoptosis.  相似文献   

17.
5-Fluorouracil (5-FU), together with other drugs such as oxaliplatin, is one of the most important pharmacological agents in the treatment of colorectal cancer. Although mitogen-activated protein kinases (MAPKs) have been extensively connected with resistance to platinum compounds, no role has been established in 5-FU resistance. Here we demonstrate that p38MAPK activation is a key determinant in the cellular response to 5-FU. Thus, inhibition of p38MAPKα by SB203580 compound or by short-hairpin RNA interference-specific knockdown correlates with a decrease in the 5-FU-associated apoptosis and chemical resistance in both HaCaT and HCT116 cells. Activation of p38MAPK by 5-FU was dependent on canonical MAP2K, MAPK kinase (MKK)-3 and MKK6. In addition, ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR) showed a redundancy of function for the final activation of p38MAPK. Resistance associated with p38MAPK inhibition correlates with an autophagic response that was mediated by a decrease in p53-driven apoptosis, without effect onto p53-dependent autophagy. Moreover, the results with colorectal cancer-derived cell lines with different p53 status and patterns of resistance to 5-FU suggest that de novo and acquired resistance was controlled by similar mechanisms. In summary, our data demonstrate a critical role for the p38MAPK signaling pathway in the cellular response to 5-FU by controlling the balance between apoptosis and autophagy.  相似文献   

18.
Florensa R  Bachs O  Agell N 《Oncogene》2003,22(51):8283-8292
The DNA replication checkpoint is an inhibitory pathway ensuring that mitosis occurs only after completion of DNA synthesis. Its function may be relevant to the stability of the genome. The essential elements of this checkpoint are ATM/ATR kinases that indirectly lead to the phosphorylation and inhibition of the mitosis-promoting factor (Cdc2/cyclin B1). The function of this checkpoint was analysed in diverse nontransformed and tumour-derived cell lines. All cell lines tested arrested mitosis entry when DNA synthesis was inhibited by hydroxyurea (HU) treatment. But, unlike what has been described in yeast and Xenopus, in normal rat kidney (NRK) cells and NIH 3T3 fibroblasts, the arrest induced by HU treatment was not abrogated by caffeine, an ATM and ATR inhibitor. This indicated the presence of an ATM/ATR-independent response to DNA synthesis inhibition in these nontransformed mammalian cell lines. Interestingly, the behaviour of different tumour cell lines after caffeine treatment varied. While SW480, NP29, NP18 and HeLa cells did not enter mitosis in the presence of caffeine after HU treatment, in CaCo2, DLD1, HCT116 and HT29 caffeine abrogated the checkpoint response. In nontransformed cell lines, lack of cyclin B1 accumulation was observed when DNA synthesis was inhibited. This response was not abrogated by caffeine. In the tumour cell lines, a good correlation between the ability to arrest cell cycle when DNA synthesis was inhibited in the presence of caffeine and the lack of cyclin B1 accumulation was observed. Thus, there is an ATM/ATR-independent checkpoint response that leads to a decrease in cyclin B1 accumulation. However, this response is not functional in some tumour cell lines. Using inhibitors of p38alpha and beta, Mek1, 2 and p53-/- knocked-out fibroblasts, we showed that these proteins were also not involved in this particular checkpoint response. Lack of cyclin B1 accumulation after DNA synthesis inhibition in NRK cells was not due to increased degradation of the protein, but correlated with a decrease in mRNA accumulation.  相似文献   

19.
Treatment of advanced-stage cervical cancers with (chemo)radiation causes cytotoxicity through induction of high levels of DNA damage. Tumour cells respond to DNA damage by activation of the 'DNA damage response' (DDR), which induces DNA repair and may counteract chemoradiation efficacy. Here, we investigated DDR components as potential therapeutic targets and verified the predictive and prognostic value of DDR activation in patients with cervical cancer treated with (chemo)radiation. In a panel of cervical cancer cell lines, inactivation of ataxia telangiectasia mutated (ATM) or its substrate p53-binding protein-1 (53BP1) clearly gave rise to cell cycle defects in response to irradiation. Concordantly, clonogenic survival analysis revealed that ATM inhibition, but not 53BP1 depletion, strongly radiosensitised cervical cancer cells. In contrast, ATM inhibition did not radiosensitise non-transformed epithelial cells or non-transformed BJ fibroblasts. Interestingly, high levels of active ATM prior to irradiation were related with increased radioresistance. To test whether active ATM in tumours prior to treatment also resulted in resistance to therapy, immunohistochemistry was performed on tumour material of patients with advanced-stage cervical cancer (n = 375) treated with (chemo)radiation. High levels of phosphorylated (p-)ATM [p = 0.006, hazard ratio (HR) = 1.817] were related to poor locoregional disease-free survival. Furthermore, high levels of p-ATM predicted shorter disease-specific survival (p = 0.038, HR = 1.418). The presence of phosphorylated 53BP1 was associated with p-ATM (p = 0.001, odds ratio = 2.206) but was not related to any clinicopathological features or survival. In conclusion, both our in vitro and patient-related findings indicate a protective role for ATM in response to (chemo)radiation in cervical cancer and point at ATM inhibition as a possible means to improve the efficacy of (chemo)radiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号