首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Neurons are terminally differentiated cells with a high rate of metabolism and multiple biological properties distinct from their undifferentiated precursors. Previous studies showed that nucleotide excision DNA repair is downregulated in postmitotic muscle cells and neurons. Here, we characterize DNA damage susceptibility and base excision DNA repair (BER) capacity in undifferentiated and differentiated human neural cells. The results show that undifferentiated human SH-SY5Y neuroblastoma cells are less sensitive to oxidative damage than their differentiated counterparts, in part because they have robust BER capacity, which is heavily attenuated in postmitotic neurons. The reduction in BER activity in differentiated cells correlates with diminished protein levels of key long patch BER components, flap endonuclease-1, proliferating cell nuclear antigen, and ligase I. Thus, because of their higher BER capacity, proliferative neural progenitor cells are more efficient at repairing DNA damage compared with their neuronally differentiated progeny.  相似文献   

2.
DNA repair sustains fidelity of genomic replication in proliferating cells and integrity of transcribed sequences in postmitotic tissues. The repair process is critical in the brain, because high oxygen consumption exacerbates the risk for accumulation of oxidative DNA lesions in postmitotic neurons. Most oxidative DNA damage is repaired by the base excision repair (BER) pathway, which is initiated by specialized DNA glycosylases. Because the newly discovered Nei-like mammalian DNA glycosylases (NEIL1/2) proficiently excise oxidized bases from bubble structured DNA, it was suggested that NEILs favor repair of transcribed or replicated DNA. In addition, since NEILs generate 3'-phosphate termini, which are poor targets for AP endonuclease (APE1), it was proposed that APE1-dependent and independent BER sub-pathways exist in mammalian cells. We measured expression and activities of BER enzymes during brain ontogeny, i.e., during a physiologic transition from proliferative to postmitotic differentiated state. While a subset of BER enzymes, exhibited declining expression and excision activities, expression of NEIL1 and NEIL2 glycosylases increased during brain development. Furthermore, the capacity for excision of 5-hydroxyuracil from bubble structured DNA was retained in the mature rat brain suggesting a role for NEIL glycosylases in maintaining the integrity of transcribed DNA in postmitotic brain.  相似文献   

3.
Rao KS 《Neuroscience》2007,145(4):1330-1340
This laboratory, using post-mitotic rat brain neurons as a model system, has been testing the hypothesis that the inherited DNA repair potential would have profound influence on the aging process of the individual. It has been found that both single and double strand breaks in DNA accumulate in neurons with age. Since base excision repair (BER) is the pathway to effect repair of the type of DNA damage that is likely to occur in neurons, model oligo duplexes were used to assess the BER pathway. Both extension of a primer and one or four nucleotide gap repair are markedly reduced in aging neurons as compared with the young. The extension activity could be restored by supplementing the neuronal extracts with pure DNA polymerase beta (pol beta) while the restoration of gap repair needed the addition of both pol beta and DNA ligase. It thus appears that both pol beta and DNA ligase are deficient in aging neurons. We have also established a system to study the non-homologous end joining (NHEJ) mode of DNA repair in neurons. The end joining of cohesive but not of blunt or non-matching ends, is reduced with age and attempts to identify the limiting factor(s) in this case have been unsuccessful so far. These results are reviewed vis-à-vis the existing literature.  相似文献   

4.
Base excision repair and the central nervous system   总被引:1,自引:0,他引:1  
Wilson DM  McNeill DR 《Neuroscience》2007,145(4):1187-1200
  相似文献   

5.
Accumulation of oxidative DNA damage in the human brain has been implicated in etiologies of post-traumatic and age-associated declines in neuronal function. In neurons, because of high metabolic rates and prolonged life span, exposure to free radicals is intense and risk for accumulation of damaged DNA is amplified. While data indicate that the brain is equipped to repair nuclear and mitochondrial DNA, it is unclear whether repair is executed by distinct subsets of the DNA-repair machinery. Likewise, there are no firm assessments of brain capacity for accurate DNA repair under normal and more so compromised conditions. Consequently, the scope of DNA repair in the brain and the impact of resolution of oxidative lesions on neuronal survival and function remain largely unknown. This review considers evidences for brain levels and activities of the base excision repair (BER) pathway in the context of newly available, comprehensive in situ hybridization analyses of genes encoding repair enzymes. These analyses suggest that not all subsets of BER are equally represented in the brain. Because BER is the major repair process for oxidatively damaged DNA, to what extent parsimonious BER may contribute to development of neuronal dysfunction and brain injury under compromised conditions, is discussed.  相似文献   

6.
Accumulation of nuclear and mitochondrial DNA damage is thought to be particularly deleterious in post-mitotic cells, which cannot be replaced through cell division. Recent experimental evidence demonstrates the importance of DNA damage responses for neuronal survival. Here, we summarize current literature on DNA damage responses in the mammalian CNS in aging and neurodegeneration. Base excision repair (BER) is the main pathway for the removal of small DNA base modifications, such as alkylation, deamination and oxidation, which are generated as by-products of normal metabolism and accumulate with age in various experimental models. Using neuronal cell cultures, human brain tissue and animal models, we and others have shown an active BER pathway functioning in the brain, both in the mitochondrial and nuclear compartments. Mitochondrial DNA repair may play a more essential role in neuronal cells because these cells depend largely on intact mitochondrial function for energy metabolism. We have characterized several BER enzymes in mammalian mitochondria and have shown that BER activities change with age in mitochondria from different brain regions. Together, the results reviewed here advocate that mitochondrial DNA damage response plays an important role in aging and in the pathogenesis of neurodegenerative diseases.  相似文献   

7.
Oxidative damage accumulates in the DNA of the human brain over time, and is supposed to play a critical role in the pathogenesis of Alzheimer's disease (AD). It has been suggested that the brain in AD might be subjected to the double insult of increased oxidative stress, as well as deficiencies in repair mechanisms responsible for the removal of oxidized bases. The type of damage that is most likely to occur in neuronal cells is oxidative DNA damage which is primarily removed by the base excision repair (BER) pathway, and a decrease in BER activity was observed in post-mortem brain regions of AD individuals, especially in the activity of 8-oxoguanine DNA glycosylase. There is evidence that the Ser326Cys polymorphism of the human 8-oxoguanine DNA glycosylase 1 (hOGG1) gene is associated with a reduced DNA repair activity. However, although a deficient BER was proposed in the etiology of AD by several authors, polymorphisms of BER genes have not been studied in AD yet. We performed a case-control study including 178 patients with sporadic AD (sAD) and 146 matched controls to evaluate the role of the Ser326Cys polymorphism as a risk factor for sAD. In the present study we failed to find any association between allele (chi2=0.03, p=0.86) or genotype (chi2=0.25, p=0.882) frequencies of hOGG1 Ser326Cys and the risk of sAD. Present results suggest that the Ser326Cys polymorphism of the hOGG1 gene is not an independent risk factor for sAD.  相似文献   

8.
Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington's disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration.  相似文献   

9.
Alzheimer's disease (AD) has been correlated with elevated levels of oxidative DNA damage. Base excision repair (BER) is the main repair pathway for the removal of oxidative DNA base modifications. We have recently found significant functional deficiencies in BER in brains of sporadic AD and amnestic mild cognitive impairment patients. In this study we tested whether altered BER activities are associated with appearance of symptoms in different brain regions of pre-symptomatic and symptomatic mice harboring mutant APP alone or in combination with Tau and PS1. Our results suggest that unlike in humans, the development of AD-like pathology in the studied mouse models is not associated with deficiencies in BER.  相似文献   

10.
Aging in the brain is characterized by increased susceptibility to neuronal loss and functional decline, and mitochondrial DNA (mtDNA) mutations are thought to play an important role in these processes. Due to the proximity of mtDNA to the main sites of mitochondrial free radical generation, oxidative stress is a major source of DNA mutations in mitochondria. The base excision repair (BER) pathway removes oxidative lesions from mtDNA, thereby constituting an important mechanism to avoid accumulation of mtDNA mutations. The complexity of the brain implies that exposure and defence against oxidative stress varies among brain regions and hence some regions may be particularly prone to accumulation of mtDNA damages. In the current study we investigated the efficiency of the BER pathway throughout the murine lifespan in mitochondria from cortex and hippocampus, regions that are central in mammalian cognition, and which are severely affected during aging and in neurodegenerative diseases. A regional specific regulation of mitochondrial DNA repair activities was observed with aging. In cortical mitochondria, DNA glycosylase activities peaked at middle-age followed by a significant drop at old age. However, only minor changes were observed in hippocampal mitochondria during the whole lifespan of the animals. Furthermore, DNA glycosylase activities were lower in hippocampal than in cortical mitochondria. Mitochondrial AP endonuclease activity increased in old animals in both brain regions. Our data suggest an important regional specific regulation of mitochondrial BER during aging.  相似文献   

11.
Responding to DNA double strand breaks in the nervous system   总被引:3,自引:0,他引:3  
Lee Y  McKinnon PJ 《Neuroscience》2007,145(4):1365-1374
Within the nervous system appropriate responses to DNA damage are required to maintain homeostasis and prevent disease. In this tissue, DNA double-strand breaks (DSBs) initiate a molecular response to repair DNA, or in many cases, activate apoptosis. The repair of DNA DSBs occurs via nonhomologous end-joining (NHEJ) or homologous recombination (HR). These mechanistically distinct pathways are critical for maintenance of genomic integrity. During nervous system development there are discrete requirements for each DNA DSB repair pathway at different stages of development. For example, in the nervous system HR is particularly important for proliferating cells, while NHEJ is critical for differentiating cells. Inactivation of either of these pathways can lead to embryonic lethality, neurodegeneration or brain tumors. Human syndromes that result from defective responses to DNA damage often feature overt neuropathology. A prime example is the neurodegenerative syndrome ataxia telangiectasia (A-T), which results from inactivation of the ATM kinase, a crucial nexus for the cellular response to DNA DSBs. This type of DNA damage activates ATM via the Mre11-Rad50-NBS1 (MRN) complex, which leads to selective phosphorylation of ATM substrates resulting in apoptosis or cell cycle arrest and DNA repair. Furthermore, DNA DSBs resulting from chronic genotoxic stress can also result in tumorigenesis, as inactivation of either HR or NHEJ can lead to certain types of brain tumors. Thus, there are distinct requirements for each DNA DSB repair pathway during neural development, which have important implications for understanding diseases of the nervous system.  相似文献   

12.
Oxidative damage represents the most significant insult to organisms because of continuous production of the reactive oxygen species (ROS) in vivo. Oxidative damage in DNA, a critical target of ROS, is repaired primarily via the base excision repair (BER) pathway which appears to be the simplest among the three excision repair pathways. However, it is now evident that although BER can be carried with four or five enzymes in vitro, a large number of proteins, including some required for nucleotide excision repair (NER), are needed for in vivo repair of oxidative damage. Furthermore, BER in transcribed vs. nontranscribed DNA regions requires distinct sets of proteins, as in the case of NER. We propose an additional complexity in repair of replicating vs. nonreplicating DNA. Unlike DNA bulky adducts, the oxidized base lesions could be incorporated in the nascent DNA strand, repair of which may share components of the mismatch repair process. Distinct enzyme specificities are thus warranted for repair of lesions in the parental vs. nascent DNA strand. Repair synthesis may be carried out by DNA polymerase beta or replicative polymerases delta and epsilon. Thus, multiple subpathways are needed for repairing oxidative DNA damage, and the pathway decision may require coordination of the successive steps in repair. Such coordination includes transfer of the product of a DNA glycosylase to AP-endonuclease, the next enzyme in the pathway. Interactions among proteins in the pathway may also reflect such coordination, characterization of which should help elucidate these subpathways and their in vivo regulation.  相似文献   

13.
DNA damage and mutagenesis are suggested to contribute to aging through their ability to mediate cellular dysfunction. The base excision repair (BER) pathway ameliorates a large number of DNA lesions that arise spontaneously. Many of these lesions are reported to increase with age. Oxidized guanine, repaired largely via base excision repair, is particularly well studied and shown to increase with age. Spontaneous mutant frequencies also increase with age which suggests that mutagenesis may contribute to aging. It is widely accepted that genetic instability contributes to age-related occurrences of cancer and potentially other age-related pathologies. BER activity decreases with age in multiple tissues. The specific BER protein that appears to limit activity varies among tissues. DNA polymerase-beta is reduced in brain from aged mice and rats while AP endonuclease is reduced in spermatogenic cells obtained from old mice. The differences in proteins that appear to limit BER activity among tissues may represent true tissue-specific differences in activity or may be due to differences in techniques, environmental conditions or other unidentified differences among the experimental approaches. Much remains to be addressed concerning the potential role of BER in aging and age-related health span.  相似文献   

14.
Oxidative DNA damage has been attributed to increased cancer incidence and premature aging phenotypes. Reactive oxygen species (ROS) are unavoidable byproducts of oxidative phosphorylation and are the major contributors of endogenous oxidative damage. To prevent the negative effects of ROS, cells have developed DNA repair mechanisms designed to specifically combat endogenous DNA modifications. The base excision repair (BER) pathway is primarily responsible for the repair of small non-helix distorting lesions and DNA single strand breaks. This repair pathway is found in all organisms, and in mammalian cells, consists of three related sub-pathways: short patch (SP-BER), long patch (LP-BER) and single strand break repair (SSBR). While much is known about nuclear BER, comparatively little is known about this pathway in the mitochondria, particularly the LP-BER and SSBR sub-pathways. There are a number of proteins that have recently been found to be involved in mitochondrial BER, including Cockayne syndrome proteins A and B (CSA and CSB), aprataxin (APTX), tryosyl-DNA phosphodiesterase 1 (TDP1), flap endonuclease 1 (FEN-1) and exonuclease G (EXOG). These significant advances in mitochondrial DNA repair may open new avenues in the management and treatment of a number of neurological disorders associated with mitochondrial dysfunction, and will be reviewed in further detail herein.  相似文献   

15.
Eukaryotic cells have evolved elaborate mechanisms to preserve the fidelity of their genomic material in the face of chronic attack by reactive byproducts of aerobic metabolism. These mechanisms include antioxidant and DNA repair enzymes. Skin fibroblasts of long-lived mammalian species are more resistant to oxidative stress than those of shorter-lived species [Kapahi, P., Boulton, M.E., Kirkwood, T.B., 1999. Positive correlation between mammalian life span and cellular resistance to stress. Free Radic. Biol. Med. 26, 495-500], and we speculated that this is due to greater antioxidant and/or DNA repair capacities in longer-lived species. We tested this hypothesis using dermal fibroblasts from mammalian species with maximum lifespans between 5 and 122 years. The fibroblasts were cultured at either 18 or 3% O(2). Of the antioxidant enzymes only manganese superoxide dismutase was found to positively correlate with maximum lifespan (p<0.01). Oxidative damage to DNA is primary repaired by the base excision repair (BER) pathway. BER enzyme activities showed either no correlation (apurinic/apyrimidinic endonuclease), or correlated negatively (p<0.01) with donor species MLS (polymerase beta). Standard culture conditions (18% O(2)) induced both antioxidant and BER enzymes activities, suggesting that the 'normal' cell culture conditions widely employed are inappropriately hyperoxic, which likely confounds the interpretation of studies of cellular oxidative stress responses in culture.  相似文献   

16.
Oxidative stress in the brain may cause neuro-degeneration, possibly due to DNA damage. Oxidative base lesions in DNA are mainly repaired by base excision repair (BER). The DNA glycosylases Nei-like DNA glycosylase 1 (NEIL1), Nei-like DNA glycosylase 2 (NEIL2), mitochondrial uracil-DNA glycosylase 1 (UNG1), nuclear uracil-DNA glycosylase 2 (UNG2) and endonuclease III-like 1 protein (NTH1) collectively remove most oxidized pyrimidines, while 8-oxoguanine-DNA glycosylase 1 (OGG1) removes oxidized purines. Although uracil is the main substrate of uracil-DNA glycosylases UNG1 and UNG2, these proteins also remove the oxidized cytosine derivatives isodialuric acid, alloxan and 5-hydroxyuracil. UNG1 and UNG2 have identical catalytic domain, but different N-terminal regions required for subcellular sorting. We demonstrate that mRNA for UNG1, but not UNG2, is increased after hydrogen peroxide, indicating regulatory effects of oxidative stress on mitochondrial BER. To examine the overall organization of uracil-BER in nuclei and mitochondria, we constructed cell lines expressing EYFP (enhanced yellow fluorescent protein) fused to UNG1 or UNG2. These were used to investigate the possible presence of multi-protein BER complexes in nuclei and mitochondria. Extracts from nuclei and mitochondria were both proficient in complete uracil-BER in vitro. BER assays with immunoprecipitates demonstrated that UNG2-EYFP, but not UNG1-EYFP, formed complexes that carried out complete BER. Although apurinic/apyrimidinic site endonuclease 1 (APE1) is highly enriched in nuclei relative to mitochondria, it was apparently the major AP-endonuclease required for BER in both organelles. APE2 is enriched in mitochondria, but its possible role in BER remains uncertain. These results demonstrate that nuclear and mitochondrial BER processes are differently organized. Furthermore, the upregulation of mRNA for mitochondrial UNG1 after oxidative stress indicates that it may have an important role in repair of oxidized pyrimidines.  相似文献   

17.
Generation of abasic (AP) sites is one of the main anomalies to arise in cellular DNA. These lesions are highly mutagenic, and need to be repaired by the base-excision repair (BER) system. Oxidative stress and misincorporation of dUTP are important sources of mutation load trough generation of AP sites. Kinetoplastid protozoa are able to survive in a highly oxidative environment within the host macrophages and between the different strategies used for survival, active DNA repair mechanisms must exist. In order to assess the role of BER in protecting parasites against DNA damage, we have overexpressed one enzyme of the pathway, AP endonuclease, in Leishmania major. Parasites overproducing AP endonuclease of L. major (APLM) showed an increased resistance to hydrogen peroxide, a mutagen that produces oxidative stress, and also to methotrexate (MTX), an inhibitor of thymidylate biosynthesis which causes a massive incorporation of dUTP into DNA, when compared to control cells. Moreover, DNA fragmentation caused by MTX was prevented in cells overexpressing APLM. Our results suggest that APLM is a key enzyme in mediating repair of AP sites in these pathogens.  相似文献   

18.
Arsenic, an important hazard in the environment, is associated with human cancer and other degenerative diseases. However, the mechanisms underlying arsenic hazardous effects remain unclear. It has been reported arsenic exposure can result in increased cellular reactive oxygen species and oxidative DNA damage. This suggests DNA base excision repair (BER), the major pathway for repairing oxidative DNA damage, may be involved in combating arsenic hazardous effects. As a critical repair enzyme in BER, DNA polymerase beta (Pol β) might play an essential role in reducing arsenic toxicity. To test this hypothesis, we evaluated arsenic-induced cytotoxic and genotoxic effects under Pol β deficiency. Our results demonstrated that the viability of Pol β-deficient mouse embryonic fibroblasts was much lower than that of Pol β wild-type cells after treatment with arsenite (As(3+) ). An increased level of DNA damage and significantly delayed arsenite-induced DNA damage repair in Pol β-deficient cells indicated reduced repair of DNA lesions under Pol β deficiency. This was consistent with the increase in the frequency of micronuclei (MN), an indicator of chromosomal breakage, which was also observed in Pol β-deficient cells treated with arsenite. In contrast, cells harboring overexpressed Pol β resulted in a lower level of DNA damage and MN than Pol β wild-type cells, indicating overexpression of the enzyme can combat arsenic-induced genotoxic effects. In conclusion, our results indicate an important role for Pol β in repairing arsenite-induced DNA damage and maintaining chromosomal integrity and further suggest deficiency of BER may be involved in arsenic genotoxicity and carcinogenicity.  相似文献   

19.
20.
氧化应激在脑缺血损伤中的作用机制   总被引:6,自引:3,他引:3       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号