首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neutrophil-dependent inflammation dependent on monosodium urate (MSU) crystal-induced IL-8 expression occurs in gout. MSU crystals activate phagocyte Src family tyrosine kinases and the serine/threonine kinase p70s6k. Thus, using monocytic THP-1 cells, we assessed the potential for Src family kinases and p70s6k to mediate MSU-induced IL-8 expression. MSU crystals induced phosphorylation of p70s6k and the Src kinases c-Src, Lyn, Hck, and Fyn. IL-8 expression was attenuated more by the Src kinase inhibitor PP1 than by the p70s6k inhibitor rapamycin. PP1 inhibited crystal-induced phosphorylation of ERK1/2 and IkappaBalpha and suppressed IkappaB kinase (IKK) activation and NF-kappaB binding to the IL-8 promoter, signals that mediate MSU-induced IL-8 expression. Transfection of the native Src inhibitor, C-terminal Src kinase (Csk), also suppressed crystal-induced c-Src, ERK1/2, and IkappaBalpha phosphorylation and IL-8 expression. We conclude that Src family tyrosine kinase signaling plays a significant role in MSU crystal-induced IL-8 expression via stimulation of ERK1/2 pathway and NF-kappaB activation.  相似文献   

2.
3.
The proinflammatory cytokine tumor necrosis factor (TNF) modulates cellular responses through the mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-kappaB) signaling pathways, but the molecular mechanisms underlying MAPK activation are unknown. T cell protein tyrosine phosphatase (TCPTP) is essential for hematopoietic development and negatively regulates inflammatory responses. Using TCPTP-deficient fibroblasts, we show here that TCPTP regulates TNF-induced MAPK but not NF-kappaB signaling. TCPTP interacted with the adaptor protein TRAF2, and dephosphorylated and inactivated Src tyrosine kinases to suppress downstream signaling through extracellular signal-regulated kinases and production of interleukin 6. These results link TCPTP and Src tyrosine kinases to the selective regulation of TNF-induced MAPK signaling and identify a previously unknown mechanism for modulating inflammatory responses mediated by TNF.  相似文献   

4.
5.
6.
Cross-regulation of JAK and Src kinases   总被引:5,自引:0,他引:5  
  相似文献   

7.
Tyrosine phosphorylation is thought to be critical in the regulation of neutrophil functioning, and members of the Src family of tyrosine kinases have recently been shown to be regulated in activated granulocytes. We have used a specific pharmacological inhibitor of Src kinases, pyrazolpyrimidine 1 (PP1), to evaluate the role of Src kinases in cytokine/chemoattractant-induced regulation of neutrophil function. PP1 inhibits PKB phosphorylation but not STAT5 phosphorylation or the activation of MAP kinases by fMLP or GM-CSF. Pretreatment of neutrophils with PP1 and with the PI3K inhibitor LY294002 resulted in a strong inhibition of fMLP-induced superoxide production and cytokine-mediated survival but not fMLP-induced migration. It is interesting that the kinetics of inhibition of actin polymerization and the respiratory burst are very similar. Although initiation of both processes was not affected, sustained activation was inhibited by PP1. Taken together, our results demonstrate a critical role for Src kinases in regulating neutrophil cytotoxic-effector functioning through PI3K-PKB.  相似文献   

8.
9.
Tyrosine phosphorylation plays a major role in controlling many biological processes in different cell types. Src family kinases (SFKs) are one of the most studied groups of tyrosine kinases and can mediate a variety of signalling pathways. However, little is known about the expression of SFKs in human term placenta and their implication in trophoblast differentiation. Therefore, we examined the expression profile of SFK members over time in culture and their implication in differentiation. In vitro , freshly isolated cytotrophoblast cells, cultured in 10% fetal bovine serum (FBS), spontaneously aggregate and fuse to form multinucleated cells that resemble phenotypically mature syncytiotrophoblasts, that concomitantly produce human chorionic gonadotropin (hCG) and human placental lactogen (hPL). In this study, we showed that trophoblasts expressed all SFK members and some of them are expressed as different splice variants. Moreover, using real-time PCR, this study showed two different expression profiles of SFKs in human trophoblasts during culture. In addition, the protein level and phosphorylation status of Src were evaluated using specific antibodies. Src was rapidly phosphorylated at Tyr-416 and dephosphorylated at Tyr-527 after FBS addition. Surprisingly, inhibition of SFKs by 4-amino-5-(4-chlorophenyl)-7-( t -butyl) pyrazolo[3,4-d] pyrimidine (PP2) or herbimycin A had different effects on trophoblast differentiation. While herbimycin A inhibited morphological and hormonal differentiation, PP2 stimulated hormonal differentiation and inhibited cell adhesion and spreading with no effect on cell fusion. In summary, this study showed that SFKs play different roles in trophoblast differentiation, probably depending on SFK members activated. Thus, this study increases our knowledge and understanding of pathology related to impaired trophoblast differentiation such as pre-eclampsia and trophoblast neoplasm.  相似文献   

10.
The role of src-family tyrosine kinases in LPS-induced DC maturation has not been fully addressed. We show that LPS induces activation of c-Src and Lyn in human DC. Inhibition of these kinasesby PP1 uncoupled LPS-induced cytokine production from the up-regulation of costimulatory molecules, resulting in DC still capable of stimulating T cell proliferation but much less efficient in inducing Th1 differentiation. This is the first example of a pharmacological inhibitor able to modulate the capacity of DC to induce a particular type of immune response. Inhibition of src-family kinases impaired phosphorylation and accumulation of c-Jun, leading to reduced formation of AP-1 complexes upon LPS stimulation. Thus, src-kinases control cytokine production in LPS-induced DC maturation through a timely formation of AP-1.  相似文献   

11.
12.
13.
14.
15.
Patients with cystic fibrosis suffer recurrent pulmonary infections that are characterized by an overactive yet ineffective and destructive inflammatory response that is associated with respiratory infections by Pseudomonas aeruginosa, a pathogen that produces a number of phlogistic molecules. To better understand this process, we used exoenzyme S (ExoS), one of the key P. aeruginosa-secreted exoproducts, which is known to stimulate cells via the Toll-like receptor (TLR) pathway. We found that ExoS induced proinflammatory cytokine production via the NF-kappaB, Erk1/2, and Src kinase pathways. Because Src kinases are concentrated within cholesterol-containing, detergent-resistant membrane microdomains (DRM) (also called lipid rafts) and DRM act as signaling platforms and amplifiers on the surface of cells, we addressed the role of DRM in ExoS signaling. ExoS bound directly to a subset of DRM and induced the phosphorylation of multiple proteins within DRM, including Src kinases. Disruption of DRM by cholesterol extraction prevented NF-kappaB and Erk 1/2 activation and TNF-alpha production in response to ExoS. Activation of monocytic cells by other TLR and Nod-like receptor agonists, such as lipoteichoic acid, lipopolysaccharide, and peptidoglycan, were also dependent on DRM, and disruption prevented TNF-alpha production. Disruption of DRM did not prevent ExoS binding but did release the Src kinase, Lyn, from the DRM fraction into the detergent-soluble fraction, a site in which Src kinases are not active. These studies show that ExoS, a TLR agonist, requires direct binding to DRM for optimal signaling, which suggests that DRM are possible therapeutic targets in cystic fibrosis.  相似文献   

16.
17.
As tyrosine kinases are indispensable in lipopolysaccharide (LPS)-induced macrophage activation, the myeloid-specific Src members (i.e. Lyn, Fgr and Hck) are speculated to play important roles in this process. However, the normal LPS responsiveness in lyn(-/-)fgr(-/-)hck(-/-) macrophages implicates the presence of an elusive, compensating tyrosine kinase(s). In this study, we demonstrate the upregulation of c-Src in Raw264.7 and peritoneal macrophages (PEMs) by LPS, which is inhibited by PP2 (an inhibitor for Src family kinases), pyrrolidinedithiocarbamate (PDTC; NF-kappaB inhibitor) and LY294002 (PI3K inhibitor). And this LPS-mediated c-Src induction is also observed in macrophages recovered from LPS-challenged rats. Intriguingly, PP2 attenuates the ability of PEMs to elicit COX-2 expression and nitric oxide production in response to LPS. Similar results are also observed when macrophages recovered from rats receiving either LPS alone or LPS and PP2 both are compared. Furthermore, administration of PP2 in Raw264.7 and animal models of sepsis greatly suppresses TNFalpha secretion and serum TNFalpha level, respectively. Therefore, we conclude that c-Src, with its LPS induction, has an unperceived role in transmitting LPS signaling in macrophages.  相似文献   

18.
Matrix metalloproteinase-9 (MMP-9) is present in the tertiary granules of neutrophils and is rapidly released following stimulation. We examined the pathways that regulate tumor necrosis factor (TNF)-mediated MMP-9 release and found this to be dependent on the TNF receptor I. TNF rapidly activated extracellular signal-regulated kinase and p38 mitogen-activated protein kinases, but neither of these pathways was critical for MMP-9 release. Many neutrophil responses to TNF require beta2-integrin-dependent signaling and subsequent Src family kinase activation. In contrast, we found that MMP-9 release from tertiary granules was only partially affected by blocking beta2-integrin-mediated adhesion. Similarly, blocking Src family kinases with the inhibitor PP2 only attenuated TNF-induced MMP-9 release. Blocking beta2-integrin-mediated adhesion and Src family kinases did not result in additive inhibition of MMP-9 release. In contrast, inhibiting protein kinase C (PKC) with a pan-specific inhibitor blocked greater than 85% of MMP-9 release. Inhibitors against specific PKC isoforms suggested a role for PKC alpha and PKC delta in maximal MMP-9 release. These data suggest that MMP-9 release from tertiary granules uses beta2-integrin-independent signaling pathways. Furthermore, PKC isoforms play a critical role in regulating tertiary granule release.  相似文献   

19.
The role of Src-family kinases (SFKs) in non-small cell lung cancer (NSCLC) has not been fully defined. Here we addressed this question by examining SFK phosphorylation in NSCLC biopsy samples and using genetic and pharmacological approaches to inhibit SFK expression and activity in cultured NSCLC cells. Immunohistochemical analysis of NSCLC biopsy samples using a Tyr416 phosphorylation-specific, pan-SFK antibody revealed staining in 123 (33%) of 370 tumors. Because c-Src is known to be both an upstream activator and downstream mediator of epidermal growth factor receptor (EGFR), we next investigated SFK phosphorylation in a panel of NSCLC cell lines, including ones that depend on EGFR for survival. The EGFR-dependent NSCLC cell lines HCC827 and H3255 had increased phosphorylation of SFKs, and treatment of these cells with an SFK inhibitor (PP1 or SKI-606) induced apoptosis. PP1 decreased phosphorylation of EGFR, ErbB2, and ErbB3 and strikingly enhanced apoptosis by gefitinib, an EGFR inhibitor. HCC827 cells transfected with c-Src short hairpin RNA exhibited diminished phosphorylation of EGFR and ErbB2 and decreased sensitivity to apoptosis by PP1 or gefitinib. We conclude that SFKs are activated in NSCLC biopsy samples, promote the survival of EGFR-dependent NSCLC cells, and should be investigated as therapeutic targets in NSCLC patients.  相似文献   

20.
In macrophages and monocytes, lipopolysaccharide (LPS) triggers the production of pro-inflammatory cytokine through Toll-like receptor (TLR) 4. Although major TLR signalling pathways are mediated by serine or threonine kinases including IKK, TAK1, p38 and JNKs, a number of reports suggested that tyrosine phosphorylation of intracellular proteins is involved in LPS signalling. Here, we identified several tyrosine-phosphorylated proteins using mass spectrometric analysis in response to LPS stimulation. Among these proteins, we characterized C-terminal Src kinase (Csk), which negatively regulates Src-like kinases in RAW 264.7 cells using RNAi knockdown technology. Unexpectedly, LPS-induced CD40 activation and the secretion of pro-inflammatory cytokine such as IL-6 and TNF-alpha, was down-regulated in Csk knockdown cells. Furthermore, overall cellular tyrosine phosphorylation and TLR4-mediated activation of IkappaB-alpha, Erk and p38 but not of JNK, were also down-regulated in Csk knockdown cells. The protein expression levels of a tyrosine kinase, Fgr, were reduced in Csk knockdown cells, suggesting that Csk is a critical regulator of TLR4-mediated signalling by modifying the levels of Src-like kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号