首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Relationship of Indoor, Outdoor and Personal Air (RIOPA) study was designed to investigate residential indoor, outdoor and personal exposures to several classes of air pollutants, including volatile organic compounds, carbonyls and fine particles (PM2.5). Samples were collected from summer, 1999 to spring, 2001 in Houston (TX), Los Angeles (CA) and Elizabeth (NJ). Indoor, outdoor and personal PM2.5 samples were collected at 212 nonsmoking residences, 162 of which were sampled twice. Some homes were chosen due to close proximity to ambient sources of one or more target analytes, while others were farther from sources. Median indoor, outdoor and personal PM2.5 mass concentrations for these three sites were 14.4, 15.5 and 31.4 microg/m3, respectively. The contributions of ambient (outdoor) and nonambient sources to indoor and personal concentrations were quantified using a single compartment box model with measured air exchange rate and a random component superposition (RCS) statistical model. The median contribution of ambient sources to indoor PM2.5 concentrations using the mass balance approach was estimated to be 56% for all study homes (63%, 52% and 33% for California, New Jersey and Texas study homes, respectively). Reasonable variations in model assumptions alter median ambient contributions by less than 20%. The mean of the distribution of ambient contributions across study homes agreed well for the mass balance and RCS models, but the distribution was somewhat broader when calculated using the mass balance model with measured air exchange rates.  相似文献   

2.
Asthma is a respiratory disease whose prevalence has been increasing since the mid 1970s and that affects more than 14.6 million residents of the United States. Environmental triggers of asthma include air pollutants that are respiratory irritants. Air toxics emitted into the ambient air are listed in the 1990 Clean Air Act Amendments as hazardous air pollutants (HAPs) if they can adversely affect human health, including the respiratory tract. HAPs include particulate and gaseous-phase pollutants, individual organic compounds and metals, and mixtures. Associations between asthma exacerbation and both particles and indoor volatile organic compounds (VOCs), often referred to as indoor air quality, have been reported. Studies conducted in the United States, Canada, and Europe over the past two decades have shown that most people living in the developed countries spend the majority of their time indoors and that the air concentrations of many air toxics or HAPs are higher indoors than in the ambient air in urban, suburban, and rural settings. Elevated indoor air concentrations result from emissions of air toxics from consumer products, household furnishings, and personal activities. The Relationship of Indoor, Outdoor and Personal Air (RIOPA) study was designed to oversample homes in close proximity to ambient sources, excluding residences where smokers lived, to determine the contribution of ambient emissions to air toxics exposure. The ratios of indoor to outdoor air concentrations of some VOCs in homes measured during RIOPA were much greater than one, and for most other VOCs that had indoor-to-outdoor ratios close to unity in the majority of homes, elevated ratios were found in the paired samples with the highest concentration. Thus, although ambient emissions contribute to exposure of some air toxics indoors as well as outdoors, this was not true for all of the air toxics and especially for the higher end of exposures to most volatile organic air toxics examined. It is therefore critical, when evaluating potential effects of air toxics on asthma or other adverse health end points, to determine where the exposure occurs and the source contributions for each air toxic and target population separately and not to rely solely on ambient air concentration measurements.  相似文献   

3.
Efforts to assess health risks associated with exposures to multiple urban air toxics have been hampered by the lack of exposure data for people living in urban areas. The TEACH (Toxic Exposure Assessment, a Columbia/Harvard) study was designed to characterize levels of and factors influencing personal exposures to urban air toxics among high school students living in inner-city neighborhoods of New York City and Los Angeles, California. This present article reports methods and data for the New York City phase of TEACH, focusing on the relationships between personal, indoor, and outdoor concentrations in winter and summer among a group of 46 high school students from the A. Philip Randolph Academy, a public high school located in the West Central Harlem section of New York City. Air pollutants monitored included a suite of 17 volatile organic compounds (VOCs) and aldehydes, particulate matter with a mass median aerodynamic diameter 相似文献   

4.
This study characterizes the personal, indoor, and outdoor PM2.5, PM10, and PM2.5-10 exposures of 18 individuals with chronic obstructive pulmonary disease (COPD) living in Boston, MA. Monitoring was performed for each participant for six consecutive days in the winters of 1996 or 1997 and for six to twelve days in the summer of 1996. On each day, 12-h personal, indoor, and outdoor samples of PM2.5 and PM10 were collected simultaneously. Home characteristic information and time-activity patterns were also obtained. Personal exposures were higher than corresponding indoor and outdoor concentrations for all particle measures and for all seasons, except for winter indoor PM2.5-10 levels, which were higher than personal and outdoor levels. Higher personal exposures may be due to the proximity of the individuals to particle sources, such as cooking and cleaning. Indoor concentrations were associated with both outdoor concentrations and personal exposures (as determined by individual least square regression analyses), with associations strongest for PM2.5. Indoor PM2.5 concentrations were significantly associated with outdoor and personal levels for 12 and 15 of the 17 individuals, respectively. Both the strength and magnitude of the associations varied by individual. Also, personal PM2.5, but not PM2.5-10, exposures were associated with outdoor levels, with 10 of the 17 subjects having significant associations. The strength of the personal-outdoor association for PM2.5 was strongly related to that for indoor and outdoor levels, suggesting that home characteristics and indoor particulate sources were key determinants of the personal-outdoor association for PM2.5. Air exchange rates were found to be important determinants of both indoor and personal levels. Again, substantial interpersonal variability in the personal-outdoor relationship was found, as personal exposures varied by as much as 200% for a given outdoor level.  相似文献   

5.
A year-long population-weighted study of personal exposures to particulate matter (PM2.5) was conducted in Toronto while the manganese-containing additive, methylcyclopentadienyl manganese tricarbonyl (MMT), was present in gasoline at an average level of 11.9 mg Mn/l, which was higher than the maximum of 8.3 mg Mn/l allowed in the U.S. In this study, 925 three-day personal samples of PM2.5 (air concentration of aerosol with an aerodynamic diameter of less than 2.5 microm) were collected, along with a record of participants' occupations, personal habits, surroundings, and activities during sampling. Stationary samples of PM2.5 were collected indoors and outdoors at a subset of participants' homes over the same 3-day periods. Three-day samples of PM2.5 were also collected at fixed locations. Personal exposures to PM2.5 were highly influenced by exposure to tobacco smoke, and were poorly correlated with outdoor levels (Kendall's tau=0.13). The mean concentration of PM2.5 in homes (21 microg/m3) was significantly higher than the mean outdoor level (15 microg/m3). By contrast, the mean PM2.5 Mn concentration (air concentration of Mn in PM2.5) was higher outdoors (9.7 ng/m3) than indoors (5.5 ng/m3). Other than from tobacco smoke, there were no indications of significant indoor sources of PM2.5 Mn in homes. The most important predictor of exposure to PM2.5 was time spent in the subway, and a high level (428 ng/m3) of PM2.5 Mn was measured in the subway. The source of this Mn was hypothesized to be friction erosion of subway rails. Small, but statistically significant correlations were present between personal exposures to PM2.5 Mn and several traffic-related variables (time spent in transit, in a motor vehicle, near a roadway with traffic, and in a parking garage). However, in a stepwise regression that adjusted for weather and personal activities, time in a motor vehicle was the only traffic-related variable significantly associated with PM2.5 Mn, and it was only the 10th most important personal activity variable in the final model. Concentrations of PM2.5 Mn were higher at two fixed locations than outside of participants' homes, which were likely further from high traffic areas than the fixed sites. Likewise, outdoor and fixed site samples collected during periods that included weekend days contained lower air concentrations of Mn than samples collected during weekdays when traffic was heavier. On the other hand, the monthly average concentration of Mn in gasoline was negatively correlated with both outdoor and personal PM2.5 Mn, which suggests that traffic-related sources of Mn other than MMT may be present. After omitting participants with exposure to Mn from certain identifiable non-MMT sources (subway riders, metal workers and persons exposed to tobacco smoke), the average (median) personal exposure of the remaining 325 participants to PM2.5 Mn was reduced from 14 ng/m3 (8.5 ng/m3 ) to 8.3 ng/m3 (7.0 ng/m3). Potential sources of this residual Mn exposure include, in addition to MMT, naturally occurring Mn in the earth's crust, other occupational exposure, airborne release of Mn from industrial operations, and friction erosion of Mn from steel-containing products. Taken together, these facts (elimination of participants with Mn exposure from known non-MMT sources reduced average exposures by 40%, the existence of multiple non-MMT sources of the remaining Mn exposure, and the negative correlation between MMT usage and PM2.5 Mn) suggest that the preponderance of personal Mn exposure was from non-MMT sources.  相似文献   

6.
Demographic and socioeconomic differences between population sub-groups were analyzed, as a component of the EXPOLIS (Air Pollution Exposure Distributions Within Adult Urban Populations in Europe) Helsinki study, to explain variation in personal exposures to fine particles (PM2.5). Two-hundred one individuals were randomly selected among 25--55-year-old inhabitants of Helsinki Metropolitan area. Personal exposure samples and residential indoor, residential outdoor and workplace indoor microenvironment measurements of PM2.5 were collected between October 1996 and December 1997. Variation in PM2.5 personal exposures, between sociodemographic sub-groups, was best described by differences in occupational status, education and age. Lower occupational status, less educated and young participants had greater exposures than upper occupational status, more educated and older participants. Different workplace concentrations explained most of the socioeconomic differences, and personal day and night exposures and concentrations in home (but not workplace or outdoor concentrations) caused the PM2.5 exposure differences between age groups. Men had higher exposures and much larger exposure differences between the sociodemographic groups than women. No gender, socioeconomic or age differences were observed in home outdoor concentrations between groups. Exposure to tobacco smoke did not seem to create new differences between the sociodemographic groups; instead, it amplified the existing differences.  相似文献   

7.
Residential indoor and outdoor fine particle (PM(2.5)) organic (OC) and elemental carbon (EC) concentrations (48 h) were measured at 173 homes in Houston, TX, Los Angeles County, CA, and Elizabeth, NJ as part of the Relationship of Indoor, Outdoor and Personal Air (RIOPA) study. The adsorption of organic vapors on the quartz fiber sampling filter (a positive artifact) was substantial indoors and out, accounting for 36% and 37% of measured OC at the median indoor (8.2 microg C/m(3)) and outdoor (5.0 microg C/m(3)) OC concentrations, respectively. Uncorrected, adsorption artifacts would lead to substantial overestimation of particulate OC both indoors and outdoors. After artifact correction, the mean particulate organic matter (OM=1.4 OC) concentration indoors (9.8 microg/m(3)) was twice the mean outdoor concentration (4.9 microg/m(3)). The mean EC concentration was 1.1 microg/m(3) both indoors and outdoors. OM accounted for 29%, 30% and 29% of PM(2.5) mass outdoors and 48%, 55% and 61% of indoor PM(2.5) mass in Los Angeles Co., Elizabeth and Houston study homes, respectively. Indirect evidence provided by species mass balance results suggests that PM(2.5) nitrate (not measured) was largely lost during outdoor-to-indoor transport, as reported by Lunden et al. This results in dramatic changes with outdoor-to-indoor transport in the mass and composition of ambient-generated PM(2.5) at California homes. On average, 71% to 76% of indoor OM was emitted or formed indoors, calculated by (1) Random Component Superposition (RCS) model and (2) non-linear fit of OC and air exchange rate data to the mass balance model. Assuming that all particles penetrate indoors (P=1) and there is no particle loss indoors (k=0), a lower bound estimate of 41% of indoor OM was indoor-generated (mean). OM appears to be the predominant species in indoor-generated PM(2.5), based on species mass balance results. Particulate OM emitted or formed indoors is substantial enough to alter the concentration, composition and behavior of indoor PM(2.5). One interesting effect of increased indoor OM concentrations is a shift in the gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs) from the gas to the particle phase with outdoor-to-indoor transport.  相似文献   

8.
The US Environmental Protection Agency (EPA) initiated the Small Engine Exposure Study (SEES) to evaluate potential exposures among users of small, gasoline-powered, non-road spark-ignition (SI) lawn and garden engines. Equipment tested included riding tractors, walk-behind lawn mowers, string trimmers, and chainsaws. Personal and background air quality measurements were collected on equipment operators for carbon monoxide (CO), particulate matter 相似文献   

9.
Personal exposures, indoor and outdoor concentrations, and questionnaire data were collected in three retirement center settings, supporting broader particulate matter (PM)--health studies of elderly populations. The studies varied geographically and temporally, with populations studied in Baltimore, MD in the summer of 1998, and Fresno, CA in the winter and spring of 1999. The sequential nature of the studies and the relatively rapid review of the mass concentration data after each segment provided the opportunity to modify the experimental designs, including the information collected from activity diary and baseline questionnaires and influencing factors (e.g., heating, ventilation, and air-conditioning (HVAC) system operation, door and window openings, air exchange rate) measurements. This paper highlights both PM2.5 and PM10 personal exposure data and interrelationships across the three retirement center settings, and identifies the most probable influencing factors. The current limited availability of questionnaire results, and chemical speciation data beyond mass concentration for these studies, provided only limited capability to estimate personal exposures from models and apportion the personal exposure collections to their sources. The mean personal PM2.5 exposures for the elderly in three retirement centers were found to be consistently higher than the paired apartment concentrations by 50% to 68%, even though different facility types and geographic locations were represented. Mean personal-to-outdoor ratios were found to 0.70, 0.82, and 1.10, and appeared to be influenced by the time doors and windows were open and aggressive particle removal by the HVAC systems. Essentially identical computed mean PM2.5 personal clouds of 3 micrograms/m3 were determined for two of the studies. The proposed significant contributing factors to these personal clouds were resuspended particles from carpeting, collection of body dander and clothing fibers, personal proximity to open doors and windows, and elevated PM levels in nonapartment indoor microenvironments.  相似文献   

10.
Personal exposure to particles in Banská Bystrica, Slovakia   总被引:1,自引:0,他引:1  
Epidemiological studies have associated adverse health impacts with ambient concentrations of particulate matter (PM), though these studies have been limited in their characterization of personal exposure to PM. An exposure study of healthy nonsmoking adults and children was conducted in Banska Bystrica, Slovakia, to characterize the range of personal exposures to air pollutants and to determine the influence of occupation, season, residence location, and outdoor and indoor concentrations on personal exposures. Twenty-four-hour personal, at-home indoor, and ambient measurements of PM10, PM2.5, sulfate (SO4(2-)) and nicotine were obtained for 18 office workers, 16 industrial workers, and 15 high school students in winter and summer. Results showed that outdoor levels of pollutants were modest, with clear seasonal differences: outdoor PM10 summer/winter mean = 35/45 microg/m3; PM2.5 summer/winter mean = 22/32 microg/m3. SO4(2-) levels were low (4-7 microg/m3) and relatively uniform across the different sample types (personal, indoor, outdoor), areas, and occupational groups. This suggests that SO4(2-) may be a useful marker for combustion mode particles of ambient origin, although the relationship between personal exposures and ambient SO4(2-) levels was more complex than observed in North American settings. During winter especially, the central city area showed higher concentrations than the suburban location for outdoor, personal, and indoor measures of PM10, PM2.5, and to a lesser extent for SO4(2-), suggesting the importance of local sources. For PM2.5 and PM10, ratios consistent with expectations were found among exposure indices for all three subject groups (personal>indoor>outdoor), and between work type (industrial>students>office workers). The ratio of PM2.5 personal to indoor exposures ranged from 1.0 to 3.9 and of personal to outdoor exposures from 1.6 to 4.2. The ratio of PM10 personal to indoor exposures ranged from 1.1 to 2.9 and the ratio of personal to outdoor exposures from 2.1 to 4.1. For a combined group of office workers and students, personal PM10/PM2.5 levels were predicted by statistically significant multivariate models incorporating indoor (for PM2.5) or outdoor (for PM10) PM levels, and nicotine exposure (for PM10). Small but significant fractions of the overall variability, 15% for PM2.5 and 17% for PM10, were explained by these models. The results indicate that central site monitors underpredict actual human exposures to PM2.5 and PM10. Personal exposure to SO4(2-) was found to be predicted by outdoor or indoor SO4(2-) levels with 23-71% of the overall variability explained by these predictors. We conclude that personal exposure measurements and additional demographic and daily activity data are crucial for accurate evaluation of exposure to particles in this setting.  相似文献   

11.
Personal exposure to PM(2.5) and PM(1), together with indoor and residential outdoor levels, was measured in the general adult population (30 subjects, 23-51 years of age) of Gothenburg, Sweden. Simultaneously, urban background concentrations of PM(2.5) were monitored with an EPA WINS impactor. The 24-h samples were gravimetrically analyzed for mass concentration and black smoke (BS) using a smokestain reflectometer. Median levels of PM(2.5) were 8.4 microg/m(3) (personal), 8.6 microg/m(3) (indoor), 6.4 microg/m(3) (residential outdoor), and 5.6 microg/m(3) (urban background). Personal exposure to PM(1) was 5.4 microg/m(3), while PM(1) indoor and outdoor levels were 6.2 and 5.2 microg/m(3), respectively. In non-smokers, personal exposure to PM(2.5) was significantly higher than were residential outdoor levels. BS absorption coefficients were fairly similar for all microenvironments (0.4-0.5 10(-5) m(-1)). Personal exposure to particulate matter (PM) and BS was well correlated with indoor levels, and there was an acceptable agreement between personal exposure and urban background concentrations for PM(2.5) and BS(2.5) (r(s)=0.61 and 0.65, respectively). PM(1) made up a considerable amount (70-80%) of PM(2.5) in all microenvironments. Levels of BS were higher outdoors than indoors and higher during the fall compared with spring. The correlations between particle mass and BS for both PM(2.5) vs. BS(2.5) and PM(1) versus BS(1) were weak for all microenvironments including personal exposure. The urban background station provided a good estimate of residential outdoor levels of PM(2.5) and BS(2.5) within the city (r(s)=0.90 and 0.77, respectively). Outdoor levels were considerably affected by long-range transported air pollution, which was not found for personal exposure or indoor levels. The within-individual (day-to-day) variability dominated for personal exposure to both PM(2.5) and BS(2.5) in non-smokers.  相似文献   

12.
EPA's TEAM Study has measured exposures to 20 volatile organic compounds in personal air, outdoor air, drinking water, and breath of approximately 400 residents of New Jersey, North Carolina, and North Dakota. All residents were selected by a probability sampling scheme to represent 128,000 inhabitants of Elizabeth and Bayonne, New Jersey, 131,000 residents of Greensboro, North Carolina, and 7000 residents of Devils Lake, North Dakota. Participants carried a personal monitor to collect two 12-hr air samples and gave a breath sample at the end of the day. Two consecutive 12-hr outdoor air samples were also collected on identical Tenax cartridges in the backyards of some of the participants. About 5000 samples were collected, of which 1500 were quality control samples. Ten compounds were often present in personal air and breath samples at all locations. Personal exposures were consistently higher than outdoor concentrations for these chemicals and were sometimes 10 times the outdoor concentrations. Indoor sources appeared to be responsible for much of the difference. Breath concentrations also often exceeded outdoor concentrations and correlated more strongly with personal exposures than with outdoor concentrations. Some activities (smoking, visiting dry cleaners or service stations) and occupations (chemical, paint, and plastics plants) were associated with significantly elevated exposures and breath levels for certain toxic chemicals. Homes with smokers had significantly increased benzene and styrene levels in indoor air. Residence near major point sources did not affect exposure.  相似文献   

13.
To begin to develop generalized models for estimating personal exposure to ambient air pollutants within diverse populations, the design of the Oklahoma Urban Air Toxics Study incorporated eight dichotomous macroenvironmental and household factors that were hypothesized to be potential determinants of exposure. Personal, indoor, and outdoor samples of volatile organic compounds (VOCs) were collected over 24-h monitoring periods in 42 households, together with activity diaries and data on the participants' residences. The distributions of the VOC concentrations were moderately to highly left-censored, and were mostly bimodal. The ATSDR minimal risk level (MRL) was exceeded in a small number of the samples. Personal and indoor concentrations tended to be higher than outdoor concentrations, indicating that indoor exposures were dominated by indoor sources. However, indoor concentrations were not correlated with the permeability of the residence, suggesting that the observed indoor concentrations reflected mostly localized, short-term emissions. The influence of the eight dichotomous factors and of the presence of an attached garage was evaluated using the Wilcoxon rank-sum test and by comparison of "excursion fractions", that is, the fractions of each distributions exceeding 10% of the MRL. Dry weather and absence of children in the household were found to be associated with higher exposures in personal or indoor exposures. Given the small sample size, it is possible that these factors were confounded with unidentified household characteristics or activities that were the true determinants of exposure.  相似文献   

14.
Indoor/outdoor relationships were identified for selected volatile organic compounds over the course of five consecutive days in three homes. Indoor sources of individual compounds were meant in one or more homes. Personal monitoring samples and breath analyses were obtained from volunteers in each home. A period of outdoor air stagnation occurred during one evening and morning of the study. Two results from the study that must be considered in future investigations of VOC exposure are 1) periods conducive to accumulating outdoor VOC can make substantial contributions to indoor values and 2) for homes without indoor sources of individual compounds the indoor values are driven by the outdoor values of a VOC. The primary results do not contradict previous TEAM studies which indicate that when indoor sources of a particular VOC are present the personal exposure and microenvironmental exposures are effected primarily by indoor contributions. Future comparisons of external exposure values with human breath analysis studies must be designed to more closely reflect the time interval associated with the half time of elimination for a particular VOC.  相似文献   

15.
Twenty-four-hour samples of PM10 (mass of particles with aerodynamic diameter < or = 10 microm), PM2.5, (mass of particles with aerodynamic diameter < or = 2.5 microm), particle strong acidity (H+), sulfate (SO42-), nitrate (NO3-), ammonia (NH3), nitrous acid (HONO), and sulfur dioxide were collected inside and outside of 281 homes during winter and summer periods. Measurements were also conducted during summer periods at a regional site. A total of 58 homes of nonsmokers were sampled during the summer periods and 223 homes were sampled during the winter periods. Seventy-four of the homes sampled during the winter reported the use of a kerosene heater. All homes sampled in the summer were located in southwest Virginia. All but 20 homes sampled in the winter were also located in southwest Virginia; the remainder of the homes were located in Connecticut. For homes without tobacco combustion, the regional air monitoring site (Vinton, VA) appeared to provide a reasonable estimate of concentrations of PM2.5 and SO42- during summer months outside and inside homes within the region, even when a substantial number of the homes used air conditioning. Average indoor/outdoor ratios for PM2.5 and SO42- during the summer period were 1.03 +/- 0.71 and 0.74 +/- 0.53, respectively. The indoor/outdoor mean ratio for sulfate suggests that on average approximately 75% of the fine aerosol indoors during the summer is associated with outdoor sources. Kerosene heater use during the winter months, in the absence of tobacco combustion, results in substantial increases in indoor concentrations of PM2.5, SO42-, and possibly H+, as compared to homes without kerosene heaters. During their use, we estimated that kerosene heaters added, on average, approximately 40 microg/m3 of PM2.5 and 15 microg/m3 of SO42- to background residential levels of 18 and 2 microg/m3, respectively. Results from using sulfuric acid-doped Teflon (E.I. Du Pont de Nemours & Co., Wilmington, DE) filters in homes with kerosene heaters suggest that acid particle concentrations may be substantially higher than those measured because of acid neutralization by ammonia. During the summer and winter periods indoor concentrations of ammonia are an order of magnitude higher indoors than outdoors and appear to result in lower indoor acid particle concentrations. Nitrous acid levels are higher indoors than outdoors during both winter and summer and are substantially higher in homes with unvented combustion sources.  相似文献   

16.
The US EPA and the California Air Resources Board studied the exposures of 51 residents of Los Angeles, CA to 25 volatile organic chemicals in air and drinking water in February and July of 1987. Participants carried a personal air monitor consisting of a Tenax cartridge and a small sampling pump for two consecutive 12-hour periods. Concurrently, outdoor air samples were collected in the back yards and indoor air samples were collected in the kitchen and living room. Breath samples were collected at the beginning, middle, and end of the 24-hour monitoring period using a vanmounted spirometer employing Tedlar bags followed by collection on Tenax cartridges. All analyses were by GC/MS. Air exchange measurements were made at all homes using the perfluorotracer method. For most chemicals, personal air concentrations were greater than indoor air levels, which were in turn greater than outdoor air concentrations. Breath concentrations were more stable than air exposures and were significantly correlated with previous exposure. Using the air exchange measurements, whole-house source strengths were estimated to range between approximately zero for carbon tetrachloride to 10,000 micrograms/h for para-dichlorobenzene. Ambient concentrations in February were two-three times those in July, perhaps due to strong inversions.  相似文献   

17.
During summer 1991, we collected indoor, outdoor, and personal ozone concentration data as well as time-activity data in State College, Pennsylvania. These concentrations were measured for 23 children and their homes using passive ozone samplers. Outdoor concentrations were also measured at a stationary ambient monitoring site. Results from this pilot study demonstrate that fixed-site ambient measurements may not adequately represent individual exposures. Outdoor ozone concentrations showed substantial spatial variation between rural and residential regions. Ignoring this spatial variation by using fixed-site measurements to estimate personal exposures can result in an error as high as 127%. In addition, evidence from our pilot study indicates that ozone concentrations of a single indoor microenvironment may not represent those of other indoor microenvironments. Personal exposures were significantly correlated with both indoor (r = 0.55) and outdoor (r = 0.41) concentrations measured at home sites. Multiple regression analyses identified indoor ozone concentrations as the most important predictors of personal exposures. However, models based on time-weighted indoor and outdoor concentrations explained only 40% of the variability in personal exposures. When the model included observations for only those participants who spent the majority of their day in or near their homes, an R2 of 0.76 resulted when estimates were regressed on measured personal exposures. It is evident that contributions from diverse indoor and outdoor microenvironments must be considered to estimate personal ozone exposures accurately.  相似文献   

18.
An intensive particle monitoring study was conducted in homes in the Boston, Massachusetts, area during the winter and summer of 1996 in an effort to characterize sources of indoor particles. As part of this study, continuous particle size and mass concentration data were collected in four single-family homes, with each home monitored for one or two 6-day periods. Additionally, housing activity and air exchange rate data were collected. Cooking, cleaning, and the movement of people were identified as the most important indoor particle sources in these homes. These sources contributed significantly both to indoor concentrations (indoor-outdoor ratios varied between 2 and 33) and to altered indoor particle size distributions. Cooking, including broiling/baking, toasting, and barbecuing contributed primarily to particulate matter with physical diameters between 0.02 and 0.5 microm [PM((0.02-0.5))], with volume median diameters of between 0.13 and 0.25 microm. Sources of particulate matter with aerodynamic diameters between 0.7 and 10 microm [PM((0.7-10))] included sautéing, cleaning (vacuuming, dusting, and sweeping), and movement of people, with volume median diameters of between 3 and 4.3 microm. Frying was associated with particles from both PM((0.02-0.5)) and PM((0.7-10)). Air exchange rates ranged between 0.12 and 24.3 exchanges/hr and had significant impact on indoor particle levels and size distributions. Low air exchange rates (< 1 exchange/hr) resulted in longer air residence times and more time for particle concentrations from indoor sources to increase. When air exchange rates were higher (> 1 exchange/hr), the impact of indoor sources was less pronounced, as indoor particle concentrations tracked outdoor levels more closely.  相似文献   

19.
Ambient, indoor, and personal PM2.5 concentrations were assessed based on an exhaustive study of PM2.5 performed in Ohio from 1999 to 2000. Locations in Columbus, one in an urban corridor and the other in a suburban area were involved. A third rural location in Athens, Ohio, was also established. At all three locations, elementary schools were utilized to determine outdoor, indoor, and personal PM2.5 concentrations for fourth and fifth grade students using filter-based measurements. Three groups of 30 students each were used for personal sampling at each school. Continuous ambient PM2.5 mass concentrations were also measured with tapered element oscillating microbalances (TEOMs). At all three sites, personal and indoor PM2.5 concentrations exceeded outdoor levels. This trend is consistent on all week days and most evident in the spring as compared to fall and winter. The ambient PM2.5 concentrations were similar among the three sites, suggesting the existence of a common regional source influence. At all the three sites, larger variations were found in personal and indoor PM2.5 than ambient levels. The strongest correlations were found between indoor and personal concentrations, indicating that personal PM2.5 exposures were significantly affected by indoor PM2.5 than by ambient PM2.5. This was further confirmed by the indoor to outdoor (I/O) ratios of PM2.5 concentrations, which were greater when school was in session than non-school days when the students were absent.  相似文献   

20.
In this article we present results from a 2-year comprehensive exposure assessment study that examined the particulate matter (PM) exposures and health effects in 108 individuals with and without chronic obstructive pulmonary disease (COPD), coronary heart disease (CHD), and asthma. The average personal exposures to PM with aerodynamic diameters < 2.5 microm (PM2.5) were similar to the average outdoor PM2.5 concentrations but significantly higher than the average indoor concentrations. Personal PM2.5 exposures in our study groups were lower than those reported in other panel studies of susceptible populations. Indoor and outdoor PM2.5, PM10 (PM with aerodynamic diameters < 10 microm), and the ratio of PM2.5 to PM10 were significantly higher during the heating season. The increase in outdoor PM10 in winter was primarily due to an increase in the PM2.5 fraction. A similar seasonal variation was found for personal PM2.5. The high-risk subjects in our study engaged in an equal amount of dust-generating activities compared with the healthy elderly subjects. The children in the study experienced the highest indoor PM2.5 and PM10 concentrations. Personal PM2.5 exposures varied by study group, with elderly healthy and CHD subjects having the lowest exposures and asthmatic children having the highest exposures. Within study groups, the PM2.5 exposure varied depending on residence because of different particle infiltration efficiencies. Although we found a wide range of longitudinal correlations between central-site and personal PM2.5 measurements, the longitudinal r is closely related to the particle infiltration efficiency. PM2.5 exposures among the COPD and CHD subjects can be predicted with relatively good power with a microenvironmental model composed of three microenvironments. The prediction power is the lowest for the asthmatic children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号