首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cellular mechanisms that directly regulate the production of pro- and anti-inflammatory cytokines after lipopolysaccharide (LPS) stimulation in mast cells are currently unresolved. The aim of this study was to clarify the role of phosphatidylinositol 3-kinase (PI3K) in the production of IL-12 and IL-10 in mouse bone marrow-derived mast cells (BMMCs), stimulated with Escherichia coli-derived LPS. LPS activates the PI3K signalling pathway; analysis of cytokine production following LPS stimulation of BMMCs revealed that inhibition of the PI3K pathway differentially regulated IL-10 and IL-12 syntheses. IL-12 production was enhanced, whereas IL-10 levels were suppressed. Inhibition of LPS-mediated activation of the PI3K pathway resulted in a pronounced reduction of NF-κB activity that was dependent on IκBα phosphorylation. These findings demonstrate a regulatory function for PI3K in modulating IL-10 and IL-12 production in mast cells and provide insight into how engagement of the PI3K pathway affects the induction of key immunoregulatory cytokines that control both qualitative and quantitative aspects of early inflammation.  相似文献   

2.
Antoniv TT  Ivashkiv LB 《Immunology》2011,132(4):567-577
Interleukin-10 (IL-10) is an immunosuppressive cytokine that inhibits inflammatory gene expression. Phosphatidylinositol 3-kinase (PI3K) -mediated signalling regulates inflammatory responses and can induce IL-10 production, but a role for PI3K signalling in cellular responses to IL-10 is not known. In this study we investigated the involvement of the PI3K-Akt-GSK3 signalling pathway in IL-10-induced gene expression and IL-10-mediated suppression of Toll-like receptor-induced gene expression in primary human macrophages. A combination of loss and gain of function approaches using kinase inhibitors, expression of constitutively active Akt, and RNA interference in primary human macrophages showed that expression of a subset of IL-10-inducible genes was dependent on PI3K-Akt signalling. The effects of PI3K-Akt signalling on IL-10 responses were mediated at least in part by glycogen synthase kinase 3 (GSK3). In accordance with a functional role for PI3K pathways in contributing to the suppressive actions of IL-10, PI3K signalling augmented IL-10-mediated inhibition of lipopolysaccharide-induced IL-1, IL-8 and cyclo-oxygenase-2 expression. The PI3K signalling selectively modulated IL-10 responses, as it was not required for inhibition of tumour necrosis factor expression or for induction of certain IL-10-inducible genes such as SOCS3. These findings identify a new mechanism by which PI3K-mediated signalling can suppress inflammation by regulating IL-10-mediated gene induction and anti-inflammatory function.  相似文献   

3.
Phosphoinositide 3-kinases (PI3K) regulate immune activation via their roles in signal transduction of multiple classes of receptors. Here, we examined the effect of genetic inactivation of the hemopoietic cell-restricted PI3K isoform p110delta on systemic cytokine and chemokine responses and allergic airway inflammation. We found that type 2 cytokine responses (IL-4, IL-5 and IL-13) are significantly decreased in p110delta mutants, whereas type 1 cytokine responses (IFN-gamma and CXCL10) were robust. Elevated IFN-gamma production during the primary response to ovalbumin (OVA) was associated with reduced production of the regulatory cytokine IL-10. IFN-gamma and IL-10 production normalized after secondary OVA immunization; however, type 2 cytokine production was persistently reduced. Type 2 cytokine-dependent airway inflammation elicited by intranasal challenge with OVA was dramatically reduced, with reduced levels of eosinophil recruitment and mucus production observed in the lungs. Induction of respiratory hyper-responsiveness to inhaled methacholine, a hallmark of asthma, was markedly attenuated in p110delta-inactivated mice. Adoptive transfer of OVA-primed splenocytes from normal but not p110delta-inactivated mice could induce airway eosinophilia in naive, airway-challenged recipient mice. These data demonstrate a novel functional role for p110delta signaling in induction of type 2 responses in vivo and may offer a new therapeutic target for Th2-mediated airway disease.  相似文献   

4.
《Mucosal immunology》2014,7(2):335-347
The cholinergic anti-inflammatory pathway is an efferent vagus nerve–based mechanism that regulates immune responses and cytokine production through α7 nicotinic acetylcholine receptor (α7nAChR) signaling. Decreased efferent vagus nerve activity is observed in inflammatory bowel disease. We determined whether central activation of this pathway alters inflammation in mice with colitis and the mediating role of a vagus nerve-to-spleen circuit and α7nAChR signaling. Two experimental models of colitis were used in C57BL/6 mice. Central cholinergic activation induced by the acetylcholinesterase inhibitor galantamine or a muscarinic acetylcholine receptor agonist treatments resulted in reduced mucosal inflammation associated with decreased major histocompatibility complex II level and pro-inflammatory cytokine secretion by splenic CD11c+ cells mediated by α7nAChR signaling. The cholinergic anti-inflammatory efficacy was abolished in mice with vagotomy, splenic neurectomy, or splenectomy. In conclusion, central cholinergic activation of a vagus nerve-to-spleen circuit controls intestinal inflammation and this regulation can be explored to develop novel therapeutic strategies.  相似文献   

5.
Here we investigated the role of the phosphatidylinositol 3-kinase (PI 3-K) and mitogen-activated protein kinase (MAPK) pathways in the secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-10 in human primary monocytes after stimulation with the PPD antigen of Mycobacterium tuberculosis. MAPK [extracellular signal-regulated kinase (ERK) 1/2 and p38] and Akt are rapidly phosphorylated in human monocytes stimulated with PPD. We found that the PI 3-K-Akt pathway stimulated by PPD is essential for both IL-10 and TNF-α production, although the inhibition of IL-10 production was more pronounced. The analysis of cytokine production using specific inhibitors of the MAPK pathway revealed that both p38 and ERK activation are essential for PPD-induced TNF-α production, whereas p38, but not ERK, activation is essential for IL-10 secretion. The inhibition of PI 3-K did not significantly activate p38 MAPK or ERK 1/2 in PPD-stimulated human monocytes. Further, the Src inhibitor PP2 inhibited the release of TNF-α but enhanced IL-10 release, suggesting the differential regulation of Src kinase in upstream signaling. Collectively, these data suggest that the PI 3-K and MAPK pathways play a central role in the regulation of both pro- and anti-inflammatory cytokines by the PPD antigen of M. tuberculosis.  相似文献   

6.
PI3Kγ is central in signaling diverse arrays of cellular functions and inflammation. Pulmonary fibrosis is associated with pulmonary inflammation, angiogenesis, and deposition of collagen and is modeled by instillation of bleomycin. The role of PI3Kγ in mediating bleomycin-induced pulmonary inflammation and fibrosis in mice and potential mechanisms involved was investigated here. WT or PI3Kγ KO mice were instilled with bleomycin and leukocyte subtype influx, cytokine and chemokine levels, and angiogenesis and tissue fibrosis evaluated. The activation of lung-derived leukocytes and fibroblasts was evaluated in vitro. The relevance of PI3Kγ for endothelial cell function was evaluated in HUVECs. PI3Kγ KO mice had greater survival and weight recovery and less fibrosis than WT mice after bleomycin instillation. This was associated with decreased production of TGF-β(1) and CCL2 and increased production of IFN-γ and IL-10. There was reduced expression of collagen, fibronectin, α-SMA, and von Willebrand factor and decreased numbers and activation of leukocytes and phosphorylation of AKT and IκB-α. PI3Kγ KO mice had a reduced number and area of blood vessels in the lungs. In vitro, treatment of human endothelial cells with the PI3Kγ inhibitor AS605240 decreased proliferation, migration, and formation of capillary-like structures. AS605240 also decreased production of collagen by murine lung-derived fibroblasts. PI3Kγ deficiency confers protection against bleomycin-induced pulmonary injury, angiogenesis, and fibrosis through the modulation of leukocyte, fibroblast, and endothelial cell functions. Inhibitors of PI3Kγ may be beneficial for the treatment of pulmonary fibrosis.  相似文献   

7.
8.
Sphingosine-1-phosphate (S1P) modulates many cell functions such as lymphocyte trafficking and signaling as well as keratinocyte proliferation. However, less is known about the specific effects of S1P on cytokine production, particularly on the interaction between dendritic cells (DCs) and keratinocytes, cell types which are crucial for the initiation and maintenance of chronic inflammatory skin diseases like atopic dermatitis or psoriasis. Especially the cytokines of the IL-12 family play a dominant role in many inflammatory diseases as they have a significant impact on T-helper cell function. In the present study we show that S1P decreased the production of the pro-inflammatory cytokines IL-12 and IL-23 in LPS-stimulated DCs via the common subunit p40 as well as in the crosstalk with activated keratinocytes. By using specific S1P receptor agonists (SEW2871, FTY720-P) and antagonist (JTE013) we identified an important role for S1P receptor 1 in the modulation of the cytokine profile. While diminishing IL-12 and IL-23 secretion, S1P enhanced IL-27 production in DCs. To elucidate the mechanism of the different impact on the IL-12 family cytokine production, we investigated the mitogen-activated protein kinase (MAPK) and phosphatidylinositide 3-kinase (PI3K) pathways in DCs. By using specific MAPK-Inhibitors (U0126, SB202190, SP600125) we demonstrated that ERK, p38 and JNK differently regulate each pathway of each cytokine. While p38 and JNK did not seem to play a role in the modulation properties of S1P on cytokine production, ERK is at least partially involved in the S1P mediated modulation of IL-12 and IL-27. The PI3K-Inhibitor abrogated the S1P-induced decrease of IL-12 and IL-23 secretion, while it had no influence on the S1P-induced increase of IL-27 production. These data implicate, that S1P has an anti-inflammatory impact on the production of IL-12 family cytokines, indicating therapeutic potential for S1P treatment of several inflammatory diseases like psoriasis.  相似文献   

9.
ObjectivesOral lichen planus (OLP) is a T cell-mediated immune-related chronic disease, featured by accumulation of T cells and apoptosis of keratinocytes. Insulin-like growth factors 1 (IGF1) signaling, in combination with its downstream PI3K/AKT/MTOR cascade, plays pivotal roles in the regulation of inflammation and immune response. Meanwhile, TRB3 acts as a connective protein in the pathway. This study investigated the possible function of IGF1–PI3K/AKT/MTOR pathway in the local immunity of OLP.MethodsThe expression of phosphorylated IGF1R (p-IGF1R) and TRB3 in lesional tissues of OLP was measured. The effects of T cells pretreated with PI3K inhibitor LY294002, MTOR antagonist rapamycin and exogenous IGF1 on the cell proliferation and apoptosis, as well as supernatant inflammatory cytokine levels were detected in co-culture system of activated T cells and oral keratinocytes, respectively.ResultsThe expression of p-IGF1R and TRB3 in OLP lesions was significantly increased when compared with controls (P < 0.001). Rapamycin-treated T cells displayed enhanced apoptosis rate and promoted proliferation of their keratinocytes in the co-culture system. Notably, abnormal expression of IFN-γ and IL-4 were detected in supernatant of T cell alone and co-culture system in response to pharmacological modulators of IGF1–PI3K/MTOR pathway.ConclusionsThe aberrant IGF1–PI3K/AKT/MTOR signaling may participate in the immunoregulatory mechanism of OLP, via regulation on the crosstalk between T cells and keratinocytes, as well as imbalanced cytokine networks.  相似文献   

10.
11.
Age-associated defects in both B-lymphocytes and macrophages in elderly result in a reduction in the efficacy of vaccines to many Gram positive bacteria like Streptococcus pneumoniae. Splenic macrophages from aged mice have been shown to have a defect in production of pro-inflammatory cytokines (IL-6, IL-12, IL-1β, TNF-α) but exhibit increased production of IL-10 upon TLR-4 ligation. Here we showed that aged macrophages demonstrate similar cytokine dysregulation phenotype upon stimulation with TLR-2 ligands, or killed S. pneumoniae. We hypothesized that an age-associated increase in activity of phosphatidyl inositol 3-kinase (PI3K)-Akt signaling pathway may be playing a causal role in the age-associated cytokine dysregulation. We found that gene expression of both the regulatory (p85β) and the catalytic (p110δ) subunits of Class IA PI3K is higher in aged than in young splenic macrophages. The age-associated increase in the activity of PI3K was also demonstrated by an upregulation of P-Akt and its downstream target, glycogen synthase kinase-3 (GSK-3). Inhibition of PI3K enhanced induction of pro-inflammatory cytokines, by TLR-2/TLR-1, TLR-2/TLR-6 and TLR-4 ligands as well as heat killed S. pneumoniae (HKSP). Therefore, targeting PI3-Kinase could rescue cytokine dysregulation in aged macrophages and enhance the relevant pro-inflammatory cytokines needed to support B-cell activation and differentiation.  相似文献   

12.
13.
14.
15.
The phosphatidyl-inosital-3 kinase (PI3K) signaling pathway is critical for normal brain development and function and is commonly hyperactivated in brain cancer. The PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor protein and phosphate-depended kinase 1 (PDK-1) are critical regulators of this pathway. In the July 15, 2009, issue of Genes & Development, Chalhoub and colleagues (pp. 1619–1624) demonstrate PDK1-dependent and PDK1-independent effects of conditional PTEN deletion in the brain, and they identify cell type-specific differences in feedback regulation of the PI3K pathway. These studies provide important insights as to how neurons and glia may differentially regulate PI3K signaling, yielding intriguing clues about targeting PTEN-deficient brain cancers.  相似文献   

16.
Activation of toll-like receptor (TLR) signaling that initiates an innate immune response to pathogens must be strictly regulated to prevent excessive inflammatory damage in the host. Here, we demonstrate that Mer receptor tyrosine kinase (MerTK) is a negative regulatory molecule in the lipoteichoic acid (LTA)-induced inflammatory response. LTA that activated TLR2 signaling concomitantly induced activation of MerTK signaling in RAW264.7 macrophages, including phosphoinositide 3-kinase (PI3K)/Akt and suppressor of cytokine signaling 3 (SOCS3). Moreover, LTA induced MerTK activation in a time-dependent manner, and LTA-induced MerTK activation was dependent on the ligand Gas6. Additionally, pretreatment with a specific Mer-blocking antibody significantly inhibited LTA-induced phosphorylation of MerTK, while further enhancing LTA-induced phosphorylation of IκB-α and NF-κBp65 as well as production of TNF-α and IL-6. Meanwhile, the antibody blockade of MerTK markedly prevented LTA-induced Akt phosphorylation and SOCS3 expression, both of which were crucial for the inhibition of TLR2-mediated immune response. Collectively, these results suggest, for the first time, that MerTK is an intracellular negative feedback regulator that inhibits the inflammatory response of LTA-stimulated macrophages through the PI3K/Akt pathway and SOCS3 protein.  相似文献   

17.
18.

Objective

Paeoniflorin (Pae) was previously reported to inhibit inflammation in the skin of mice with allergic contact dermatitis (ACD); however, the mechanism remains unclear. The primary purpose of this study was to investigate the effect of Pae on the regulation of cytokine production in a murine model of ACD.

Methods

ACD was induced in the mice by repeated application of dinitrochlorobenzene (DNCB) to their skin. Cutaneous inflammation was evaluated by measuring ear swelling and by histological examination. The cytokine levels were measured by enzyme-linked immunosorbent assays.

Results

The results showed that topical application of DNCB caused obvious swelling and inflammatory cell infiltration. Treatment with Pae (70 or 140 mg/kg/d) significantly inhibited the cutaneous inflammation and decreased thymocyte proliferation in the mice with ACD. Additional data indicated that Pae increased interleukin-4 (IL-4) and IL-10 production but reduced IL-2 and IL-17 levels in the serum as well as in thymocyte and splenocyte culture supernatants. As expected, IL-2 and IL-17 levels in the serum displayed a significant positive correlation with the severity of skin inflammation. In contrast, IL-4 and IL-10 levels were negatively correlated with the inflammation.

Conclusions

The anti-inflammatory action of Pae in the murine model of ACD may be related to its regulation of an imbalanced cytokine production.  相似文献   

19.
PI3K and negative regulation of TLR signaling   总被引:10,自引:0,他引:10  
Excessive immune responses are detrimental to the host and negative feedback regulation is crucial for the maintenance of immune-system integrity. Recent studies have shown that phosphoinositide 3-kinase (PI3K) is an endogenous suppressor of interleukin-12 (IL-12) production triggered by Toll-like receptor (TLR) signaling and limits excessive Th1 polarization. Unlike IRAK-M (IL-1 receptor-associated kinase-M) and SOCS-1 (suppressor of cytokine signaling-1) that are induced by TLR signaling and function during the second or continuous exposure to stimulation, PI3K functions at the early phase of TLR signaling and modulates the magnitude of the primary activation. Thus, PI3K, IRAK-M and SOCS-1 have unique roles in the gate-keeping system, preventing excessive innate immune responses.  相似文献   

20.
NKT cells belong to a conserved T lymphocyte subgroup that has been implicated in the regulation of various immune responses, including responses to viruses, bacteria, and parasites. They express a semi-invariant TCR that recognizes glycolipids presented by the nonpolymorphic MHC class I-like molecule CD1d, and upon activation, they produce various pro- and anti-inflammatory cytokines. Recent studies have shed light on the nature of glycolipids and the environmental signals that may influence the production of cytokines by NKT cells and thus, modulate the immune response. To better understand the regulation mechanisms of NKT cells, we explored their behavior following activation by IL-2 and investigated the signaling pathways and biological responses triggered. We demonstrated that IL-2 activates not only STAT3 and -5 and the PI-3K and ERK-2 pathways as in all IL-2 responder cells but also STAT4 as in NK cells and the p38 MAPK pathway as in alphabeta T cells. We also showed that STAT6 is activated by IL-2 in NKT cells. Moreover, IL-2 induces the production of IFN-gamma and IL-4. The ability of IL-2 to induce pro- and anti-inflammatory cytokine production, in addition to proliferation, could open new therapeutic approaches for use in combination with molecules that activate NKT cells through TCR activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号