首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
P2Y receptor antagonists in thrombosis   总被引:1,自引:0,他引:1  
The dual role of P2Y1 and P2Y12 receptors in platelet aggregation by ADP has been firmly established, based on the action of selective inhibitors, gene targeting in mice and human genetic evidence. Both of these receptor subtypes constitute targets for antithrombotic agents, and compounds with a dual action might also be of interest. However, the agents currently on the market (ticlopidine and clopidogrel), or known to be in development (cangrelor, AZD-6140 and prasugrel), all target the P2Y12 receptor. The thienopyridines (ticlopidine, clopidogrel and prasugrel) irreversibly inactivate the P2Y12 receptor via the covalent binding of an active metabolite generated in the liver, while the other compounds are competitive antagonists. Cangrelor, an ATP derivative, is suitable for intravenous perfusion, whereas AZD-6140 is in clinical development as an orally active agent.  相似文献   

2.
AZD6140     
Oral antiplatelet therapy with P2Y(12) receptor blockers (especially clopidogrel) is the current choice of treatment during acute coronary syndromes and percutaneous interventions. To address the various limitations of thienopyridine therapy (including response variability and non-responsiveness) a novel drug, AZD6140, is under clinical development. AZD6140 is an oral and reversible P2Y(12) receptor blocker that does not require hepatic conversion to an active metabolite and produces an overall superior ADP-induced platelet inhibition with less response variability than clopidogrel. It has fast onset and offset actions that may be advantageous in patients who may have to undergo immediate surgery.  相似文献   

3.
Thienopyridines have a well-established role in the treatment of coronary artery disease, especially in the setting of acute coronary syndromes and percutaneous coronary interventions. Ticlopidine, the first FDA-approved thienopyridine, was shown to be effective in reducing coronary events in high risk patients, but the original enthusiasm was hampered by concerns about its serious bone marrow toxicity. Clopidogrel a second generation thienopyridine with lesser side effects, is not only at least as effective as ticlopidine, but in combination with a low dose of aspirin, has been demonstrated to reduce the risk of major cardiovascular events in acute coronary syndrome patients in large-scale, randomised trials. Recent studies have highlighted major flaws in clopidogrel pharmacokinetics due to its delayed onset of action, and much attention has been devoted to the phenomenon of clopidogrel ‘resistance’. Among the novel, third generation thienopyridines, prasugrel as compared to clopidogrel has demonstrated lower inter-patient response variability and a reduced incidence of ischaemic events, but at an increased risk of major bleeding. Currently, several studies are continuing to test new direct P2Y12 receptor antagonists, such as cangrelor and AZD6140, characterised by a faster reversal of platelet inhibition.  相似文献   

4.
Prasugrel     
Clinical trials have demonstrated the superior clinical efficacy of dual antiplatelet therapy with a thienopyridine (a P2Y(12) receptor blocker) and aspirin (COX-1 inhibitor) in patients undergoing stenting as well as patients with acute coronary syndromes. However, clopidogrel treatment is associated with a wide response variability and non-responsiveness in selected patients. The latter phenomenon is linked to the occurrence of recurrent ischaemic events including stent thrombosis in the recent studies. Prasugrel is a new thienopyridine derivative that produces more potent platelet inhibition and a rapid onset of action that is associated with irreversible P2Y(12) receptor blockade. The latter properties of prasugrel may provide a superior alternative to clopidogrel, with less response variability and a decreased prevalence of non-responsiveness.  相似文献   

5.
ADP is one of the most important mediators of both physiologic hemostasis and thrombosis. Development and utilization of agents that block ADP receptors on the platelet membrane, namely thienopyridines, has represented a major advancement for treatment of patients undergoing percutaneous coronary interventions and those with acute coronary syndromes. Currently, clopidogrel, a second-generation thienopyridine that inhibits the ADP P2Y(12) receptor, represents the treatment of choice, in addition to aspirin, for the prevention of stent thrombosis. Further, long-term adjunctive use of this ADP P2Y(12) receptor antagonist is also associated with improved clinical outcomes in high-risk patients, and represents the standard of care for these patients. Despite the unambiguous clinical benefit associated with clopidogrel, accumulating experience with this drug has also led to identification of some of its drawbacks, which are related to inadequate platelet inhibition with standard dosage regimens as well as to its irreversible antiplatelet effects. This has led to the questioning of currently recommended clopidogrel dosage regimens as well as to the development of novel and more potent ADP P2Y(12) receptor antagonists, some of which are also reversible agents. Numerous studies are currently ongoing with the objective of demonstrating how more potent platelet inhibition using higher loading and maintenance dose regimens of clopidogrel or novel ADP P2Y(12) receptor antagonists - such as prasugrel, ticagrelor (AZD 6140) and cangrelor - will affect clinical outcomes. This article reviews the current knowledge of platelet ADP P2Y(12) receptor antagonism and the projected developments in this field.  相似文献   

6.
Agents that inhibit platelet function are used routinely in the treatment and prevention of acute coronary syndromes. The main antiplatelet treatments used combine aspirin with one of the thienopyridine P2Y(12) antagonists, either clopidogrel or prasugrel. By blocking the synthesis of thromboxane A(2) in platelets and by blocking the effects of ADP, respectively, these agents reduce platelet activity, platelet aggregation and thrombus formation. Ticagrelor (marketed by AstraZeneca as Brilinta? in the USA, and as Brilique(?) or Possia(?) in Europe) is a cyclopentyl-triazolo-pyrimidine, a new chemical class of P2Y(12) antagonist that is now approved for use in the wide spectrum of acute coronary syndromes. In this article we provide an overview of ticagrelor. We discuss the differences in mode of action compared with other P2Y(12) antagonists, examine its pharmacodynamic, pharmacokinetic and safety profile, and summarize the various clinical trials that have provided information on its efficacy in combination with aspirin. Ticagrelor appears to overcome some of the difficulties that have been encountered with other antiplatelet treatments, clopidogrel in particular.  相似文献   

7.
ADP receptors--targets for developing antithrombotic agents   总被引:6,自引:0,他引:6  
Platelet P2 receptors--P2Y1, P2Y12, and P2X1--constitute the means by which adenine nucleotides can activate platelets. Coactivation of the Galphaq-coupled P2Y1 and Galphai2-coupled P2Y12 receptors is necessary for ADP-mediated platelet activation, which forms the basis of using P2 antagonists as antithrombotic drugs. P2Y1 receptor antagonists inhibit platelet activation, while P2Y1 knockout mice show longer bleeding times than normal mice but few other problems; however, its ubiquitous expression in other tissues renders P2Y1 questionable as an antithrombotic target. The P2Y12 receptor is expressed nearly exclusively in platelets and brain, making it an attractive antithrombotic target. Antagonists for the P2Y12 receptor have been developed that either require metabolic activation to covalently inhibit P2Y12 and are irreversible, or simply are competitive in nature and thus reversible. Ticlopidine and clopidogrel are irreversible P2Y12 antagonists and have been repeatedly proven as clinical antithrombotic agents. In addition, a recently reported P2Y12 antagonist, CS-747, shows promise as a future antithrombotic drug. The AR-C series of compounds represent reversible P2Y12 antagonists and have been used extensively to characterize the function of P2Y12 in platelets. Clinical studies show that AR-C69931MX is as effective as clopidogrel; furthermore, the combination of AR-C69931MX (cangrelor) and clopidogrel confers greater antagonism of P2Y12 than either antagonist alone. The P2X1 receptor is a calcium channel that functions to potentiate agonist-induced platelet shape change, and its inhibition or loss has little if any effect on hemostasis. A combination of P2Y1 and P2Y12 antagonists may represent an additional course of antithrombotic treatment.  相似文献   

8.
Antithrombotic therapy is imperative in the management of patients presenting with an acute coronary syndrome (ACS). The combination of antiplatelet therapy in conjunction with antithrombotic therapy has become the standard of care in improving the morbidity and mortality of patients with an ACS and in reducing ischemic complications of percutaneous coronary intervention. Patients with an ACS are at increased risk for a recurrent event, both in-hospital and for several months afterward. Secondary prevention to reduce these events is accomplished through the establishment of appropriate medical therapy. Dual antiplatelet therapy with aspirin and adenosine 5'-diphosphate P2Y(12) receptor blockers such as ticlopidine or clopidogrel are integral components of this regimen; however, both of these thienopyridines have a relatively slow onset of action and variable bioavailability. Prasugrel, a third-generation thienopyridine approved by the US FDA in 2009, has a more rapid onset of platelet inhibition than clopidogrel and ticlopidine because of increased efficiency of prodrug-to-active metabolite conversion. The result is higher and less variable concentration of the active metabolite within 60 minutes following oral dosing. Phase II and III trials assessing the safety and efficacy of prasugrel have been completed, including JUMBO-TIMI 26, PRINCIPLE-TIMI 44, and TRITON-TIMI 38. These trials demonstrated greater inhibition of platelet aggregation and lower rates of the composite endpoint of death, non-fatal myocardial infarction, and stroke compared with clopidogrel. However, major bleeding occurred more frequently with prasugrel treatment than with clopidogrel. This review highlights the current state of evidence-based antiplatelet therapy and provides guidance on appropriate use of prasugrel in cardiovascular medicine.  相似文献   

9.
Prasugrel     
Clinical trials have demonstrated the superior clinical efficacy of dual antiplatelet therapy with a thienopyridine (a P2Y12 receptor blocker) and aspirin (COX-1 inhibitor) in patients undergoing stenting as well as patients with acute coronary syndromes. However, clopidogrel treatment is associated with a wide response variability and non-responsiveness in selected patients. The latter phenomenon is linked to the occurrence of recurrent ischaemic events including stent thrombosis in the recent studies. Prasugrel is a new thienopyridine derivative that produces more potent platelet inhibition and a rapid onset of action that is associated with irreversible P2Y12 receptor blockade. The latter properties of prasugrel may provide a superior alternative to clopidogrel, with less response variability and a decreased prevalence of non-responsiveness.  相似文献   

10.
Three classes of inhibitors of platelet aggregation have demonstrated substantial clinical benfits. Aspirin acts by irreversibly inhibiting COX-1 and therefore blocking the synthesis of proaggregatory thromboxane A (2) (TxA(2)). The indirect acting (ticlopidine, clopidogrel, prasugrel) and the direct acting (ticagrelor) antagonists of P2Y(12) block the thrombus stabilizing activity of ADP. Parenteral GP IIb-IIIa inhibitors directly block platelet-platelet interactions. Despite well-established benefits, all antiplatelet agents have important limitations: increased bleeding and gastrointestinal toxicities (aspirin), high incidence of thrombotic thrombocytopenic purpura (ticlopidine), potentially nonresponders (clopidogrel), severe bleeding (prasugrel, GP IIb-IIIa antagonists) and "complicated" relationships with aspirin ticagrelor). In this chapter, we present the genetic and pharmacological evidence that supports the development and expectations associated with novel antiplatelet strategies directed at intrasignaling pathways.  相似文献   

11.
刘胜男  赵志刚 《中国新药杂志》2012,(11):1241-1246,1254
P2Y12受体拮抗剂是一类作用于血小板P2Y12受体、抑制血小板聚集的药物,临床上主要用于预防和治疗心血管疾病的血栓事件。氯吡格雷是目前临床上首选的双重抗血小板药物之一,但其疗效受限于CYP2C19基因的多态性、与质子泵抑制剂(PPIs)的相互作用和起效缓慢等。目前,一些新型P2Y12受体拮抗剂类抗血小板药物(如普拉格雷、替卡格雷等)已经进入临床,几项大型临床试验对其疗效和安全性进行了评价。本文对比了新型P2Y12受体拮抗剂与氯吡格雷在药理学、药代动力学、有效性和安全性方面的差异,并探讨其临床应用,为临床合理用药提供参考。  相似文献   

12.
Thienopyridines (ticlopidine, clopidogrel, and prasugrel) require in vivo metabolism to exhibit a critical thiol group in the active form that binds to the P2Y12 platelet receptor to inhibit platelet activation. We hypothesized that formation of thienopyridine-derived nitrosothiols (ticlopidine-SNO, clopidogrel-SNO, and prasugrel-SNO) occurs directly from the respective parent drug. Pharmaceutical-grade thienopyridine (ticlopidine, clopidogrel chloride, clopidogrel sulfate, clopidogrel besylate, or prasugrel) was added to nitrite in aqueous solution to form the respective thienopyridine-SNO (Th-SNO). An isolated aortic ring preparation was used to test vasoactivity of the Th-SNO derivatives. Increasing nitrite availability resulted in increased Th-SNO formation for all drugs (other than ticlopidine). Th-SNO induced significant endothelium-independent relaxation of preconstricted aortic rings. Clopidogrel-chloride-SNO displayed rapid-release kinetics in a chemical environment, which was reflected by immediate and transient vasorelaxation when compared with the SNO derivatives of the other thienopyridines. Accounting for differences in yield, clopidogrel-chloride-SNO exhibited the greatest propensity to immediately relax vascular tissue. Th-SNO derivatives exhibit nitrovasodilator properties by supplying NO that can directly activate vascular soluble guanylate cyclase to induce vasorelaxation. Differences in SNO yield and vasoactivity exist between thienopyridine preparations that might be important to our understanding of the direct pharmacological effectiveness of thienopyridines on vascular and platelet function.  相似文献   

13.
Acute coronary syndromes (ACS) remain life-threatening disorders associated with high morbidity and mortality, despite advances in treatment over the last decade. Adenosine diphosphate-induced platelet activation via P2Y(12) receptors plays a pivotal role in the pathophysiology of ACS. The current standard of treatment involves dual antiplatelet therapy with aspirin (acetylsalicylic acid) and the thienopyridine clopidogrel. Numerous studies and wide use in clinical practice have established the value of this approach in the treatment of ACS. However, clopidogrel treatment has a number of limitations, including a delayed onset of action due to the need for metabolic activation, variable and reduced antiplatelet effects in patients with certain genotypes, and prolonged recovery of platelet function due to irreversible P2Y(12) receptor binding. Prasugrel, a new thienopyridine, has demonstrated more consistent inhibition of platelet aggregation (IPA) than clopidogrel, although this thienopyridine also requires metabolic activation and treatment is associated with a significantly increased risk of life-threatening and fatal bleeding. The recently approved oral antiplatelet agent ticagrelor has the potential to overcome some of the limitations of current therapy due to its unique pharmacokinetic and pharmacodynamic profiles. It is a member of a new chemical class, the cyclopentyltriazolopyrimidines, and is a potent P2Y(12) receptor antagonist. Ticagrelor is rapidly absorbed, with a median time to maximum concentration of 1.3-2.0 hours. Ticagrelor does not require metabolic activation to an active form and binds rapidly and reversibly to the P2Y(12) receptor. As well as exerting effects via platelet P2Y(12) receptors, ticagrelor may confer additional benefits via inhibition of non-platelet P2Y(12) receptors. The pharmacokinetic profile of ticagrelor is not significantly affected by age, gender or administration with food, nor by prior treatment with, or responsiveness to, clopidogrel. Ticagrelor is primarily metabolized via the cytochrome P450 (CYP) 3A4 enzyme, rapidly produces plasma concentration-dependent IPA that is greater and more consistent than that observed with clopidogrel, and can also enhance platelet inhibition and overcome non-responsiveness in patients previously treated with clopidogrel. Importantly, the pharmacodynamic characteristics of ticagrelor are not influenced by CYP2C19 and ABCB1 genotypes. This article summarizes our current knowledge regarding the pharmacokinetic, pharmacodynamic and pharmacogenetic profile of ticagrelor.  相似文献   

14.
With the cloning of the P2Y12 receptor, the molecular basis for ADP-induced platelet aggregation is seemingly complete. Two platelet-bound ADP receptors, P2Y1 and P2Y12, operate through unique pathways to induce and sustain platelet aggregation via the glycoprotein (GP)IIb-IIIa integrin. P2Y1 operates via a glycoprotein q (Gq) pathway, activates phospholipase C, induces platelet shape change and is responsible for intracellular calcium mobilisation. P2Y12 inhibits adenylyl cyclase through a glycoprotein i (Gi)-dependent pathway, and is the target of the clinically used thienopyridines, ticlopidine (Ticlid, F. Hoffman-La Roche) and clopidogrel (Plavix, Bristol-Myers Squibb/Sanofi-Synthelabo). In addition, the receptor is targeted by the ADP analogue AR-C66096, which is currently in Phase IIb clinical trials, as well as other non-nucleoside-based preclinical leads.  相似文献   

15.
Over the last two decades or more, anti-platelet therapy has become established as a cornerstone in the treatment of patients with ischaemic cardiovascular disease, since such drugs effectively reduce arterial thrombotic events. The original agent used in this context was aspirin (acetylsalicylic acid) but, with the advent of adenosine diphosphate (ADP) receptor antagonists, the use of dual anti-platelet therapy has resulted in further improvement in cardiovascular outcomes when compared with aspirin alone. The first group of platelet ADP receptor antagonists to be developed was the thienopyridine class, which comprise inactive pro-drugs that require in vivo metabolism to their active metabolites before exerting their inhibitory effect on the P2Y(12) receptor. Clopidogrel has been the principal ADP receptor antagonist in use over the past decade, but is limited by variability in its in vivo inhibition of platelet aggregation (IPA). The pharmacokinetics of clopidogrel are unpredictable due to their vulnerability to multiple independent factors including genetic polymorphisms. Expression of the 3435T/T genetic variant encoding the MDR1 gene for the P-glycoprotein efflux transporter results in a significantly reduced maximum drug concentration and area under the plasma concentration-time curve as intestinal absorption of clopidogrel is reduced; and the expression of the mutant *2 allele of CYP2C19 results in similar pharmacokinetic effects as the two cytochrome P450 (CYP)-mediated steps required for the production of the active metabolite of clopidogrel are impaired. These variable pharmacokinetics lead to erratic pharmacodynamics and cannot reliably be overcome with increased dosing. Both prasugrel, a third-generation thienopyridine, and ticagrelor, a cyto-pentyl-triazolo-pyrimidine, have more predictable pharmacokinetics and enhanced pharmacodynamics than clopidogrel. Neither appears to be affected by the same genetic polymorphisms as clopidogrel; prasugrel requires only a single CYP-mediated step to produce its active metabolite and ticagrelor is not a pro-drug. Enhanced IPA by both prasugrel and ticagrelor is achieved at the expense of increased major bleeding, although this is partially mitigated in the case of ticagrelor due to its reversible IPA. However, the reversible binding of ticagrelor to the P2Y(12) receptor requires a twice-daily dosing regimen. Due to limited data from clinical studies, the use of prasugrel is currently restricted to individuals undergoing percutaneous coronary intervention who are ≤75 years old and have a body weight ≥60 kg. The clinical data for ticagrelor are more comprehensive and this drug therefore has a place in the management of patients with acute coronary syndrome at moderate-to-high risk of ischaemic events, irrespective of treatment strategy. Here we review in detail the pharmacokinetics and pharmacodynamics of clopidogrel, prasugrel and ticagrelor, and explore the implications of the differences in these parameters for their clinical use.  相似文献   

16.
Target levels of ex vivo inhibition of platelet aggregation (IPA) induced by adenosine diphosphate (ADP) that produce clinically relevant effects of clopidogrel, a P2Y12 antagonist, are unclear. We examined standard and modified IPA and P2Y12 receptor occupancy as predictors of antithrombotic (% thrombus weight reduction) and bleeding time (BT, fold-increase over control) effects of clopidogrel in rabbit models of carotid artery thrombosis and cuticle bleeding, respectively. Standard and modified IPA with 20 microM ADP were measured in the absence and presence of partial P2Y1 blockade, respectively. Clopidogrel maximally produced standard IPA of 57% +/- 5%, antithrombotic effect of 85% +/- 1%, BT increase of 6.0 +/- 0.4-fold and P2Y12 receptor occupancy of 87% +/- 5%. Surprisingly, a clopidogrel dose that produced a low standard IPA of 17% +/- 4% and P2Y12 receptor occupancy of 39% +/- 5% achieved a significant antithrombotic activity of 55% +/- 2% with a moderate increase in BT of 2.0 +/- 0.1-fold. This underestimation of clopidogrel efficacy by standard IPA was improved by measuring either modified IPA or P2Y12 receptor occupancy. These results suggest that in clopidogrel-treated rabbits, low standard IPA is associated with significant antithrombotic effects. Moreover, modified IPA and P2Y12 receptor occupancy appear to better predict the magnitude of clopidogrel's efficacy compared with standard IPA, which may be a better predictor of BT.  相似文献   

17.
Prasugrel is a novel orally active thienopyridine with faster, higher and more reliable inhibition of platelet aggregation than clopidogrel reflecting its metabolism in vivo to an active metabolite with selective P2Y(12) antagonistic activity. Several lines of evidence support the contention that prasugrel provides selective P2Y(12) receptor antagonistic activity. To date, however, direct evidence of P2Y(12) specific action by prasugrel in vivo is limited. In the present study, effects of prasugrel on ex vivo platelet aggregation were examined in wild type (WT) and P2Y(12)(-/-) mice. In WT mice, prasugrel showed platelet inhibition that was 8.2 times more potent than clopidogrel. In P2Y(12)(-/-) mice, ADP induced platelet aggregation was minimal, and its extent was similar to that in prasugrel-treated WT mice. In addition, no further inhibition of platelet aggregation was observed after administration of prasugrel to P2Y(12)(-/-) mice. Furthermore, prasugrel-treated WT mice showed similar aggregation patterns using collagen- and murine PAR-4 agonist peptide to those of P2Y(12)(-/-) mice treated with vehicle or prasugrel. Overall, these results clearly provide additional in vivo evidence that prasugrel has selective P2Y(12) antagonistic activity.  相似文献   

18.
Platelets possess two receptors for ADP, P2Y(1) and P2Y(12). ADP is released from platelet dense granules upon platelet activation by numerous agonists and thereby amplifies platelet responses regardless of the initial stimulus. The P2Y(1) receptor is one of many platelet receptors coupled to Gq and initiates ADP-induced activation. The P2Y(12) receptor on the other hand is linked to Gi and plays a special role in the amplification of platelet activation initiated by numerous other pathways. Platelet activation leads to a range of responses that play a critical role in arterial thrombosis and the inflammatory responses associated with this, including platelet aggregation, dense and alpha granule secretion and procoagulant activity. P2Y(12) receptor activation yields powerful amplification of these processes such that P2Y(12) receptor antagonists may have dramatic inhibitory effects on platelet function regardless of the activating stimuli. This phenomenon, coupled with the restricted distribution of the P2Y(12) receptor in humans, makes the receptor an ideal target for pharmaceutical therapy. This has already been established by the therapeutic success of clopidogrel, which acts, via an active metabolite, on this receptor. However, current therapeutic regimens of clopidogrel yield variable and incomplete P2Y(12) receptor blockade and more effective strategies to block P2Y(12) receptor activation offer the potential of greater clinical efficacy.  相似文献   

19.
Clopidogrel and statins are frequently administered in patients with ischemic heart disease or other atherothrombotic manifestations and are effective in the prevention of cardiovascular disease. The thienopyridine clopidogrel is a pro-drug metabolised in the liver via the cytochrome P450 (CYP) 3A4 system to the active compound which inhibits the P2Y(12) ADP platelet receptor. The assumption exists that the effect of clopidogrel in inhibiting platelet aggregation is attenuated by co-administration of lipophilic statins such as atorvastatin or simvastatin which are metabolised by the CYP3A4 system to inactive substrates. Assessing a possible drug-drug interaction ex-vivo, inconclusive studies have been published: In an aggregometer study, a strong and dose-dependent interference between atorvastatin and the inhibitory effect of clopidogrel on platelet function was observed. Another study, measuring the effect of clopidogrel by flow cytometry, found a significant attenuation of the clopidogrel effect by lipophilic statins, predominantly in the loading phase. In contrast a recent study, which used 600 mg clopidogrel for loading, found no significant interference between various statins and clopidogrel on ADP-induced platelet aggregation and in addition another study revealed no attenuation of the clopidogrel effect despite statin co-medication after 5 weeks. Additionally, retrospective analysis of clinical studies (CREDO-study) or registries (MITRA-PLUS) revealed no significant influence of different statins on the clinical outcome in patients treated with clopidogrel. However, these clinical studies showed a trend towards a diminishing effect of clopidogrel on those treated with cytochrome CYP3A4 metabolised statins. Even more important seems to be the considerable variability in the response of the antiplatelet effect of clopidogrel. A certain percentage of patients apparently do not respond adequately to clopidogrel treatment. This effect of clopidogrel resistance seems to be more important as the potential interference between CYP3A4 metabolized statins and clopidogrel. Finally, up until now sufficient evidence has not been gained to prefer hydrophil statins on patients receiving clopidogrel co-medication or when to discontinue the use of statins in clopidogrel treatment. Prospective studies are necessary in order to evaluate the magnitude of clopidogrel resistance and the impact of clopidogrel co-medication as well as to redefine antithrombotic therapy for this subgroup.  相似文献   

20.
The P2Y(12) receptor on platelets with which ADP interacts has an important role in promoting platelet function and thereby platelet involvement in both haemostasis and thrombosis. Agents that act as antagonists at this receptor are thus likely to provide effective antithrombotic therapy, provided that there are no adverse effects on haemostasis. Here we describe the ADP receptor antagonists that are available and in development. We also consider their mode of action and ask whether there are additional mechanisms through which they exert their inhibitory effects on platelet function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号