首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leukotriene modifiers are a novel generation of therapeutic agents in the treatment of allergic asthma. However, the mechanisms by which the cysteinyl (cys) leukotrienes (LTs) participate in allergen-induced airway eosinophilia and airway hyperresponsiveness (AHR) are still unclear. In the present study, we have investigated the role of cys-LTs in ovalbumin (OVA)-induced airway responses in a murine model of asthma. Montelukast (3 or 10 mg/kg), a selective cys-LT1 receptor antagonist, reduced airway eosinophilia and AHR after OVA challenge. The levels of interleukin (IL)-5 and eotaxin in the bronchoalveolar lavage fluid (BALF) from montelukast-treated (3 mg/kg) mice were unaffected, although a decrease in IL-5 was observed with a dose of 10 mg/kg. LTD4 (50 ng) instilled intranasally to immunized mice augmented macrophages in the BALF, but in conjunction with OVA challenge it caused BALF eosinophilia and neutrophilia when given before challenge and BALF neutrophilia but not eosinophilia when given 2 h after challenge. However, there were no increases of IL-5 or eotaxin in BALF following LTD4 treatment. Repeated instillations of LTD4 to immunized mice, mimicking allergen challenge, did not induce AHR but in conjunction with OVA challenge LTD4 enhanced AHR. These results indicate that allergen-induced eosinophilia and AHR are in part mediated by the cys-LT1 receptor, and that, although LTD4 alone has no effect on airway eosinophilia, in conjunction with antigenic stimulation it potentiates the degree of airway inflammation and AHR.  相似文献   

2.
BACKGROUND: IL-13 induces several characteristic features of asthma, including airway eosinophilia, airway hyperresponsiveness, and mucus overproduction; however, the mechanisms involved are largely unknown. OBJECTIVE: We hypothesized that IL-13-induced inflammatory changes in the lung were dependent in part on IL-5 and eotaxin, two eosinophil-selective cytokines. METHODS: Recombinant murine IL-13 was repeatedly administered to the lung by intranasal delivery until the characteristic features of asthma developed. To analyze the role of IL-5 and eotaxin, we subjected eotaxin gene-targeted, IL-5 gene-targeted, eotaxin/IL-5-double-deficient, IL-5 transgenic, and wild-type mice of the Balb/C background to the experimental regime. RESULTS: The induction of IL-13-mediated airway eosinophilia was found to occur independently of eosinophilia in the blood or bone marrow, indicating that IL-13-induced airway inflammation is primarily mediated by local effects of IL-13 in the lung. Eosinophil recruitment into both the lung tissue and bronchoalveolar lavage fluid was markedly attenuated in IL-5-deficient mice in comparison with wild-type controls. Accordingly, IL-13 delivery to IL-5 transgenic mice resulted in a large increase in airway eosinophils in comparison with wild-type mice. Interestingly, IL-13-induced eosinophilia in the bronchoalveolar lavage fluid of eotaxin-deficient mice was not impaired; however, these same mice failed to mount a significant tissue eosinophilia in response to IL-13. Finally, IL-13-induced mucus production was not affected by the presence of IL-5 or eotaxin, suggesting that IL-13-induced mucus secretion is mechanistically dissociated from airway eosinophilia. CONCLUSION: Selective components of the IL-13-induced asthma phenotype--airway eosinophilia but not mucus secretion--are differentially regulated by IL-5 and eotaxin. IL-5 is required for IL-13 to induce eosinophilia throughout the lung, whereas eotaxin regulates the distribution of airway eosinophils.  相似文献   

3.
BACKGROUND: Eosinophilic airway inflammation is a common pathological feature of asthma. It has been shown that FK506 given systemically suppresses antigen-induced airway inflammation in animal models. However, it is unknown whether inhaled FK506 can suppress the airway allergic inflammation/immune response and whether it acts locally or systemically. METHODS: We tested the effects of oral FK506 and inhaled FK506 on antigen-induced airway inflammation in guinea pigs. The tissue and blood concentrations of FK506 given via both routes were compared. The effect of inhaled FK506 on the expression of cytokine mRNA in lung and bronchoalveolar lavage fluid (BALF) cells was also tested. RESULTS: Both routes of administration of FK506 suppressed the airway eosinophilia in egg albumin (EA)-sensitized and -challenged animals. The effect of three inhaled puffs was almost equal to that of 1 mg/kg administered by the oral route. Following inhalation of three puffs, FK506 concentration in blood (AUC(0-24 h)) was approximately 1/21 of that following oral FK506 (1 mg/kg). After EA challenge, mRNA expression of interleukin (IL)-5, eotaxin and IL-1beta in BALF cells and IL-5 in the lung increased significantly. FK506 aerosol markedly inhibited IL-5 mRNA expression in the lung. In situ hybridization indicated that in the BALF IL-5 mRNA expression by lymphocyte-like cells was inhibited by FK506 aerosol. In addition, anti-IL-5 antibody injected intratracheally almost completely abolished eosinophilia in this model. CONCLUSION: Inhaled FK506 can suppress airway inflammation in guinea pigs, where the local action, presumably the inhibition of T-cell activation/function in the lung and airways, was primarily important.  相似文献   

4.
When wild-type BALB/c mice were transferred with OVA-specific Th2 cells followed by OVA inhalation, a severe eosinophilia, mucus hypersecretion and airway hyper-responsiveness (AHR) was induced in parallel with a marked elevation of IL-4, IL-5 and IL-13 levels in bronchoalveolar lavage fluid (BALF). However, neither eosinophilia, AHR nor mucus hypersecretion was induced in Th2 cell-transferred STAT6-/- mice. The failure of eosinophilia was not due to the defect of Th2 cytokine production in BALF of STAT6-/- mice transferred with Th2 cells, but because of the defect of STAT6-dependent eotaxin production. Indeed, intranasal administration of eotaxin reconstituted pulmonary eosinophilia but not AHR and mucus hypersecretion in OVA-inhalated STAT6-/- mice. These results initially provided direct evidence that STAT6-dependent eotaxin production is essential for pulmonary eosinophilia. We also dissociated the role of STAT6 for eosinophilia from that for AHR and mucus hypersecretion. Thus, STAT6 also plays a critical role at late phase of Th2-dependent allergy induction.  相似文献   

5.
6.
Infiltration of antigen-specific CD4+ T cells and production of interleukin (IL)-5 in inflammatory regions play a central role in antigen-induced pulmonary eosinophilia. Genetically IL-5-deficient mice lack antigen-induced airway eosinophilia, but little is known about the role of IL-5 in accumulation and activation of CD4+ T cells in the lung and in airway hyperresponsiveness (AHR). ASCARIS SUUM extract (Asc) has been used to induce airway eosinophilia and analyze airway inflammation in IL-5 receptor alpha-chain-deficient (IL-5RKO) mice. We examined the role of IL-5 in CD4+ T cell activation, cytokine production, and AHR upon Asc sensitization. Pulmonary CD4+ T cells in Asc-immunized mice were activated and produced IL-5 upon local exposure to Asc in both wild-type (WT) and IL-5RKO mice. IL-2, IL-4, IL-5, IL-10 and eotaxin were detected in bronchoalveolar lavage fluid of both WT and IL-5RKO mice following exposure to Asc. Airway eosinophilia and AHR were seen only in WT mice, but not in IL-5RKO mice. We conclude that IL-5 appears to be required for the accumulation of eosinophils and AHR in the inflammatory lung. However, IL-5 does not play a critical role in the accumulation of activated CD4+ T cells in the inflammatory lung.  相似文献   

7.
BACKGROUND: The effect of ageing on several pathologic features of allergic asthma (pulmonary inflammation, eosinophilia, mucus hypersecretion), and their relationship with airway hyperresponsiveness (AHR) is not well characterized. OBJECTIVE: To evaluate lung inflammation, mucus metaplasia and AHR in relationship with age in murine models of allergic asthma comparing young and older mice. METHODS: Young (6 weeks) and older (6, 12, 18 months) BALB/c mice were sensitized and challenged with ovalbumin (OVA). AHR and bronchoalveolar fluid (BALF), total inflammatory cell count and differential were measured. To evaluate mucus metaplasia, quantitative PCR for the major airway mucin-associated gene, MUC-5AC, from lung tissue was measured, and lung tissue sections stained with periodic acid-Schiff (PAS) for goblet-cell enumeration. Lung tissue cytokine gene expression was determined by quantitative PCR, and systemic cytokine protein levels by ELISA from spleen-cell cultures. Antigen-specific serum IgE was determined by ELISA. RESULTS: AHR developed in both aged and young OVA-sensitized/challenged mice (OVA mice), and was more significantly increased in young OVA mice than in aged OVA mice. However, BALF eosinophil numbers were significantly higher, and lung histology showed greater inflammation in aged OVA mice than in young OVA mice. MUC-5AC expression and numbers of PAS+ staining bronchial epithelial cells were significantly increased in the aged OVA mice. All aged OVA mice had increased IL-5 and IFN-gamma mRNA expression in the lung and IL-5 and IFN-gamma protein levels from spleen cell cultures compared with young OVA mice. OVA-IgE was elevated to a greater extent in aged OVA mice. CONCLUSIONS: Although pulmonary inflammation and mucus metaplasia after antigen sensitization/challenge occurred to a greater degree in older mice, the increase in AHR was significantly less compared with younger OVA mice. Antigen treatment produced a unique cytokine profile in older mice (elevated IFN-gamma and IL-5) compared with young mice (elevated IL-4 and IL-13). Thus, the airway response to inflammation is lessened in ageing animals, and may represent age-associated events leading to different phenotypes in response to antigen provocation.  相似文献   

8.
The effects of IL-5 on airway physiology and inflammation in rats   总被引:4,自引:0,他引:4  
BACKGROUND: There is evidence that the cytokine IL-5 is a prominent feature of airway inflammation in asthma. OBJECTIVE: The aim of this study was to determine whether exogenous IL-5 could cause changes in lung physiology, the early and late airway response after antigen challenge, and airway inflammation in rats that do not have a propensity to develop these changes after sensitization and challenge. METHOD AND RESULTS: Intratracheal administration of IL-5 to ovalbumin sensitized Brown Norway SSN rats increased the airway responsiveness to methacholine (AHR) 20 hours after administration of IL-5 at the same time as an increase in neutrophils occurred in the lung lavage. This effect was dose dependent and was not caused by endotoxin. Concurrent intratracheal administration of 50 ng of anti-IL-5 monoclonal antibody with 10 microg of recombinant human IL-5 decreased the AHR and neutrophil influx. Pretreatment with 3 microg of IL-5 had no effect on the early and late airway response or on AHR after ovalbumin challenge. However, IL-5 increased lung re-sistance 20 hours after antigen challenge. Although total lung cells and differential counts did not differ significantly 8 hours after antigen challenge, the blood lymphocyte CD4/CD8 ratio decreased in IL-5 pretreated rats (P <.05). In addition, in situ hybridization showed a significant increase in cells within the airway wall expressing IL-4 and IL-5 mRNA in IL-5 treated/challenged rats compared to controls (P <.05). CONCLUSION: The intratracheal administration of IL-5 causes only part of the physiologic changes that are associated with asthma. Other factors are necessary to obtain the complete asthma phenotype.  相似文献   

9.
BACKGROUND: The accumulation of eosinophils in the lung is a hallmark of asthma. In addition to cytokines such as IL-5 which are essential, chemokines have been implicated in the recruitment of eosinophils to the airway. In particular, eotaxin has been shown to be a selective and potent eosinophil chemoattractant, important in the pathogenesis of allergic disease. The goal of the present study was to define the role of eotaxin-1 in the development of allergen-induced eosinophilic airway inflammation and airway hyperresponsiveness (AHR) to inhaled methacholine (MCh). METHODS: Eotaxin-1-deficient mice were sensitized and exposed to a single challenge with allergen. Airway function and airway and tissue as well as peripheral blood and bone marrow eosinophilia were examined 18 and 48 h after the last challenge. RESULTS: Following allergen sensitization and challenge, eotaxin-1-deficient mice developed levels of AHR to inhaled MCh at 18 and 48 h comparable to controls. Further, levels of bronchoalveolar lavage (BAL) and tissue eosinophilia at the same time points were comparable in the two strains of mice. Tissue eosinophilia, assessed by quantitating major basic protein staining cells, preceded BAL eosinophilia in a similar manner. Bone marrow and peripheral blood eosinophilia were unimpaired in deficient mice. CONCLUSION: The results demonstrate that the major eotaxin, eotaxin-1 is not essential for the development of airway eosinophilia or AHR, implying that other chemokines, alone or in combination, can overcome this deficiency.  相似文献   

10.
BACKGROUND: Antigen-induced bronchopulmonary hyper-reactivity (BHR) is generally associated with eosinophilia. It involves cytokines produced by Th2 lymphocytes, including IL-4, IL-5 and IL-13, which are implicated in IgE production, eosinophil differentiation and attraction, and related events relevant to allergic inflammation, whose mechanisms remain unclear. OBJECTIVE: To investigate the mechanisms by which Th2 cytokines mediate eosinophilia and subsequent BHR using ovalbumin (OVA)-immunized and OVA-challenged IL-4Ralpha-/- and IL-4-/- mice, which fail to transduce and/or to produce IL-4 and IgE as compared with wild type (WT) mice, and specific neutralizing antibodies. METHODS: On days 0 and 7, mice were immunized subcutaneously (s.c.) with OVA. At day 14, anti-IL-5 or anti-IL-13 antibodies were administered intranasally and/or intravenously before allergenic challenge. Different functional and cellular parameters were studied in vivo and cytokine production was followed with a newly described ex vivo procedure using lung explants. RESULTS: IL-4Ralpha-/- and IL-4-/- mice developed BHR and pulmonary eosinophilia, even though eosinophil recruitment to the bronchoalveolar liquid lavage (BALF) was reduced. In vivo, IL-4-/- and IL-4Ralpha-/- mice produced, respectively, no or reduced amounts of IL-5 in the BALF/serum as compared with WT mice, whereas no IL-13 in the BALF was detected. By contrast, ex vivo, surviving lung explants from WT and IL-4-/- or IL-4Ralpha-/- mice produced IL-13 and large amounts of IL-5. The neutralization of IL-5 in vivo (BALF and serum) and ex vivo (from lung explant) in IL-4Ralpha-/- and WT mice failed to suppress BHR and lung eosinophilia, and to modify IL-13 production ex vivo. In addition, neutralization of IL-13 in vivo from lung explant also failed to abrogate BHR and lung eosinophilia, whereas IL-5 was unchanged. CONCLUSION: Antigen-induced BHR can develop independently from IL-4, IL-5 or IL-13 and from the IL-4alpha receptor chain, suggesting a possible novel IL-4, IL-5 and IL-13-independent pathway for the development of BHR in allergic BALB/c mice. The failure of IL-5 or IL-13 antibodies to prevent BHR in IL-4Ralpha-/- mice suggests that neither is indispensable for BHR but does not exclude a role for lung tissue eosinophilia.  相似文献   

11.
The Th2 cytokines IL-4 and IL-13 mediate allergic pulmonary inflammation and airways hyperreactivity (AHR) in asthma models through signaling dependent upon the IL-4 receptor-alpha chain (IL-4Ralpha). IL-13 has been further implicated in the overproduction of mucus by the airway epithelium and in lung remodeling that commonly accompanies chronic inflammation. IL-4Ralpha-deficient mice are resistant to allergen-induced asthma, highlighting the therapeutic promise of selective molecular inhibitors of IL-4Ralpha. We designed a chemically modified IL-4Ralpha antisense oligonucleotide (IL-4Ralpha ASO) that specifically inhibits IL-4Ralpha protein expression in lung eosinophils, macrophages, dendritic cells, and airway epithelium after inhalation in allergen-challenged mice. Inhalation of IL-4Ralpha ASO attenuated allergen-induced AHR, suppressed airway eosinophilia and neutrophilia, and inhibited production of airway Th2 cytokines and chemokines in previously allergen-primed and -challenged mice. Histologic analysis of lungs from these animals demonstrated reduced goblet cell metaplasia and mucus staining that correlated with inhibition of Muc5AC gene expression in lung tissue. Therapeutic administration of inhaled IL-4Ralpha ASO in chronically allergen-challenged mice produced a spectrum of anti-inflammatory activity similar to that of systemically administered Dexamethasone with the added benefit of reduced airway neutrophilia. These data support the potential utility of a dual IL-4 and IL-13 oligonucleotide inhibitor in allergy/asthma, and suggest that local inhibition of IL-4Ralpha in the lung is sufficient to suppress allergen-induced pulmonary inflammation and AHR.  相似文献   

12.
CD4+ T cells have been shown to play a role in the development of airway hyperresponsivness (AHR) and airway eosinophilia in mice using ablation as well as adoptive transfer experiments. However, as other T cell subsets (CD8, NKT) may play a role in these models, we examined the responses of sensitized CD4-deficient mice after either primary or secondary airway allergen challenge. After sensitization, CD4-deficiency in mice was not associated with airway eosinophilia, allergen-specific IgE, or elevated levels of interleukin (IL)-4 or IL-13. Increases in lung CD8 T cells and IL-5 were observed and shown to be essential for AHR as demonstrated after CD8 T cell depletion or anti-IL-5 treatment. In contrast to the response of sensitized CD4-deficient mice to primary allergen challenge, they failed to develop AHR after secondary allergen challenge. Although the importance of this CD4+ T cell-independent pathway in normal mice is unclear at this time, these studies identify the diversity of the cellular pathway, which may contribute to the development of AHR after primary allergen exposure of sensitized mice.  相似文献   

13.
14.
Interleukin (IL)-9 is a T-cell-derived cytokine with pleiotropic activities on T helper 2 cells, B cells, and mast cells. IL-9 may therefore play an important role in the development of allergic pulmonary inflammatory diseases. In this study, an antimouse IL-9 (anti-mIL-9) antibody (Ab) was evaluated against pulmonary eosinophilia, histopathologic changes in lung tissues, serum immunoglobulin (Ig) E levels, and airway hyperresponsiveness (AHR) to methacholine in mice sensitized and challenged with ovalbumin (OVA). Additionally, steady-state levels of IL-4, IL-5, IL-13, and interferon-gamma messenger RNA (mRNA) in the lungs were measured. The anti-mIL-9 Ab (200 microg/mouse, intraperitoneally) was given as either four doses during the sensitization period or as a single dose before OVA challenge. Sensitized mice challenged with OVA displayed marked pulmonary eosinophilia, epithelial damage, and goblet cell hyperplasia. OVA challenge also increased mRNA levels of IL-4, IL-5, and IL-13 in the lungs. AHR was also increased twofold in sensitized, challenged mice. Treatment of sensitized, challenged mice with four doses of anti-mIL-9 Ab significantly reduced pulmonary eosinophilia, serum IgE levels, goblet cell hyperplasia, airway epithelial damage, and AHR, but had no effect on IL-4, IL-5, and IL-13 mRNA levels in the lungs. A single dose of the antibody was ineffective on all measures. These results indicate that an antibody to mIL-9 inhibits the development of allergic pulmonary inflammation and AHR in mice.  相似文献   

15.
BACKGROUND: Asthmatic inflammation is mediated by a network of cytokines, chemokines and adhesion molecules. Corticosteroids are the only effective agents available to control asthmatic inflammation. We investigated the effect of high-dose montelukast (MK), a selective cysteinyl leukotriene receptor 1 antagonist, on mediators of airway inflammation. OBJECTIVE: The aim of this study was to determine the effect of a 3-day course of high-dose MK on mediators of airway inflammation induced by a single allergen challenge in sensitized mice. METHODS: Ovalbumin (OVA)-sensitized BALB/c mice were treated with 25 mg/kg of MK or saline intravenously for 3 days. On the third day, a single inhalation challenge with OVA was given. Cellular infiltration was assessed in the bronchoalveolar lavage (BAL) and in the lung. Expression of IL-4, IL-5, IL-13 and eotaxin in the BAL, and the lung was determined. Serum IL-5 and total IgE was measured. IL-5 and eotaxin mRNA expression in the lung was determined. Finally, eotaxin and VACM-1 expression in the lung was assessed by immunohistochemistry. RESULTS: MK reduced the number of eosinophils in the BAL by > 90%. There was also significant reduction in IL-5 in the BAL, lung and the serum, and IL-5 mRNA expression in the lung. IL-4 level in the lung and BAL, and IL-13 level in the lung also significantly decreased. Serum IgE level and lung VCAM-1 expression was also significantly lower in treated animals, but eotaxin protein and mRNA expression in the lung remained unchanged. CONCLUSION: MK exerts its anti-inflammatory effect through the suppression of T helper type-2 (Th2) cytokines. The use of high-dose MK as an anti-inflammatory agent in acute asthma should be further explored.  相似文献   

16.
17.
In experimental models of bronchial asthma with mice, airway inflammation and increase in airway hyperreactivity (AHR) are induced by a combination of systemic sensitization and airway challenge with allergens. In this report, we present another possibility: that systemic antigen-specific sensitization alone can induce AHR before the development of inflammation in the airway. Male BALB/c mice were sensitized with ovalbumin (OVA) by a combination of intraperitoneal injection and aerosol inhalation, and various parameters for airway inflammation and hyperreactivity were sequentially analyzed. Bronchial response measured by a noninvasive method (enhanced pause) and the eosinophil count and interleukin (IL)-5 concentration in bronchoalveolar lavage fluid (BALF) gradually increased following the sensitization, and significant increase was achieved after repeated OVA aerosol inhalation along with development of histologic changes of the airway. In contrast, AHR was already significantly increased by systemic sensitization alone, although airway inflammation hardly developed at that time point. BALF IL-4 concentration and the expression of IL-4 mRNA in the lung reached maximal values after the systemic sensitization, then subsequently decreased. Treatment of mice with anti-IL-4 neutralizing antibody during systemic sensitization significantly suppressed this early increase in AHR. In addition, IL-4 gene-targeted mice did not reveal this early increase in AHR by systemic sensitization. These results suggest that an immune response in the lung in an early stage of sensitization can induce airway hyperreactivity before development of an eosinophilic airway inflammation in BALB/c mice and that IL-4 plays an essential role in this process. If this early increase in AHR does occur in sensitized human infants, it could be another therapeutic target for early prevention of the future onset of asthma.  相似文献   

18.
BACKGROUND: Levels of endotoxins greatly differ according to environmental settings. OBJECTIVE: To study the effect of lipopolysaccharide (LPS) at increasing doses (0.1-1000 ng) on allergen sensitization and challenge in the mouse. METHODS: Mice were sensitized systemically and challenged locally with ovalbumin (OVA) in the presence or absence of LPS. Inflammation was assessed by determining total and differential cell counts and T-helper type 2 (Th)2 cytokine (IL-4 and IL-5) levels in bronchoalveolar lavage fluid (BALF). Total and OVA-specific IgE levels were quantified in serum. Airway hyper-responsiveness (AHR) was assessed by whole-body barometric plethysmography. RESULTS: Administered prior to sensitization, LPS at 100 or 1000 ng dose-dependently decreased allergen- induced total and OVA-specific IgE, airway eosinophilia and Th2 cytokines in BALF, without changing AHR. Administered during OVA challenge, LPS at 1 ng (an infra-clinical dose) or 100 ng (a dose triggering neutrophilia) enhanced airway eosinophilia, without affecting IgE levels or AHR. CONCLUSION: Our data clearly demonstrate that exposure to LPS influences allergen-induced IgE production and airway eosinophilia in a time and dose-dependent manner, preventing IgE production and development of eosinophilia when administered during allergen sensitization at high doses, and inducing exacerbation of eosinophilia when administered upon allergen challenge at low doses, including infra-clinical doses.  相似文献   

19.
Osamu Kitada 《Arerugī》2002,51(11):1095-1102
We investigated whether an expression of hemeoxygenase-1 (HO-1) within the lung tissue is related to allergic airway inflammation and HO-1 expression could influence airway hyperreactivity (AHR) and eosinophilia in C57BL/6 mice actively sensitized to ovalbumin. The number of HO-1 positive cells was increased in the subepithelium of the bronchi after OVA challenge and HO-1 was localized to alveolar macrophage.Zinc-protoporphyrin (Zn-PP), a competitive inhibitor of hemeoxygenase, by intraperitoneal injection clearly inhibited AHR, pulmonary eosinophilia and IL-5 and IL-13 in the lung tissue. These data indicate that the expression of HO-1 is increased within the lung tissue in allergic airway inflammation and the overexpression of HO-1 could enhanced allergic airway inflammation.  相似文献   

20.
BACKGROUND: T(H)2-mediated allergic asthma is characterized by eosinophilia, mucus overproduction, and airway hyperresponsiveness (AHR). Although it is clear that T(H)2 cells and their cytokines play an important role in AHR, the roles of T(H)1 cells and neutrophils in AHR are controversial. OBJECTIVE: We sought to determine the roles of T(H)1 cells and neutrophils in AHR. METHODS: Ovalbumin-specific CD4(+) T cells were purified from DO11.10 mice, differentiated into T(H)1 cells, and injected into naive BALB/c, IL-4RalphaKO, or IL-8RKO mice. After ovalbumin antigen challenge, cytokine mRNA levels in lung samples, as well as inflammatory cell types and numbers in bronchoalveolar lavage fluid (BALF), were determined. AHR was assessed by measuring resistance in tracheostomized mice and enhanced pause in freely moving mice. RESULTS: T(H)1 cells induced AHR as robust as T(H)2 cells. They also induced lung inflammation dominated by neutrophils. Neither AHR nor inflammation were reduced when T(H)1 cells were transferred into IL-4RalphaKO mice. When IL-8RKO mice were used as recipients of T(H)1 cells, neutrophilia was greatly reduced, but the AHR was as strong as that seen in wild-type mice. On the other hand, dexamethasone treatment had no effect on neutrophilia but has significantly reduced AHR. Reduction in AHR was accompanied by a reduction in the numbers of lymphocytes and macrophages in BALF. CONCLUSIONS: T(H)1 cells can induce strong AHR independent of IL-4 and IL-13. The AHR is associated with the presence of lymphocytes and macrophages, but not neutrophils, in BALF. Our results point to a pathway whereby T(H)1 cells mediate AHR independent of neutrophilic inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号