首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Cortical porosity in patients with hyperparathyroidism has raised the concern that intermittent parathyroid hormone (PTH) given to treat osteoporotic patients may weaken cortical bone by increasing its porosity. We hypothesized that treatment of ovariectomized (OVX) cynomolgus monkeys for up to 18 months with recombinant human PTH(1-34) [hPTH(1-34)] LY333334 would significantly increase porosity in the midshaft of the humerus but would not have a significant effect on the strength or stiffness of the humerus. We also hypothesized that withdrawal of PTH for 6 months after a 12-month treatment period would return porosity to control OVX values. OVX female cynomolgus monkeys were given once daily subcutaneous (sc) injections of recombinant hPTH(1-34) LY333334 at 1.0 microg/kg (PTH1), 5.0 microg/kg (PTH5), or 0.1 ml/kg per day of phosphate-buffered saline (OVX). Sham OVX animals (sham) were also given vehicle. After 12 months, PTH treatment was withdrawn from half of the monkeys in each treatment group (PTH1-W and PTH5-W), and they were treated for the remaining 6 months with vehicle. Double calcein labels were given before death at 18 months. After death, static and dynamic histomorphometric measurements were made intracortically and on periosteal and endocortical surfaces of sections from the middiaphysis of the left humerus. Bone mechanical properties were measured in the right humeral middiaphysis. PTH dose dependently increased intracortical porosity. However, the increased porosity did not have a significant detrimental effect on the mechanical properties of the bone. Most porosity was concentrated near the endocortical surface where its mechanical effect is small. In PTH5 monkeys, cortical area (Ct.Ar) and cortical thickness (Ct.Th) increased because of a significantly increased endocortical mineralizing surface. After withdrawal of treatment, porosity in PTH1-W animals declined to sham values, but porosity in PTH5-W animals remained significantly elevated compared with OVX and sham. We conclude that intermittently administered PTH(1-34) increases intracortical porosity in a dose-dependent manner but does not reduce the strength or stiffness of cortical bone.  相似文献   

2.
Intermittent administration of parathyroid hormone (PTH) has an anabolic effect in cancellous bone of osteoporotic humans. However, the effect of PTH on cortical bone with Haversian remodeling remains controversial. The aim of this study was to determine the effects of biosynthetic human PTH(1-34) on the histology and mechanical properties of cortical bone in rabbits, which exhibit Haversian remodeling. Mature New Zealand white rabbits were treated with once daily injections of vehicle, or PTH(1-34), LY333334, at 10 micrograms/kg/day or 40 micrograms/kg/day for 140 days. Body weight in rabbits treated with PTH did not change significantly over the experimental period. Serum calcium and phosphate were within the normal range, but a 1 mg/ml increase in serum calcium was observed in rabbits given the higher dose of PTH. Histomorphometry of cortical bone in the midshaft of the tibia showed significant increases in periosteal and endocortical bone formation in these rabbits. Intracortical bone remodeling in the tibia was activated and cortical porosity increased by PTH. Cross-sectional bone area and bone mass of the midshaft of the femur increased significantly after PTH treatment. Ultimate force, stiffness, and work to failure of the midshaft of the femur of rabbits given the 40 micrograms dose of PTH were significantly greater than those in the control group, whereas elastic modulus was significantly lower than that in the rabbits given the 10 micrograms dose of PTH, but not different from controls. In the third lumbar vertebra, PTH increased both formation and resorption without increasing cancellous bone volume. The increases in bone turnover and cortical porosity were accompanied by concurrent increases in bone at the periosteal and endocortical surfaces. The combination of these phenomena resulted in an enhancement of the ultimate stress, stiffness, and work to failure of the femur.  相似文献   

3.
Tian XY  Zhang Q  Zhao R  Setterberg RB  Zeng QQ  Iturria SJ  Ma YF  Jee WS 《BONE》2008,42(5):914-920
The present study examined the effects of continuous and intermittent PGE2 administration on the cancellous and cortical bone of lumbar vertebral bodies (LVB) in female rats. Six-month-old Sprague–Dawley female rats were divided into 6 groups with 2 control groups and 1 or 3 mg PGE2/kg given either continuously or intermittently for 21 days. Histomorphometric analyses were performed on the cancellous and cortical bone of the fourth and fifth LVBs. Continuous PGE2 exposure led to bone catabolism while intermittent administration led to bone anabolism. Both routes of administration stimulated bone remodeling, but the continuous PGE2 stimulated more than the intermittent route to expose more basic multicellular units (BMUs) to the negative bone balance. The continuous PGE2 caused cancellous bone loss by stimulating bone resorption greater than formation (i.e., negative bone balance) and shortening the formation period. It caused more cortical bone loss than gain, the magnitude of the negative endocortical bone balance and increased intracortical porosity bone loss was greater than for periosteal bone gain. The anabolic effects of intermittent PGE2 resulted from cancellous bone gain by positive bone balance from stimulated bone formation and shortened resorption period; while cortical bone gain occurred from endocortical bone gain exceeding the decrease in periosteal bone and increased intracortical bone loss. Lastly, a scheme to take advantage of the marked PGE2 stimulation of lumbar periosteal apposition in strengthening bone by converting it to an anabolic agent was proposed.  相似文献   

4.
The periosteal and endocortical surfaces of cortical bone dictate the geometry and overall mechanical properties of bone. Yet the cellular and molecular mechanisms that regulate activity on these surfaces are far from being understood. Parathyroid hormone (PTH) has profound effects in cortical bone, stimulating periosteal expansion and at the same time accelerating intracortical bone remodeling. We report herein that transgenic mice expressing a constitutive active PTH receptor in osteocytes (DMP1‐caPTHR1 mice) exhibit increased cortical bone area and an elevated rate of periosteal and endocortical bone formation. In addition, DMP1‐caPTHR1 mice display a marked increase in intracortical remodeling and cortical porosity. Crossing DMP1‐caPTHR1 mice with mice lacking the Wnt coreceptor, LDL‐related receptor 5 (LRP5), or with mice overexpressing the Wnt antagonist Sost in osteocytes (DMP1‐Sost mice) reduced or abolished, respectively, the increased cortical bone area, periosteal bone formation rate, and expression of osteoblast markers and Wnt target genes exhibited by the DMP1‐caPTHR1 mice. In addition, DMP1‐caPTHR1 lacking LRP5 or double transgenic DMP1‐caPTHR1;DMP1‐Sost mice exhibit exacerbated intracortical remodeling and increased osteoclast numbers, and markedly decreased expression of the RANK decoy receptor osteoprotegerin. Thus, whereas Sost downregulation and the consequent Wnt activation is required for the stimulatory effect of PTH receptor signaling on periosteal bone formation, the Wnt‐independent increase in osteoclastogenesis induced by PTH receptor activation in osteocytes overrides the effect on Sost. These findings demonstrate that PTH receptor signaling influences cortical bone through actions on osteocytes and defines the role of Wnt signaling in PTH receptor action. © 2011 American Society for Bone and Mineral Research.  相似文献   

5.
The purpose of this study was to determine if the increased cortical bone porosity induced by intermittently administered parathyroid hormone (PTH) reduces bone strength significantly. Mature ovary-intact New Zealand white rabbits were treated with once daily injections of vehicle, or PTH(1-34), LY333334, at 10 or 40 μg/kg/day for 140 days. Geometry of the femoral midshaft was measured to evaluate changes in the cross-sectional moment of inertia (CSMI). Cortical porosity was measured in the midshaft of the tibia by dividing cortical area into three zones based on equal divisions of cortical diameter: near endocortical (Zone I), near intermediate (Zone II), and near periosteal (Zone III) regions. Total cortical porosity significantly increased after PTH treatment from 1.4% in the controls to 6.3% in the higher dose group, but the location of the new porosities was not randomly distributed. In the controls, porosity of Zones I and II (both 1.7%) was almost twice as much as that of Zone III (0.9%). In the lower dose group, cortical porosity of Zone I (5.5%) and II (1.8%) was greater than in Zone III (0.9%), but these differences were not statistically significant. In the higher dose group, cortical porosity of Zone I (11.5%) and II (6.1%) significantly increased compared with Zone III (1.4%) (P < 0.0005). Histomorphometric measurements showed that bone formation rate on both periosteal and endocortical surfaces increased, resulting in increased bone area and cortical area in the higher dose group. A model was developed to evaluate the effect of the changes in geometry and porosity on CSMI in the different zones. This simulation model indicated that CSMI in the higher dose group was significantly greater than in the other two groups, despite the increased porosity. We speculate the reason to be that porosity increased near the endocortical surface, where its mechanical effect is small. This increase was more than offset by apposition of new bone on the periosteal surface. These data suggest that (1) PTH increases cortical porosity in a dose-dependent manner, primarily near endocortical surfaces; (2) because of this nonhomogeneous distribution, the mechanical effect of increased porosity is small; (3) the increased cortical porosity associated with PTH treatment is more than offset by periosteal apposition of new bone, causing an overall increase in the bending rigidity of cortical bone; and (4) these changes cannot be accurately evaluated using noninvasive methods of bone densitometry, which cannot account for the location of bone gain and bone loss. Received: 20 May 1999 / Accepted: 10 January 2000  相似文献   

6.
W S Jee  S Mori  X J Li  S Chan 《BONE》1990,11(4):253-266
To assess the efficacy of prostaglandin E2 (PGE2) in augmenting cortical bone mass, graded doses of PGE2 were subcutaneously administered for 30 days to seven-month old sham-ovariectomized (SHAM) and ovariectomized (OVX) rats. Both groups were operated at three months of age. Histomorphometric analyses of double fluorescent labeled tibial shafts were performed on basal control, OVX, and SHAM rats treated with 0, 0.3, 1, 3, and 6 mg PGE2/kg/d for 30 days. Baseline aging data showed increased cortical tissue and cortical bone area and reduced bone formation parameters at the periosteal and endocortical bone envelopes between three and eight months of age. The tibial shafts of OVX rats compared to SHAM controls showed elevated periosteal mineral apposition rate and endocortical bone formation parameters. PGE2 administration to OVX and SHAM rats increased cortical bone by the addition of new circumferential bone on the endocortical and periosteal surfaces, as well as woven cancellous bone in the marrow region. Stimulated osteoblastic recruitment and activity enhanced bone formation at all bone surfaces. The new bone was both lamellar and woven in nature. PGE2 treatment also activated intracortical bone remodeling (not seen in untreated eight-month old rats), creating a porous cortex. Thus, PGE2 administration activated cortical bone modeling in the formation mode (A----F), as well as intracortical bone remodeling (A----R----F). PGE2 administration to OVX rats resulted in more intracortical bone remodeling, periosteal bone formation, and new cancellous bone production than observed in PGE2 treated controls. The findings that PGE2 administration to OVX and intact female rats increases cortical bone mass, coupled with observations that mouse, rat, dog, and man respond similarly to PGE2, suggest that PGE2 administration may be useful in the prevention and treatment of postmenopausal osteoporosis.  相似文献   

7.
Cortical bone, the dominant component of the human skeleton by volume, plays a key role in protecting bones from fracture. We analyzed the cortical bone effects of teriparatide treatment in postmenopausal women with osteoporosis who had previously received long-term alendronate (ALN) therapy or were treatment naïve (TN). Tetracycline-labeled paired iliac crest biopsies obtained from 29 ALN-pretreated and 16 TN women were evaluated for dynamic histomorphometric parameters of bone formation at the periosteal, endocortical and intracortical bone compartments, before and after 24 months of teriparatide treatment. At baseline, the frequency of specimens without any endocortical and periosteal tetracycline labeling, and the percentage of quiescent osteons, was higher in the ALN than the TN group. Endocortical and periosteal mineralizing surface (MS/BS%), periosteal bone formation rate (BFR/BS), mineral apposition rate (MAR) and the number of intracortical forming osteons were significantly lower in the ALN-pretreated patients than in the TN group. Following teriparatide treatment, the frequency of endocortical and periosteal unlabeled biopsies decreased; in the ALN-pretreated group the percentage of quiescent osteons decreased and, in contrast, forming and resorbing osteons were increased. Teriparatide treatment resulted in significant increases of MAR in the endocortical, and MS/BS% in the periosteal compartment in the ALN-pretreated group. Most indices of bone formation remained lower in the ALN-pretreated group compared with the TN group at study end. Endocortical wall width was increased in both ALN-pretreated and TN groups. Cortical porosity and cortical thickness were significantly increased in the ALN-pretreated group after teriparatide treatment. Our results suggest that 24 months of teriparatide treatment increases cortical bone formation and cortical turnover in patients who were either TN or had previous ALN therapy.  相似文献   

8.
Fox J  Miller MA  Newman MK  Recker RR  Turner CH  Smith SY 《BONE》2007,41(3):321-330
Treatment with parathyroid hormone 1-84 (PTH) or teriparatide increases osteonal remodeling and decreases bone mineral density (BMD) at cortical (Ct) bone sites but may also increase bone size. Decreases in BMD and increases in size exert opposing effects on bone strength. In adult ovariectomized (OVX) rhesus monkeys, we assessed the effects of daily PTH treatment (5, 10 or 25 microg/kg) for 16 months on BMD at the radial, tibial and femoral diaphyses, and on biomechanical properties (3-point bending) of radial cortical bone and the femoral diaphysis. PTH treatment did not affect areal BMD measured by dual-energy X-ray absorptiometry at the tibial diaphysis but caused a rapid, dose-related decrease at the distal radial diaphysis. Peripheral quantitative computed tomography at the radial and femoral diaphyses confirmed a significant PTH dose-related decrease in volumetric Ct.BMD caused primarily by increased cortical area. Significant increases in cortical thickness were the result of nonsignificant increases in periosteal length and decreases in endocortical length. Histomorphometry revealed increased endocortical bone formation at the tibial diaphysis and rib, higher Haversian remodeling at the rib and increased cortical porosity at the rib and tibia. Biomechanical testing at the femoral diaphysis showed that PTH treatment had no effect on peak load, but significantly decreased stiffness and increased work-to-failure (the energy required to break the bone). Similar changes occurred in radial cortical beams but only stiffness was changed significantly. Thus, PTH treatment of OVX rhesus monkeys decreased BMD and stiffness of cortical bone but did not affect peak load, likely because of increased bone size. However, PTH treatment increased the energy required to break the femur making it more resistant to fracture.  相似文献   

9.
Generally, it is believed that intermittent administration of parathyroid hormone (PTH) has an anabolic effect on the skeleton, whereas continuous administration is catabolic. However, there is evidence that continuous exposure to PTH may have an anabolic effect, for example, in patients with mild primary hyperparathyroidism (PHPT). The possibility of delivering PTH continuously may have important implications for the treatment of osteoporosis. Furthermore, estrogen treatment may be useful in the medical management of PHPT. Therefore, we examined the skeletal effects of continuous administration of PTH, with or without estrogen, in the estrogen-deficient rat with established osteopenia. Forty 7-month-old SD rats were divided into four ovariectomy (OVX) groups and one sham-operated group. Eight weeks post-OVX, three groups received subcutaneous implants of Alzet mini pumps loaded with PTH(1-34) (30 microg/kg per day), 17beta-estradiol (10 microg/kg per day) pellet, or both PTH and 17beta-estradiol separately for 4 weeks. OVX and sham control groups were given the mini pumps loaded with vehicle. Two doses of calcein (10 mg/kg) were given subcutaneously to all rats 2 days and 8 days before death. Histomorphometry was performed on cancellous and cortical bone of the fourth lumbar vertebra. At 3 months, post-OVX rats displayed bone loss with high bone turnover. Estrogen reversed OVX-mediated high turnover without restoring cancellous bone volume (BV/TV). PTH infusion further increased bone turnover and partially restored BV/TV. However, PTH infusion increased cortical porosity. Estrogen inhibited PTH-mediated cancellous bone resorption and substantially increased BV/TV above sham control. The combined treatment was associated with a significant increase in peritrabecular fibrosis and woven bone formation. The combined treatment of PTH infusion and estrogen replacement enhanced cortical width but estrogen did not prevent the PTH-induced cortical tunneling. We conclude that continuous administration of PTH and estrogen increases cortical porosity but has substantial beneficial effects on vertebral cancellous bone volume and cortical width in OVX rats.  相似文献   

10.
Previous reports showed that bone mass and architecture only partially recovered by remobilization (RM) after immobilization (IM)-induced osteopenia, and that parathyroid hormone (PTH) had an anabolic effect on the skeleton. The aim of this study was to determine whether low doses of PTH could restore IM-induced cortical bone loss and whether a combination of PTH plus loading (RM) treatment would be more effective than the PTH in unloaded (IM) limbs. One hundred and sixty 6-month-old rats were divided into aging and IM groups. The right hindlimb of the rat was immobilized by elastic bandage for 18 weeks, and then groups of rats were either kept IM or RM and treated with 30 microgram or 80 microgram of hPTH(1-38)/kg/day for 2, 10, and 20 weeks. Fluorescent-labeled, undecalcified cross-sections of right tibial shafts were studied. We found that RM for 20 weeks after 18 weeks of IM only partially recovered IM-induced muscle weight loss and PTH had no effect on muscle weight in either IM or RM limbs; that RM for 20 weeks after 18 weeks of IM partially restored some minimal cortical width by stimulating periosteal and endocortical bone formation and decreasing endocortical resorption; that PTH treatment of IM limbs completely restored IM-induced cortical bone loss and added extra bone by stimulating bone formation indices on all bone surfaces and depressing bone resorption on endocortical surface; that PTH treatment of RM limbs produced similar anabolic effects as in IM limbs with 30 microgram/kg/day dose but the 80 microgram/kg/day dose-treated limbs had a higher periosteal bone formation rate, which created a larger cross-sectional area, more cortical bone area, and a thicker cortex than the same dose treated IM limbs; and that PTH 80 microgram/kg/day treatment produced more anabolic effect than the 30 microgram/kg/day in both IM and RM limbs. We concluded that reloading the hindlimb by RM after long-term IM could not recover the cortical bone mass. PTH at employed doses was able to completely restore IM-induced cortical bone loss, and this effect was independent of mechanical stimulation. However, when PTH was combined with mechanical loading (RM), a synergistic anabolic effect on periosteal bone formation occurred which increased the cross sectional area that can increase bone strength.  相似文献   

11.
Cortical bone responses following administration of parathyroid hormone (PTH) were evaluated using a four-point bending device to clarify the relationship between the effect of PTH and mechanical loading. Female Wistar rats, 36-months-old, were used. Rats were randomized into three groups (n = 10/group), namely PTH-5 (5 μg PTH/kg body weight), PTH-30 (30 μg PTH/kg body weight), and PTH-v (vehicle). PTH (human PTH (1–34)) was injected subcutaneously three times/week for 3 weeks. Loads on the right tibia were applied in vivo at 29.1 ± 0.3 N for 36 cycles at 2 Hz 3 days/week for 3 weeks using four-point bending. The administration of PTH and tibial mechanical loading were performed on the same day. After calcein double labeling, rats were killed and tibial cross-sections were prepared from the region with maximal bending at the central diaphysis. Histomorphometry was performed over the entire periosteal and endocortical surfaces of the tibiae, dividing the periosteum into lateral and medial surfaces. The in vivo average peak tibial strains (predicted) on the lateral periosteal surface were 1392.4, 1421.8 and 1384.7 μstrain in PTH-v, PTH-5 and PTH-30 groups, respectively, showing no significant difference among the three groups. Significant loading-related increases in the bone formation surface, mineral apposition rate, and bone formation rate were observed at the periosteal and endocortical surfaces. Significant differences between PTH groups were also seen. Interaction between mechanical loading and PTH was significant at both periosteal and endocortical surfaces. It is concluded that PTH has a synergistic effect on the cortical bone response to mechanical loading. Received: October 4, 2000 / Accepted: January 12, 2001  相似文献   

12.
The influence of combined parathyroid hormone (PTH) and growth hormone (GH) treatment on bone formation and mechanical strength was investigated in femoral middiaphysial cortical bone from 20-month-old ovariectomized (OVX) rats. The animals were OVX at 10 months of age, and at 18 months they were treated daily for 56 days with PTH(1-34) alone (60 microg/kg), recombinant human GH (rhGH) alone (2.7 mg/kg), or a combination of PTH(1-34) plus rhGH. Vehicle was given to OVX control rats. All animals were labeled at day 28 (calcein) and at day 49 (tetracycline) of the treatment period. PTH(1-34) alone gave rise to formation of a new zone of bone at the endocortical surface. rhGH alone caused substantial bone deposition at the periosteal surface without influencing the endocortical surface. Combined PTH(1-34) plus rhGH administration enhanced bone deposition at the periosteal surface to the same extent as that of rhGH alone. However, the combined treatment resulted in a more pronounced formation of new bone at the endocortical surface than was induced by PTH(1-34) alone. Both PTH(1-34) alone and rhGH alone increased the mechanical strength of the femoral diaphysis, and further increase in mechanical strength resulted from combined PTH(1-34) plus rhGH treatment. OVX by itself induced the characteristic increase in medullary cavity cross-sectional area and a minor decrease in the mechanical quality of the osseous tissue.  相似文献   

13.
Mashiba T  Burr DB  Turner CH  Sato M  Cain RL  Hock JM 《BONE》2001,28(5):538-547
We have previously shown that parathyroid hormone (PTH) increases cortical bone mass and mechanical strength of female rabbits after 140 days of treatment. However, cortical porosity was also shown to increase. If cortical porosity increases prior to the change in geometry, there may be a transient decrease in cortical bone strength that could make the bone more susceptible to fracture in the early phase of treatment. The purpose of this study is to examine the effects of PTH on the remodeling dynamics and mechanical properties of cortical bone in rabbits, which exhibit haversian remodeling, during the first remodeling cycle after the initiation of treatment. Fifty 9-month-old intact female New Zealand white rabbits were randomized into five groups. A baseline control group was killed at the start of the experiment. The two PTH-treated groups were given human PTH(1-34) at 10 microg/kg daily subcutaneously for 35 (P35) or 70 (P70) days. Two respective age-matched control groups (V35, V70) were injected with vehicle. Histomorphometry of the cortical bone in the tibial midshaft showed that, although intracortical activation frequency was significantly increased by PTH at 35 days, there was no significant increase of cortical porosity in the first remodeling cycle (70 days). Moreover, stimulation of cortical surface bone formation in the treated animals led to significantly greater cortical area and greater bone strength in both P35 and P70. We conclude that, although intracortical remodeling increases within the first remodeling period (70 days) in animals treated with 10 microg/kg PTH, the greater cortical area due to acceleration of bone formation on cortical surfaces increases cortical bone strength. There is no mechanical risk during the first remodeling cycle associated with intermittent PTH treatment in animals with normal bone mass.  相似文献   

14.
We sought to determine whether risedronate can preserve cortical bone mass and mechanical properties during long-term disuse in dogs, assessed by histomorphometry and biomechanics on metacarpal diaphyses. Risedronate slowed cortical thinning and partially preserved mechanical properties, but it was unable to suppress bone loss to the degree seen in other osteoporoses. INTRODUCTION: Disuse induces dramatic bone loss resulting from greatly elevated osteoclastic resorption. Targeting osteoclasts with antiresorptive agents, such as bisphosphonates, should be an effective countermeasure for preventing disuse osteoporosis. MATERIALS AND METHODS: Single forelimbs from beagles (5-7 years old, n = 28) were immobilized (IM) for 12 months. Age-matched, non-IM dogs served as controls. One-half the animals received either risedronate (RIS, 1 mg/kg) or vehicle daily. Histomorphometry was performed on second metacarpal mid-diaphyses. Cortical mechanical properties were determined by testing third metacarpal diaphyses in four-point bending. RESULTS: IM caused marked reduction in cortical area (-42%) and cortical thinning (-40%) through endocortical resorption, extensive intracortical tunneling, and periosteal resorption; both bone resorption and formation were significantly elevated over control levels on all envelopes. IM also decreased maximum load and stiffness by approximately 80% compared with controls. RIS reduced both periosteal bone loss and marrow cavity expansion; however, cortical area remained significantly lower in RIS-treated IM animals than in untreated non-IM controls (-16%). RIS also increased resorption indices in all envelopes compared with nontreated IM, indicating that RIS suppressed osteoclast activity but not osteoclast recruitment. RIS did not affect bone formation. RIS treatment conserved some whole bone mechanical properties, but they were still significantly lower than in controls. There were no significant differences in tissue level material properties among the groups. CONCLUSION: RIS treatment reduces cortical bone loss at periosteal and endocortical surfaces caused by long-term immobilization, thus partially conserving tissue mechanical properties. This modest effect contrasts with more dramatic actions of the bisphosphonate in other osteoporoses. Our results suggest that risedronate impairs osteoclastic function but cannot completely overcome the intense stimulus for osteoclast recruitment during prolonged disuse.  相似文献   

15.
To study the skeletal effects of continual and terminated use of risedronate treatment on cortical bone in ovariectomized (Ovx) rats, we used risedronate (Ris), 5 μg · kg−1, by subcutaneous injections, twice per week. The middle part of the tibial shafts (Tx) were processed undecalcified for quantitive bone histomorphometry. Cortical bone and the marrow areas of the tibial shaft did not change in either sham-Ovx or Ovx rats during the 150-day experimental period. Continued administration of Ris for 150 days decreased the marrow area and increased the percentage of cortical area compared with the matching sham and Ovx group. A decrease in bone formation indices in both periosteal and endocortical surfaces of Tx in sham-operated rats between the age of 5 and 8 months was seen. Ovariectomy increased the percentage of labeled perimeter in the periosteal area, and markedly increased the percentage of eroded perimeter in the endocortical surface compared with sham control groups in 81 and 150 days. Bone formation indices of Ris treatment were increased in periosteal surfaces, and percentages of eroded perimeter were decreased more in endocortical surfaces in 150 days than in the matching sham and Ovx groups. These data matched our static data, which showed a significantly increased percentage of cortical bone area and decreased percentage of marrow area. These bone gains were not maintained in the 90-day Ris withdrawal group. For cancellous bone, the 60-day Ris-treated high bone mass was maintained in the withdrawal group and not maintained in Ris continmuously treated group. These results indicate the effects of constant and terminated use of Ris in cortical bone were different from those in trabecular bone in the proximal tibial metaphysis. Received: Jan. 20, 1998 / Accepted: June 16, 1998  相似文献   

16.
Glucocorticoids (GC) are used for the treatment of a wide spectrum of diseases because of their potent anti-inflammatory and immunosuppressive effects, and they are serious and common causes of secondary osteoporosis. Administration of intermittent parathyroid hormone (PTH) may induce formation of new bone and may counteract the bone loss induced by GC treatment. Effects of simultaneous PTH and GC treatment were investigated on bone biomechanics, static and dynamic histomorphometry, and bone metabolism. Twenty-seven-month-old female rats were divided randomly into the following groups: baseline, vehicle, PTH, GC, and PTH + GC. PTH (1-34) 25 mug/kg and GC (methylprednisolone) 2.5 mg/kg were injected subcutaneously each day for a treatment period of 8 weeks. The rats were labeled with fluorochromes 3 times during the experiment. Bone sections were studied by fluorescence microscopy. The PTH injections resulted in a 5-fold increase in cancellous bone volume. At the proximal tibia, PTH induced a pronounced formation of new cancellous bone which originated from the endocortical bone surfaces and from thin trabeculae. Formation and modeling of connections between trabeculae were observed. Similar but less pronounced structural changes were seen in the PTH + GC group. The compressive strength of the cancellous bone was increased by 6-fold in the PTH group compared with the vehicle group. GC partially inhibited the increase in compressive strength induced by PTH. Concerning cortical bone, PTH induced a pronounced increase in the endocortical bone formation rate (BFR) and a smaller increase in periosteal BFR. The combination of PTH + GC resulted in a partial inhibition of the PTH-induced increase in bone formation. Serum-osteocalcin was increased by 65% in the PTH group and reduced by 39% in the GC group. The pronounced anabolic effect of PTH injections on the endocortical and trabecular bone surfaces and less pronounced anabolic effect on periosteal surfaces were partially inhibited, but not prevented, by simultaneous GC treatment in old rats. Both cortical and cancellous bone possessed full mechanical competence after treatment with PTH + GC.  相似文献   

17.
The purpose of the present study was to examine the effects of vitamin K(2) and risedronate on bone formation and resorption, the osteocyte lacunar system, and porosity in the cortical bone of glucocorticoid (GC)-treated rats. Forty-nine female Sprague-Dawley rats, 3 months of age, were randomized into five groups according to the following treatment schedule: age-matched control, GC administration, and GC administration with concomitant administration of vitamin K(2), risedronate, or vitamin K(2) + risedronate. At the end of the 8-week experiment, classical bone histomorphometric analysis was performed, and the osteocyte lacunar system and porosity were evaluated on the cortical bone of the tibial diaphysis. GC administration decreased percent cortical bone area and increased percent marrow area as a result of decreased periosteal bone formation, and increased endocortical bone erosion, and increased cortical porosity. Vitamin K(2) prevented a reduction in periosteal bone formation but did not affect percent cortical bone and marrow areas. Risedronate prevented a reduction in periosteal bone formation and an increase in endocortical bone erosion, resulting in prevention of alterations in percent cortical bone and marrow areas. Both vitamin K(2) and risedronate increased osteocyte density and lacunar occupancy and prevented a GC-induced increase in cortical porosity. Vitamin K(2) and risedronate had additive effects on osteocyte density and lacunar occupancy and a synergistic effect on cortical porosity. The present study showed the efficacy of vitamin K(2) and risedronate for bone formation and resorption, the osteocyte lacunar system, and porosity in the cortical bone of GC-treated rats.  相似文献   

18.
The transient effects of prostaglandin E2 (PGE2) on cancellous and cortical bone in iliac crests and mid-tibial shafts of nine intact young adult dogs were evaluated following 31 days of treatment. Histomorphometric bone changes were characterized from in vivo fluorescent double-labeled undecalcified bone specimens. PGE2 caused an increase in cancellous bone remodeling evidence by increased in activation frequency; increased percent eroded and formation surfaces; increased mineral apposition and bone formation rates; and shortened resorption, formation, and total bone remodeling periods. Activated cancellous bone remodeling did not lead to decreased cancellous bone mass, indicating an imbalance between bone resorption and formation in favor of formation (activation----resorption----stimulated formation; A----R----F increases) at remodeling sites. The PGE2 treatment activated bone modeling in the formation mode (activation----formation; A----F) at the periosteal and endocortical surfaces and increased activation frequency of intracortical bone remodeling in the tibial shaft. Increased modeling activation converted quiescent bone surfaces to formation surfaces with stimulated osteoblastic activity (i.e., increased percent labeled periosteal and endocortical surfaces, mineral apposition rates, and woven and lamellar trabecular bone formation) leading to 9- to 26-fold increases in newly formed bone mass in subperiosteal, subendosteal, and marrow regions, compared to controls. However, increased intracortical bone remodelling elevated remodeling space (i.e., increased cortical porosity), producing a bone loss that partially offsets the bone gain. The combined events lead to a positive bone balance in PGE2-treated cortical bone, compared to a negative bone balance in control bones. Collectively our data suggest that in vivo PGE2 is a powerful activator of cancellous and cortical bone formation, which may be able to build a peak bone mass to prevent and/or correct the skeletal defects to cure osteoporosis.  相似文献   

19.
Bone's microporosities play important biologic and mechanical roles. Here, we quantified 3D changes in cortical osteocyte-lacunae and other small porosities induced by estrogen withdrawal and two different osteoporosis treatments. Unlike 2D measurements, these data collected via synchrotron radiation-based μCT describe the size and 3D spatial distribution of a large number of porous structures. Six-month old female Sprague-Dawley rats were separated into four groups of age-matched controls, untreated OVX, OVX treated with PTH, and OVX treated with Alendronate (ALN). Intracortical microporosity of the medial quadrant of the femoral diaphysis was quantified at endosteal, intracortical, and periosteal regions of the samples, allowing the quantification of osteocyte lacunae that were formed primarily before versus after the start of treatment. Across the overall thickness of the medial cortex, lacunar volume fraction (Lc.V/TV) was significantly lower in ALN treated rats compared to PTH. In the endosteal region, average osteocyte lacunar volume () of untreated OVX rats was significantly lower than in age-matched controls, indicating a decrease in osteocyte lacunar size in bone formed on the endosteal surface after estrogen withdrawal. The effect of treatment (OVX, ALN, PTH) on the number of lacunae per tissue volume (Lc.N/TV) was dependent on the specific location within the cortex (endosteal, intracortical, periosteal). In both the endosteal and intracortical regions, Lc.N/TV was significantly lower in ALN than in untreated OVX, suggesting a site-specific effect in osteocyte lacuna density with ALN treatment. There also were a significantly greater number of small pores (5-100 μm(3) in volume) in the endosteal region for PTH compared to ALN. The mechanical impact of this altered microporosity structure is unknown, but might serve to enhance, rather than deteriorate bone strength with PTH treatment, as smaller osteocyte lacunae may be better able to absorb shear forces than larger lacunae. Together, these data demonstrate that current treatments of osteoporosis can alter the number, size, and distribution of microporosities in cortical rat lamellar bone.  相似文献   

20.
Bone strength, a determinant of resistance to fracture, depends on BMD, geometry, microarchitecture, bone turnover rates, and properties of the bone at the material level. Despite comparable antifracture efficacy, anti‐catabolics and bone anabolic agents are likely to modify the various determinants of bone strength in very different ways. Eight weeks after ovariectomy (OVX), 8‐mo‐old osteoporotic rats received pamidronate (APD; 0.6 mg/kg, 5 days/mo, SC), raloxifene (3 mg/kg, 5/7 days, tube feeding), PTH(1–34) (10 μg/kg, 5/7 days, SC), or vehicle for 16 wk, and we measured vertebral BMD, maximal load, stiffness and energy, microarchitecture, and material properties by nanoindentation, which allows the calculation of the elastic modulus, tissue hardness, and working energy. Markers of bone turnover, plasma osteocalcin, and urinary deoxypyridinoline (Dpd) were also determined. PTH induced greater maximal load than APD or raloxifene, as well as greater absorbed energy, BMD, and increased bone turnover markers. PTH markedly increased trabecular bone volume and connectivity to values higher than sham. Animals treated with APD had BV/TV values significantly higher than OVX but lower than sham, whereas raloxifene had no effect. Tissue hardness was identical in PTH‐treated and OVX untreated controls. In contrast, APD reversed the decline in strength to levels not significantly different to sham, reduced bone turnover, and increased hardness. Raloxifene markedly increased material level cortical hardness and elastic modulus. These results show the different mechanisms by which anti‐catabolics and bone anabolics reduce fracture risk. PTH influences microarchitecture, whereas bisphosphonates alter material‐level bone properties, with probable opposite effects on remodeling space. Raloxifene primarily improved the material stiffness at the cortical level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号