首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
The effects of caffeine, a naturally occurring stimulant, on the brain and plasma concentrations of neuroactive steroids were examined in the rat. A single intraperitoneal injection of caffeine induced dose- and time-dependent increases in the concentrations of pregnenolone, progesterone, and 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone) in the cerebral cortex. The increases were significant at a caffeine dose of 25 mg/kg and greatest (+188, +388, and +71%, respectively) at a dose of 100 mg/kg in rats killed 30 min after caffeine administration. Caffeine also increased the plasma concentrations of pregnenolone and progesterone with a dose-response relation similar to that observed in the brain, whereas the caffeine-induced increase in the plasma concentration of allopregnanolone was maximal at a dose of 50 mg/kg. Caffeine increased the plasma concentration of corticosterone, but it had no effect on the brain or plasma concentrations of 3alpha, 21-dihydroxy-5alpha-pregnan-20-one and dehydroepiandrosterone. Moreover, the brain and plasma concentrations of pregnenolone, progesterone, and allopregnanolone were not affected by caffeine in adrenalectomized-orchiectomized rats. These results suggest that neuroactive steroids may modulate the stimulant and anxiogenic effects of caffeine.  相似文献   

2.
Nicotine, one of the most widely used psychotropic substances, is able to induce both anxiolytic and anxiogenic effects. The effect of this drug on the brain and plasma concentrations of neuroactive steroids was examined in the rat. Anxiolytic doses of nicotine (0.03-0.3 mg/kg) had no significant effect, whereas administration of anxiogenic doses (0.5 to 2 mg/kg) produced a dose- and time-dependent increase in the cerebrocortical concentrations of pregnenolone, progesterone, and allopregnanolone, with the greatest observed effects (+180%, +223%, and +124%, respectively) apparent at the dose of 2 mg/kg. In contrast, nicotine (1-2 mg/kg) decrease by 31% and 38%, respectively, the concentration of 3alpha,21-dihydroxy-5alpha-pregnan-20-one (allotetrahydrodeoxycorticosterone, or THDOC) in the cerebral cortex. Nicotine also increased the plasma concentrations of pregnenolone and progesterone, whereas failed to affect significantly those of allopregnanolone or THDOC. Nicotine induced a dose- and time-dependent increase in the plasma concentration of corticosterone, indicating that this drug activates the hypothalamic-pituitary-adrenal (HPA) axis. These results suggest that the changes in emotional behavior elicited by nicotine, similar to those induced by stressful stimuli or other anxiogenic drugs, are associated with an increase in neuroactive steroids content of the brain.  相似文献   

3.
The extrapyramidal side effects of typical antipsychotics, which are induced to a markedly reduced extent by clozapine, have been linked to a dysfunction of central gamma-aminobutyric acid (GABA)-mediated neurotransmission. The effects of clozapine on the brain concentrations of 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone, AP) and 3alpha,21-dihydroxy-5alpha-pregnan-20-one (allotetrahydrodeoxycorticosterone, THDOC), two potent and endogenous positive allosteric modulators of GABA-mediated chloride current intensities at GABA(A) receptors, were compared with those of the typical antipsychotic haloperidol. A single administration of clozapine (1.25-20 mg/kg, IP), but not of haloperidol (0.1 or 0.5 mg/kg, IP), induced dose- and time-dependent increases in the concentrations of progesterone, AP, and THDOC in the cerebral cortex and striatum of rats. Clozapine (at 10 mg/kg, but not at lower doses) also increased the concentrations of these steroids as well as that of corticosterone in plasma in intact rats, but failed to increase the cortical concentrations of AP and THDOC in adrenalectomized-orchidectomized rats. An acute challenge with clozapine (10 mg/kg), administered 48 h after the termination of daily treatment with the same dose for 19 days, still increased the cortical concentrations of progesterone, AP, and THDOC. These results suggest that the clozapine-induced increases in neuroactive steroid concentrations in the brain may contribute to the atypical pharmacological profile of this antipsychotic drug.  相似文献   

4.
Acute administration of a neurosteroid 5beta-pregnan-3alpha-ol-20-one induced a greater impairment in motor performance of the selectively bred alcohol-sensitive (ANT) than alcohol-insensitive (AT) rats. This difference was not associated with the sensitivity of gamma-aminobutyrate type A (GABA(A)) receptors, as 5alpha-pregnan-3alpha-ol-20-one (allopregnanolone) decreased the autoradiographic signals of t-butylbicyclophosphoro[35S]thionate binding to GABA(A) receptor-associated ionophores more in the brain sections of AT than ANT rats. Nor was the difference associated with baseline levels of neuroactive progesterone metabolites, as 5alpha-pregnan-3,20-dione (5alpha-DHP) and 5alpha-pregnan-3alpha-ol-20-one were lower in the ANT rats. After ethanol (2 g/kg, i.p.) administration and the subsequent motor performance test, the increased brain concentrations of these metabolites were still lower in the ANT than AT rats, although especially in the cerebellum the relative increases were greater in the ANT than AT rats. The present data suggest that the mechanisms mediating neurosteroid-induced motor impairment are susceptible to genetic variation in rat lines selected for differences in ethanol intoxication.  相似文献   

5.
Selective activation of peripheral benzodiazepine receptors (PBRs) in adrenal cells and brain oligodendrocytes promotes steroidogenesis. Three 2-phenyl-imidazo[1,2-a]pyridine derivatives (CB 34, CB 50 and CB 54) have now been investigated with regard to their selectivity for PBRs and their ability to stimulate central and peripheral steroidogenesis in rats. The three CB compounds (10(-10)-10(-4) M) potently inhibited the binding of the PBR ligand [3H]-PK 11195 to brain and ovary membranes in vitro, without substantially affecting [3H]-flunitrazepam binding to central benzodiazepine receptors. These compounds (10(-7)-10(-4) M) also had little or no marked effects on GABA-evoked Cl- currents in voltage-clamped Xenopus oocytes expressing human alpha1beta2gamma2S GABA(A) receptors. In addition, they failed to affect ligands binding to GABA(B), D1/D2 dopamine, muscarinic acetylcholine, N-methyl-D-aspartic acid and opiate receptors. Intraperitoneal administration of CB compounds (3-50 mg kg(-1)) induced a dose-dependent increase in the concentrations of neuroactive steroids in plasma and brain. The brain concentrations of pregnenolone, progesterone, allopregnanolone and allotetrahydrodeoxycorticosterone (THDOC) showed maximal increases in 96+/-3, 126+/-14, 110+/-12 and 70+/-13% above control, respectively, 30 to 60 min after injection of CB 34 (25 mg kg(-1)). CB 34 also increased the brain concentrations of neuroactive steroids in adrenalectomized-orchiectomized rats, although to a lesser extent than in sham-operated animals, suggesting that CB compounds stimulate brain steroidogenesis independently of their effects on peripheral tissues. The increase in brain and plasma neurosteroid content induced by CB 34 was associated with a marked anticonflict effect in the Vogel test. Our results indicate that the three CB compounds tested are specific and potent agonists at peripheral benzodiazepine receptors, and that they stimulate steroidogenesis in both the brain and periphery.  相似文献   

6.
Stressful stimuli and anxiogenic drugs increase the plasma and brain concentrations of neuroactive steroids. Moreover, in rats trained to consume their daily meal during a fixed period, the anticipation of food is associated with changes in the function of various neurotransmitter systems. We have now evaluated the effects of anticipation and consumption of food in such trained rats on the plasma and brain concentrations of 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG) and 3alpha,21-dihydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH DOC), two potent endogenous positive modulators of type A receptors for gamma-aminobutyric acid (GABA). The abundance of these neuroactive steroids was increased in both the cerebral cortex and plasma of the rats during both food anticipation and consumption. In contrast, the concentration of their precursor, progesterone, was increased in the brain only during food consumption, whereas it was increased in plasma only during food anticipation. Intraperitoneal administration of the selective agonist abecarnil (0.1 mg/kg) 40 min before food presentation prevented the increase in the brain levels of 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC during food anticipation but not that associated with consumption. The change in emotional state associated with food anticipation may thus result in an increase in the plasma and brain levels of 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC in a manner sensitive to the activation of GABA(A) receptor-mediated neurotransmission. A different mechanism, insensitive to activation of such transmission, may underlie the changes in the concentrations of these neuroactive steroids during food consumption.  相似文献   

7.
In the rat brain, gamma-hydroxybutyric-acid (GHB) increases the concentrations of 3alpha-hydroxy,5alpha-pregnan-20-one (allopregnanolone, 3alpha,5alpha-THP) and 3alpha,21-dihydroxy,5alpha-pregnan-20-one (allotetrahydrodeoxycorticosterone/3alpha,5alphaTHDOC), two neurosteroids acting as positive allosteric modulators of gamma-aminobutyric acid (GABA)(A) receptors. This study was aimed at assessing whether neurosteroids play a role in GHB-induced loss of righting reflex (LORR). Basal and GHB-stimulated brain concentrations of endogenous 3alpha,5alpha-THP and 3alpha,5alpha-THDOC were analyzed in two rat lines, GHB-sensitive (GHB-S) and GHB-resistant (GHB-R), selectively bred for opposite sensitivity to GHB-induced sedation/hypnosis. Basal neurosteroid concentrations were similar in brain cortex of the two rat lines. However, in male GHB-S rats, administration of GHB (1000 mg/kg, i.p., 30 min) increased brain cortical concentrations of 3alpha,5alpha-THP and 3alpha,5alpha-THDOC 7- and 2.5-fold, respectively, whilst male GHB-R animals displayed only a 4- and 2-fold increase, respectively. In GHB-S rats this increase lasted up to 90 min and declined 180 min following GHB administration, a time course that matches LORR onset and duration. In contrast, in GHB-R rats, which failed to show GHB-induced LORR, brain cortical 3alpha,5alpha-THP and 3alpha,5alpha-THDOC had returned to control values within 90 min. At onset of LORR, a similar increase in brain cortical levels of 3alpha,5alpha-THP and 3alpha,5alpha-THDOC (2-3-fold) was observed in GHB-S female rats and in the few female GHB-R rats that lost the righting reflex after GHB administration, but not in female GHB-R rats failing to show LORR. Sub-hypnotic doses (7.5 and 12.5 mg/kg, i.p.) of pregnanolone, administered 10 min before GHB, dose-dependently facilitated the expression of GHB-induced LORR in GHB-R male rats. These results suggest that the GHB-induced increases of brain 3alpha,5alpha-THP and 3alpha,5alpha-THDOC concentrations are implicated in the eliciting of the sedative/hypnotic action of GHB.  相似文献   

8.
Although carbamazepine (CBZ) is used therapeutically in the treatment of various neurological and psychiatric conditions, its mechanism of action remains largely unknown. CBZ has now been shown to inhibit the binding of [(3)H]PK 11195 to peripheral benzodiazepine receptors (PBRs) in rat brain and ovary membranes in vitro with a potency (IC(50), approximately 60 microM) much lower than that of unlabeled PK 11195 (IC(50), approximately 2.0 nM). Administration of CBZ to rats induced dose (25 to 100 mg/kg, i.p.) and time (15 to 60 min) dependent increases in the concentrations of pregnenolone, progesterone, allopregnanolone, and allotetrahydrodeoxycorticosterone in both the cerebral cortex and plasma. CBZ also induced steroidogenesis in the brain of adrenalectomized-orchiectomized rats, suggesting that this effect is mediated in a manner independent of peripheral PBRs. The increase in brain concentrations of neuroactive steroids induced by a single injection of CBZ was associated with a marked protective effect against isoniazid-induced convulsions. In contrast, long-term administration of CBZ (50 mg/kg, twice a day for 30 days) induced tolerance to the anticonvulsant action of the drug. This same treatment, however, did not prevent the ability of a challenge dose of CBZ to stimulate steroidogenesis. These results indicate that CBZ-induced steroidogenesis might not be responsible for the anticonvulsant activity of this drug.  相似文献   

9.
The peripheral benzodiazepine receptors (PBR) might be involved in certain pathophysiological events, such as anxiety, by stimulating the production of neuroactive steroids in the brain. A recent electrophysiological study has revealed an interaction between PK11195, a PBR ligand and the anxiolytic compound etifoxine at micromolar concentrations. The present work was aimed at further characterizing the etifoxine-PBR interaction. In membrane preparations from intact male rat forebrain, etifoxine uncompetitively inhibited the binding of [(3)H]PK11195 with an IC(50) = 18.3 +/- 1.2 microM, a value consistent with etifoxine plasma and brain concentrations measured after an anxiolytic-like dose (50 mg/kg). In vivo, that etifoxine dose was associated with increased concentrations of pregnenolone, progesterone, 5alpha-dihydroprogesterone and allopregnanolone in plasma and brain of sham-operated animals. In adrenalectomized and castrated rats, etifoxine enhanced the brain levels of these steroids, suggesting a stimulation of their local synthesis and/or a decrease of their disappearance rate, independently of peripheral sources. Finasteride, an inhibitor of 5alpha-reductase that converts progesterone into its 5alpha-reduced metabolites like allopregnanolone, attenuated the anti-conflict effect of etifoxine even though brain allopregnanolone contents were drastically reduced. These results indicate that following activation of the PBR in the brain, an increased cerebral production of allopregnanolone, a potent positive modulator of the GABA(A) receptor function, may partially contribute to the anxiolytic-like effects of etifoxine.  相似文献   

10.
1. The effects of progesterone, its A-ring-reduced metabolites, allopregnanolone, tetrahydroxydeoxycorticosterone and the synthetic neuroactive steroid alphaxalone were evaluated in a rat model of plasma extravasation within the meninges following unilateral electrical stimulation (ES) of the trigeminal ganglion (0.6 mA, 5 ms, 5 min) or substance P administration (1 nmol kg-1, i.v.). 2. When administered 55 min prior to electrical stimulation, progesterone (> or = 500 micrograms, s.c.) dose-dependently decreased plasma extravasation within the meninges (ED50: 650 micrograms) but not within conjunctiva and tongue. Promegestone (R5020), a non-metabolized progesterone agonist (1000 micrograms, i.p.) was ineffective. The administration of progestrone (> or = 500 micrograms s.c.) 55 min prior to substance P partially suppressed plasma extravasation within the meninges (ED50: 550 micrograms). 3. The GABAA-antagonist, bicuculline (ED50: 8.2 micrograms kg-1, i.p.) but not the GABAB-antagonist, phaclofen (100 micrograms kg-1, i.p.) attenuated the effects of progesterone after electrical stimulation and substance P administration. 4. The metabolites of progesterone, allopregnanolone (3 alpha-hydroxy-5 alpha- pregnan-20-one (THP); ED50: 0.58 micrograms kg-1, i.p.), tetrahydroxydeoxycorticosterone (3 alpha,21- dihydroxy-5 alpha-pregnan-20-one (THDOC); ED50: 1.2 micrograms kg-1, i.p.) as well as the synthetic steroid alphaxalone (3 alpha-hydroxy-5 alpha-pregnane-11,20-dione; ED50: 1.8 micrograms kg-1, i.p.) suppressed plasma extravasation dose-dependently following ES, whereas the epimer of allopregnanolone, 3 beta-hydroxy-5 alpha-pregnan-20-one (100 micrograms kg-1, i.p.), did not. Extravasation caused by SP administration was partially suppressed by allopregnanolone (> or = 1 microgram kg-1, i.p.) (ED50: 2.1 micrograms kg-1). 5. The effect of progesterone (1000 micrograms, s.c.) and allopregnanolone (100 micrograms kg-1, i.p.) on neurogenic plasma extravasation was reversed by bicuculline (10 micrograms kg-1, i.p.) or by a congener, bicuculline-methiodide (10 micrograms kg-1, i.p.) which does not cross the blood brain barrier. 6. Progesterone (1000 micrograms, s.c.) had no effect on mean arterial blood pressure or heart rate when measured for 60 min after administration. 7. These results indicate that neurosteroid modulation of a GABAA-receptor located outside the blood brain barrier suppresses neurogenic and substance P-induced plasma extravasation within the meninges. The findings are consistent with previously reported data showing that valproic acid and muscimol inhibit meningeal oedema by bicuculline-sensitive mechanisms. Drugs which activate GABAA-receptors and its modulatory sites might be clinically effective in the treatment of migraine and cluster headache.  相似文献   

11.
Neuroactive steroids demonstrate pharmacological actions that have relevance for a host of neurological and psychiatric disorders. They offer protection against seizures in a range of models and seem to inhibit certain stages of drug dependence in preclinical assessments. The present study was designed to evaluate two endogenous and one synthetic neuroactive steroid that positively modulate the gamma-aminobutyric acid (GABA(A)) receptor against the increase in sensitivity to the convulsant effects of cocaine engendered by repeated cocaine administration (seizure kindling). Allopregnanolone (3alpha-hydroxy-5alpha-pregnan-20-one), pregnanolone (3alpha-hydroxy-5beta-pregnan-20-one) and ganaxolone (a synthetic derivative of allopregnanolone 3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20-one) were tested for their ability to suppress the expression (anticonvulsant effect) and development (antiepileptogenic effect) of cocaine-kindled seizures in male, Swiss-Webster mice. Kindled seizures were induced by daily administration of 60 mg/kg cocaine for 5 days. All of these positive GABA(A) modulators suppressed the expression of kindled seizures, whereas only allopregnanolone and ganaxolone inhibited the development of kindling. Allopregnanolone and pregnanolone, but not ganaxolone, also reduced cumulative lethality associated with kindling. These findings demonstrate that some neuroactive steroids attenuate convulsant and sensitizing properties of cocaine and add to a growing literature on their potential use in the modulation of effects of drugs of abuse.  相似文献   

12.
Acute ethanol exposure increases GABAergic neuroactive steroids in plasma and brain by releasing these steroids or their precursors from the adrenal glands. The present study showed that ethanol administration rapidly increases the expression of steroidogenic acute regulatory protein (StAR) in the cytosolic and mitochondrial fractions of adrenal glands. The increased StAR protein expression paralleled increases in plasma pregnenolone, progesterone and corticosterone levels. The rapid synthesis and translocation of StAR protein in adrenals likely represent the mechanism of ethanol-induced increases in neuroactive steroids.  相似文献   

13.
Rationale The metabolites of deoxycorticosterone (DOC) and progesterone, allotetrahydrodeoxycorticosterone and allopregnanolone, are potent endogenous neuroactive steroids that are increased in rodent brain and plasma after hypothalamic–pituitary–adrenal (HPA) axis activation by acute stress or ethanol administration. However, little data are available for male nonhuman primates.Objective To determine DOC concentrations in plasma samples from 11 monkeys following challenge of the HPA axis with naloxone, corticotropin-releasing factor (CRF), dexamethasone, adrenocorticotropic hormone (ACTH) following dexamethasone pretreatment and ethanol.Methods DOC levels were measured in monkey plasma by radioimmunoassay.Results DOC levels were increased after naloxone (125 μg/kg and 375 μg/kg, respectively) and CRF administration (1 μg/kg), and decreased following dexamethasone (130 μg/kg) administration. ACTH (10 ng/kg) challenge, 4–6 h after 0.5 mg/kg dexamethasone, and administration of ethanol (1.0 g/kg and 1.5 g/kg) had no effect on DOC concentrations. DOC levels were positively correlated with cortisol and ACTH levels after the naloxone (375 μg/kg), CRF, and ACTH challenges. Finally, the suppression of DOC levels measured after dexamethasone was negatively correlated with subsequent alcohol self-administration.Conclusions These results suggest that DOC levels in monkeys are regulated by the HPA axis and may contribute to physiological responses following activation.  相似文献   

14.
Allopregnanolone (3alpha-hydroxy-5alpha-pregnan-20-one) is an endogenously derived metabolite of progesterone, and a potent positive modulator of gamma-aminobutyric acid(A) (GABA(A)) receptors. A withdrawal syndrome, characterized by central nervous system (CNS) hyperexcitability, has been demonstrated following abrupt discontinuation of high progesterone levels in rats, which was due in part to altered levels of allopregnanolone. The purpose of the present study was to determine if a single administration of pregnanolone or allopregnanolone could produce an acute withdrawal response in mice selected for susceptibility (Withdrawal Seizure-Prone, WSP) or resistance (Withdrawal Seizure-Resistant, WSR) to ethanol withdrawal convulsions. WSP mice administered 75 mg/kg pregnanolone showed a significant increase in handling-induced convulsion (HIC) scores over a 25-h testing period. In contrast, HIC scores in WSR mice were negligible after acute administration of 25, 50, 75, or 100 mg/kg pregnanolone. WSP mice also showed a similar increase in HIC after withdrawal from 75 mg/kg allopregnanolone. This effect was evident at both the 10-h and 25-h overall withdrawal severity assessment. These results demonstrate that neuroactive steroids can elicit an acute withdrawal response similar to that of other positive modulators of GABA(A) receptors in WSP mice, supporting the notion that a common set of genes underlie acute and chronic withdrawal severity from multiple agents with depressant effects on the central nervous system.  相似文献   

15.
The effects of acute and chronic administration of fluoxetine on the basal and stress-induced increases in cerebrocortical and plasma concentrations of allopregnanolone (3alpha,5alpha-tetrahydroprogesterone; 3alpha,5alpha-TH PROG) and tetrahydrodeoxycorticosterone (3alpha,5alpha-TH DOC) were compared with those of mirtazapine, an antidepressant that (unlike fluoxetine) is not a selective serotonin reuptake inhibitor. A single injection (20 mg/kg i.p.) of fluoxetine or mirtazapine resulted in significant increases in the cerebrocortical and plasma concentrations of 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC. In contrast, long-term administration (10 mg/kg i.p., once daily for 2 weeks) of fluoxetine, but not that of mirtazapine, induced marked decreases in the cortical and plasma concentrations of these neuroactive steroids. Chronic treatment with fluoxetine, however, did not inhibit the increases in the cortical and plasma concentrations of 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC induced by acute foot-shock stress. In contrast, chronic treatment with mirtazapine prevented or significantly reduced the stress-induced increases in neurosteroid concentrations in the cerebral cortex and plasma, respectively. These results show that mirtazapine, similar to fluoxetine, initially increases the cortical concentration of neuroactive steroids; however, chronic administration of this drug modulates the plasma and brain availability of these hormones in a manner distinct from that of fluoxetine.  相似文献   

16.
RATIONALE: Recent preclinical and clinical studies have shown that selective serotonin re-uptake inhibitors modulate neurosteroid synthesis in an opposite manner. OBJECTIVES: The action of long-term administration of fluoxetine was investigated on the peripheral and central concentrations of 3alpha,5alpha-tetrahydroprogesterone (3alpha,5alpha-TH PROG) and 3alpha,5alpha-tetrahydrodeoxycorticosterone (of 3alpha,5alpha-TH DOC), progesterone, and pregnenolone in rats. We also investigated the effect of chronic treatment with fluoxetine on the foot-shock stress-induced increase in the plasma and brain concentrations of these steroids. METHODS: Fluoxetine was administered acutely (20 mg/kg) or chronically (10 mg/kg, once daily for 15 days). Steroids were extracted from plasma and brain, separated and purified by means of high-performance liquid chromatography, and quantified by means of radioimmunoassay. RESULTS: A single dose of fluoxetine (20 mg/kg, i.p.) induced in 20 min significant increases in the cerebral cortical and plasma concentrations of 3alpha,5alpha-TH PROG (+96% and +13%, respectively), 3alpha,5alpha-TH DOC (+129 and +31%, respectively), progesterone (+111 and +58%, respectively), and pregnenolone (+151 and +59%, respectively). In addition, the plasma concentration of corticosterone was also significantly increased (+24%) after acute administration of fluoxetine. In contrast, long-term administration of fluoxetine reduced the basal concentrations of these various steroids (ranging from -22 to -43%), measured 48 h after the last drug injection, in both brain and plasma. A challenge injection of fluoxetine (20 mg/kg, i.p.), however, was still able to increase the concentrations of steroids in both the brain and plasma of rats chronically treated with this drug. Acute foot-shock stress increased the cortical and plasma concentrations of steroids in rats chronically treated with fluoxetine to extents similar to those apparent in control rats. CONCLUSIONS: A repetitive increase in the brain concentrations of neuroactive steroids may contribute to the therapeutic action of fluoxetine.  相似文献   

17.
The naturally occurring 3α-reduced neurosteroids allopregnanolone and its isomer pregnanolone are among the most potent positive allosteric modulators of γ-aminobutyric acid type A receptors. They play a critical role in the maintenance of physiological GABAergic tone and display a broad spectrum of neuropsychopharmacological properties. We have reviewed existing evidence implicating the relevance of endogenous 3α-reduced neuroactive steroids to depression and to the mechanism of action of antidepressants. A wide range of preclinical and clinical evidence suggesting the antidepressant potential of 3α-reduced neuroactive steroids and a possible involvement of a deficiency and a disequilibrium of neuroactive steroid levels in pathomechanisms underlying the etiology of major depressive disorder have emerged in recent years. Antidepressants elevate 3α-reduced neurosteroid levels in rodent brain, and clinically effective antidepressant pharmacotherapy is associated with normalization of plasma and cerebrospinal fluid (CSF) concentrations of endogenous neuroactive steroids in depressed patients, unveiling a possible contribution of neuroactive steroids to the mechanism of action of antidepressants. In contrast, recent studies using nonpharmacological antidepressant therapy suggest that changes in plasma neuroactive steroid levels may not be a general mandatory component of clinically effective antidepressant treatment per se, but may reflect distinct properties of pharmacotherapy only. While preclinical studies offer convincing evidence in support of an antidepressant-like effect of 3α-reduced neuroactive steroids in rodent models of depression, current clinical investigations are inconclusive of an involvement of neuroactive steroid deficiency in the pathophysiology of depression. Moreover, clinical evidence is merely suggestive of a role of neuroactive steroids in the mechanism of action of clinically effective antidepressant therapy. Additional clinical studies evaluating the impact of successful pharmacological and nonpharmacological antidepressant therapies on changes in neuroactive steroid levels in both plasma and CSF samples of the same patients are necessary in order to more accurately address the relevance of 3α-reduced neuroactive steroids to major depressive disorder. Finally, proof-of-concept studies with drugs that are known to selectively elevate brain neurosteroid levels may offer a direct assessment of an involvement of neurosteroids in the treatment of depressive symptomatology.  相似文献   

18.
The possible functional relation between changes in brain and plasma concentrations of neurosteroids and the plasticity of gamma-aminobutyric acid type A (GABA(A)) receptors in the brain during pregnancy and after delivery was investigated in rats. The concentrations in the cerebral cortex and plasma of pregnenolone as well as of progesterone and its neuroactive derivatives allopregnanolone (3alpha-hydroxy-5alpha-pregnan-20-one) and allotetrahydrodeoxycorticosterone (5alpha-hydroxy-3alpha,21-diol-20-one) increased during pregnancy, peaking around day 19, before returning to control (estrus) values immediately before delivery (day 21). In the postpartum period, steroid concentrations in plasma and brain did not differ from control values. The densities of [3H]GABA, [3H]flunitrazepam, and t-[35S]butylbicyclophosphorotionate (TBPS) binding sites in the cerebral cortex also increased during pregnancy, again peaking on day 19 and returning to control values on day 21; receptor density was decreased further 2 days after delivery and again returned to control values within 7 days. These changes were accompanied by a decrease in the apparent affinity of the binding sites for the corresponding ligand on day 19 of pregnancy. The amount of the gamma2L subunit mRNA decreased progressively during pregnancy, in the cerebral cortex and hippocampus, returned to control value around the time of delivery and did not change in the postpartum period. On the contrary, the amount of alpha4 subunit mRNA was not modified during pregnancy both in the cerebral cortex and hippocampus whereas significantly increased 7 days after delivery only in the hippocampus. No significant changes were apparent for alpha1, alpha2, alpha3, beta1, beta2, beta3 and gamma2S subunit mRNAs. Administration of finasteride, a specific 5alpha-reductase inhibitor, to pregnant rats from days 12 to 18 markedly reduced the increases in the plasma and brain concentrations of allopregnanolone and allotetrahydrodeoxycorticosterone as well as prevented both the increase in the densities of [3H]flunitrazepam and [35S]TBPS binding sites and the decrease of gamma2L mRNA normally observed during pregnancy. The results demonstrate that the changes in the plasticity of GABA(A) receptors that occur in rat brain during pregnancy and after delivery are related to the physiological changes in plasma and brain concentrations of neurosteroids.  相似文献   

19.
The administration of ethanol on a chronic intermittent regimen (CIE) involving multiple withdrawal episodes is a model for ethanol dependence. After CIE, rats exhibited reduced seizure threshold, increased anxiety, tolerance to GABAergic sedative-hypnotic drugs, and changes in GABA(A) receptor function and subunit composition in hippocampus. Previous studies have shown that acute and chronic ethanol may induce changes in the levels of the neurosteroid 3alpha-hydroxysteroid-5alpha-pregnan-20-one (3alpha, 5alpha-THP) in the brain. Therefore, the current study analyses the correlation between chronic intermittent ethanol effects on the level of 3alpha, 5alpha-THP in hippocampus of CIE rats and the behavioral changes in sensitivity to neurosteroids. After CIE, the levels for 3alpha, 5alpha-THP were significantly reduced in hippocampus of rats. The mRNA levels for the enzymes 5alpha-reductase and 3alpha-HSD in hippocampus were also reduced. In vivo, (in contrast to a tolerance to the hypnotic effect of steroids), CIE rats showed increased sensitivity to the anticonvulsant and to the anxiolytic effect of the steroid alphaxalone. Perhaps, this is a response to lowered levels of endogenous neuroactive steroids. CIE rats also showed impairment of hippocampus-dependent memory function. These results suggest that changes in neurosteroids level and in vivo sensitivity to these compounds are involved in the development of ethanol dependence in the CIE model.  相似文献   

20.
Neuroactive steroids such as allopregnanolone (3 alpha-hydroxy-5 alpha-pregnan-20-one) influence central nervous system (CNS) excitability by increasing GABA (gamma aminobutyric acid) inhibitory activity. Allopregnanolone concentrations are higher in the fetal compared to the adult ovine brain, suggesting that this neurosteroid may have a role in regulating fetal CNS activity during gestation. We examined the localisation of allopregnanolone-sensitive GABA(A) receptors in the fetal brain to determine if their sensitivity to allopregnanolone changed during late gestation. The binding of [(35)S] tert-butylbicyclophosothionate (TBPS) was used to identify the GABA-chloride ion receptor complex in fetal sheep brains at 90-95, 115-120 and 140-145 days gestational age (GA; term approximately 147 days), by autoradiography. Allopregnanolone (200 nM) reduced [(35)S]TBPS binding by 70-100% throughout the brain at all fetal ages examined. The levels of [(35)S]TBPS binding increased with advancing gestation in all regions examined except some areas of the medulla. Functionally related nuclei and brain areas associated with regulating somato/viscerosensory functions displayed high levels of [(35)S]TBPS binding from mid-gestation. These results indicate that allopregnanolone may interact with GABA(A) receptors to inhibit fetal CNS activity from mid-gestation. This inhibition may contribute to maintaining the sleep-like behaviour and low incidence of arousal-type activity typical of fetal life, and may be neuroprotective by limiting excitatory neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号