首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The motoneurons innervating the orbicularis oculi muscle from a subgroup within the facial nucleus, called the intermediate facial subnucleus. This makes it possible to study afferents to these motoneurons by means of autoradiographical tracing techniques. Many different injections were made in the brainstem and diencephalon and the afferent projections to the intermediate facial subnucleus were studied. The results indicated that these afferents were derived from the following brainstem areas: the dorsal red nucleus and the mesencephalic tegmentum dorsal to it; the olivary pretectal nucleus and/or the nucleus of the optic tract; the dorsolateral pontine tegmentum (parabrachial nuclei and nucleus of K?lliker-Fuse) and principal trigeminal nucleus; the ventrolateral pontine tegmentum at the level of the motor trigeminal nucleus; the caudal medullary medial tegmentum; the lateral tegmentum at the level of the rostral pole of the hypoglossal nucleus and the ventral part of the trigeminal nucleus and the nucleus raphe pallidus and caudal raphe magnus including the adjoining medullary tegmentum. These latter projections probably belong to a general motoneuronal control system. The mesencephalic projections are mainly contralateral, the caudal pontine and upper medullary lateral tegmental projections are mainly ipsilateral and the caudal medullary projections are bilateral. It is suggested that the different afferent pathways subserve different functions of the orbicularis oculi motoneurons. Interneurons in the dorsolateral pontine and lateral medullary tegmentum may serve as relay for cortical and limbic influences on the orbicularis oculi musculature, while interneurons in the ventrolateral pontine and caudal medullary tegmentum may take part in the neuronal organization of the blink reflex.  相似文献   

2.
Cells of origin of ascending afferents to the mammillary nuclei and the afferents' fields of termination within these nuclei were studied by using retrograde and anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase in the rat. The pars compacta of the superior central nucleus projects bilaterally to the median region of the medial mammillary nucleus. The ventral tegmental nucleus projects ipsilaterally to the medial mammillary nucleus, except for its median region, in a topographic manner such that the rostrodorsolateral part of the ventral tegmental nucleus projects to the medial quadrant of the medial mammillary nucleus; the rostroventromedial part projects to the dorsal quadrant; the caudodorsolateral part projects to the ventral quadrant; and the caudoventromedial part projects to the lateral quadrant. These projection fields extend throughout the longitudinal axis of the medial mammillary nucleus, except for its most caudal region, to which only the dorsolateral part of the ventral tegmental nucleus projects. This nucleus also projects topographically to the ipsilateral dorsal premammillary nucleus; the rostral part of the ventral tegmental nucleus projects to the dorsal part of the dorsal premammillary nucleus, whereas the caudal part projects to the ventral part. The periaqueductal gray around the dorsal tegmental nucleus projects bilaterally to the supramammillary nucleus. The pars alpha of the pontine periaqueductal gray projects bilaterally to the peripheral part of the lateral mammillary nucleus, whereas the pars ventralis of the dorsal tegmental nucleus projects ipsilaterally to the lateral mammillary nucleus. The results show that the tegmentomammillary projections are organized in a gradient fashion, with the rostral to caudal position of cells of origin within the tegmental nuclei of Gudden being reflected by the medial to lateral position of fields of termination within the mammillary nuclei.  相似文献   

3.
The hypothalamus is closely involved in a wide variety of behavioral, autonomic, visceral, and endocrine functions. To find out which descending pathways are involved in these functions, we investigated them by horseradish peroxidase (HRP) and autoradiographic tracing techniques. HRP injections at various levels of the spinal cord resulted in a nearly uniform distribution of HRP-labeled neurons in most areas of the hypothalamus except for the anterior part. After HRP injections in the raphe magnus (NRM) and adjoining tegmentum the distribution of labeled neurons was again uniform, but many were found in the anterior hypothalamus as well. Injections of 3H-leucine in the hypothalamus demonstrated that: The anterior hypothalamic area sent many fibers through the medial forebrain bundle (MFB) to terminate in the ventral tegmental area of Tsai (VTA), the rostral raphe nuclei, the nucleus Edinger-Westphal, the dorsal part of the substantia nigra, the periaqueductal gray (PAG), and the interpeduncular nuclei. Further caudally a lateral fiber stream (mainly derived from the lateral parts of the anterior hypothalamic area) distributed fibers to the parabrachial nuclei, nucleus subcoeruleus, locus coeruleus, the micturition-coordinating region, the caudal brainstem lateral tegmentum, and the solitary and dorsal vagal nucleus. Furthermore, a medial fiber stream (mainly derived from the medial parts of the anterior hypothalamic area) distributed fibers to the superior central and dorsal raphe nucleus and to the NRM, nucleus raphe pallidus (NRP), and adjoining tegmentum. The medial and posterior hypothalamic area including the paraventricular hypothalamic nucleus (PVN) sent fibers to approximately the same mesencephalic structures as the anterior hypothalamic area. Further caudally two different fiber bundles were observed. A medial stream distributed labeled fibers to the NRM, rostral NRP, the upper thoracic intermediolateral cell group, and spinal lamina X. A second and well-defined fiber stream, probably derived from the PVN, distributed many fibers to specific parts of the lateral tegmental field, to the solitary and dorsal vagal nuclei, and, in the spinal cord, to lamina I and X, to the thoracolumbar and sacral intermediolateral cell column, and to the nucleus of Onuf. The lateral hypothalamic area sent many labeled fibers to the lateral part of the brainstem and many terminated in the caudal brainstem lateral tegmentum, including the parabrachial nuclei, locus coeruleus, nucleus subcoeruleus, and the solitary and dorsal vagal nuclei.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Immunohistochemical localization of calretinin in the rat hindbrain   总被引:8,自引:0,他引:8  
The localization of calretinin in the rat hindbrain was examined immunohistochemically with antiserum against calretinin purified from the guinea pig brain. Calretinin immunoreactivity was found within neuronal elements. The distribution of calretinin-immunoreactive cell bodies and fibers is presented in schematic drawings and summarized in a table. Major calretinin-immunoreactive neurons were found in the lateral and medial geniculate nuclei, substantia nigra, ventral tegmental area, interpeduncular nucleus, periaqueductal gray, mesencephalic trigeminal nucleus, superior and inferior colliculi, pontine nuclei, parabrachial nucleus, dorsal and laterodorsal tegmental nuclei, cochlear nuclei, vestibular nuclei, medullary reticular nuclei, nucleus of the solitary tract, area postrema, substantia gelatinosa of the spinal trigeminal nucleus, and cerebellum. These results show that distinct calretinin-immunoreactive neurons are widely distributed in the rat hindbrain.  相似文献   

5.
The efferent projections from the medial and lateral mammillary nuclei of the guinea pig were traced after injecting tritiated amino acid. The major efferent started as the principal mammillary tract, but soon divided into mammillothalamic and mammillotegmental tracts. The mammillothalamic tract projected anterodorsally and terminated in the anterior dorsal, anterior ventral and anterior medial thalamic nuclei. The mammillotegmental tract projected caudally and terminated in the dorsal tegmental nucleus and central gray. The mammillary efferents in the mammillary peduncle ran via the tegmentum of the midbrain and pons. It terminated in the dorsal and ventral tegmental nuclei, basal pontine nucleus and pontine tegmental reticular nucleus. A diffuse mammillary projection had fibers directed dorsally which distributed in the midline thalamic nuclei and in central gray. Rostral projections via the medial forebrain bundle from the medial mammillary nucleus were found in the septal area and diagonal band of Broca. The lateral mammillary nucleus sent fibers which also joined the mammillothalamic and mammillotegmental tracts. These terminated bilaterally mainly in the anterior dorsal and anterior ventral nuclei of the thalamus, and caudally in the dorsal and ventral tegmental nuclei and basal pontine nucleus.  相似文献   

6.
The autoradiographic tracing method has been used to identify the various descending tectofugal pathways and their targets in the rhesus monkey (Macaca mulatta). The present data reveal that the majority of descending tectofugal axons arise from collicular laminae which lie ventral to the stratum opticum (layer 3). Such descending axons can be grouped into two major bundles or tracts, i.e., the ipsilateral tectopontine-tectobulbar tract and the crossed tectospinal tract (or the predorsal bundle). There is, in addition to these two major pathways, a smaller, commissural projection. The ipsilateral pathway courses laterally and ventrocaudally to terminate within the parabigeminal nucleus, the mesencephalic reticular formation, the dorsal lateral pontine gray (in several discrete patches), the dorsal lateral wing of the nucleus reticularis tegmenti pontis, and within the nucleus reticularis pontis oralis. Other ipsilateral targets of the deep tectal layers are the cuneiform nucleus and the external nucleus of the inferior colliculus. In several experiments transported protein is also apparent within the substantia nigra. Axons which comprise the tectospinal tract, or the predorsal bundle, cross within the dorsal tegmental decussation and descend within the brainstem in a position slightly lateral to the midline. The most rostral and quite extensive target of the predorsal bundle is the nucleus reticularis tegmenti pontis. As the predorsal bundle courses caudally within the pontine tegmentum, labeled axons enter the dorsal and medial regions of both the oral and the caudal divisions of the nucleus reticularis pontis. At caudal medullary levels, the mojority of the labeled axons comprising the predorsal bundle pass ventrally to end quite profusely with the subnucleus b of the medial accessory nucleus of the inferior olivary complex. Caudal to this only a few scattered, labeled axons can be followed into the cervical spinal cord. Labeled axons also pass to the opposite, or contralateral colliculus via the tectal commissure. Such axons appear to arise and end primarily within the deeper tectal layers. In one experiment, the injection invaded the mesencephalic nucleus of the trigeminal nerve. Labeled axons were apparent within the motor nucleus, the chief sensory nucleus (quite profusely) and within the spinal or descending nucleus of the trigeminal nerve.  相似文献   

7.
The pattern of neocortical projections to the pons and medulla was determined by employing the Nauta-Gygax technique ('54) on the brains of armadillos subjected to neocortical ablations. The results of this study indicate that the pretrigeminal basilar pontine gray receives input from a considerable portion of the neocortex. Degenerating fibers resulting from a lesion of the frontal tip of the neocortex terminated within the dorsal medial, the medial and the ventral medial areas of the rostral basilar pontine gray. Corticopontine fibers from the mid-presupraorbital neocortex ended throughout the rostral to caudal extent of the basilar pontine gray, and terminated within the dorsal medial, the medial and the ventral medial areas; whereas degenerating fibers resulting from a lesion of the neocortex immediately rostral to the supraorbital sulcus terminated within the medial, the ventral and the ventral lateral areas of the basilar pontine gray. The neocortex immediately caudal to the supraorbital sulcus distributed corticopontine fibers to the ventral, the ventral lateral, the dorsal lateral and to the dorsal areas of the basilar pontine gray, while degenerating fibers resulting from lesions of the caudal one-third and most caudal tip of the neocortex projected to the ventral and lateral portions of the basilar pontine gray. Neocortical projections to the pontine and medullary reticular formation originated mainly from cortical areas rostral and immediately caudal to the supraorbital sulcus. The neocortex rostral to the supraorbital sulcus distributed to the rostral and medial portions of the pontine reticular formation, whereas corticoreticular fibers from the neocortex immediately caudal to the suprarbital sulcus, also distributed degenerating fascicles to the spinal trigeminal nucleus, the nucleus of the solitary tract and to the nucleus cuneatus. No degenerating fibers were seen to terminate within motor nuclei of cranial nerves located within either the pons or medulla.  相似文献   

8.
The nucleus incertus is located caudal to the dorsal raphe and medial to the dorsal tegmentum. It is composed of a pars compacta and a pars dissipata and contains acetylcholinesterase, glutamic acid decarboxylase, and cholecystokinin-positive somata. In the present study, anterograde tracer injections in the nucleus incertus resulted in terminal-like labeling in the perirhinal cortex and the dorsal endopyriform nucleus, the hippocampus, the medial septum diagonal band complex, lateral and triangular septum medial amygdala, the intralaminar thalamic nuclei, and the lateral habenula. The hypothalamus contained dense plexuses of fibers in the medial forebrain bundle that spread in nearly all nuclei. Labeling in the suprachiasmatic nucleus filled specifically the ventral half. In the midbrain, labeled fibers were observed in the interpeduncular nuclei, ventral tegmental area, periaqueductal gray, superior colliculus, pericentral inferior colliculus, pretectal area, the raphe nuclei, and the nucleus reticularis pontis oralis. Retrograde tracer injections were made in areas reached by anterogradely labeled fibers including the medial prefrontal cortex, hippocampus, amygdala, habenula, nucleus reuniens, superior colliculus, periaqueductal gray, and interpeduncular nuclei. All these injections gave rise to retrograde labeling in the nucleus incertus but not in the dorsal tegmental nucleus. These data led us to conclude that there is a system of ascending projections arising from the nucleus incertus to the median raphe, mammillary complex, hypothalamus, lateral habenula, nucleus reuniens, amygdala, entorhinal cortex, medial septum, and hippocampus. Many of the targets of the nucleus incertus were involved in arousal mechanisms including the synchronization and desynchronization of the theta rhythm.  相似文献   

9.
Descending projections were studied in autoradiographically prepared material after injections of tritiated leucine in the pontine tegmentum of rats. Injections involving the medial pontine reticular formation resulted not only in labeling commissural fibers, the medial reticulospinal tract, and the dorsal cap of the inferior olive, but also, in two cases, in labeling a cerebellar projection that originated from a region near the midline and clearly dorsal to the nucleus reticularis tegmenti pontis. The labeled fibers passed ventral in the midline to the pontine gray, then laterally through the gray and into the middle cerebellar peduncle to terminate as mossy fibers primarily in the flocculus, lobulus simplex, and Crus I of the ansiform lobule. Injections involving the mesencephalic nucleus of the trigeminal nerve (Vmes), resulted in labeling of Probst's tract, which descends in the dorsolateral reticular formation. Probst's tract gave off extensive terminal branches to the lateral medullary reticular formation and weaker projections to restricted portions of the descending trigeminal nucleus, the solitary nucleus, and the hypoglossal nucleus. In one case, fibers could be traced into the dorsal horn of the upper cervical cord.  相似文献   

10.
In 33 cats the projections of different parts of the mesencephalon to the facial nucleus were studied with the aid of the autoradiographical tracing method. The results indicate the existence of many different mesencephalo-facial pathways. The dorsomedial facial subnucleus, containing motoneurons innervating ear muscles, receives afferents from 4 different mesencephalic areas: a, the most rostral mesencephalic reticular formation; b, the nucleus of Darkschewitsch and/or the ventral part of the rostral PAG; c, the interstitial nucleus of Cajal and/or the mesencephalic tegmentum dorsomedial to the red nucleus. These areas project bilaterally by way of an ipsilateral medial tegmental pathway. The medial part of the deep tectum. This area projects bilaterally by way of the tecto-spinal tract. The lateral mesencephalic tegmentum close to the parabigeminal nucleus. This area projects mainly contralaterally by way of a separate contralateral lateral tegmental fiber bundle. The mesencephalic tegmentum just dorsolateral to the red nucleus and perhaps from the dorsolateral red nucleus itself. This area projects contralaterally by way of the rubrospinal tract. The intermediate facial subnucleus containing motoneurons innervating the muscle around the eye, receives afferents from two different mesencephalic areas: The dorsal part of the rostral as well as caudal red nucleus (but not from its caudal pole) and from the dorsally adjoining mesencephalic tegmentum including the area of the nucleus of Darkschewitsch and the interstitial nucleus of Cajal. These areas project contralaterally by way of the contralateral rubrospinal tract. The nucleus of the optic tract and/or the olivary pretectal nucleus. This area projects contralaterally by way of a contralateral medial tegmental pathway. The lateral and ventrolateral facial subnuclei containing motoneurons innervating the muscles around the mouth receive afferents from two different mesencephalic areas: The lateral part of the deep tectal layers. This area projects contralaterally by way of the tecto-spinal tract. The nucleus raphe dorsalis and perhaps the nucleus centralis superior. This area projects by way of the lateral tegmentum of caudal pons and medulla.  相似文献   

11.
Several studies using a variety of animals have reported conflicting evidence concerning the distribution, laterally, and indeed the presence of ascending projections to the pontine nuclei. In an attempt to clarify this issue, projections to the pontine nuclei from the spinal cord, dorsal column nuclei, and spinal trigeminal nucleus were investigated with anterograde methods, i.e., the Fink-Heimer technique and/or autoradiography, in Long-Evans black-hooded rats. Results revealed that dorsal column nuclear projections to the contralateral pontine gray terminate predominantly in two regions--one in the caudal aspect of the medial pontine subdivision and another overlapping the ventral and lateral subdivisions. Within the medial and ventral lateral nuclear regions, fibers from nucleus cuneatus primarily terminated more rostrally to afferents from the nucleus gracilis. Spinal trigeminal projections terminated most heavily within the contralateral pontine gray at midpontine levels. Similar to the dorsal column nuclear projections, trigeminal afferents were observed in the medial and ventrolateral subdivisions, although these terminations were rostral and dorsal to areas receiving cuneatus input. Additional projections from the spinal trigeminal nuclei to the contralateral ventral peduncular nucleus were also observed. In comparison to the above-mentioned pontine afferents, both high cervical and midthoracic spinal cord lesions produced a similar pattern of axonal degeneration in the ipsilateral pontine gray which overlapped substantially with gracilis inputs. The observed topographic distribution pattern of ascending afferents to pontine gray confirm and extend previous findings which in general have only briefly described these pathways.  相似文献   

12.
Somatostatin (SS) immunoreactivity was localized in cat brain sections with an immunoperoxidase technique. Cell bodies in the midbrain containing SS immunoreactivity were found in the superficial and intermediate gray layers of the superior colliculus, the interpeduncular nucleus, the raphe, the inferior colliculus and nucleus of its brachium, the nucleus of the optic tract, and the lateral tegmental field. Additional positive neurons were seen in the parabigeminal nucleus and in the dorsal periaqueductal gray in kitten material. Immunoreactive fibers were observed in the periaqueductal gray and in the midbrain tegmentum, with particularly dense labeling just dorsal to the substantia nigra and in the parabrachial nuclei. This is the first report of the distribution of SS immunoreactivity in the midbrain of the cat. It is concluded that somatostatin has a distribution compatible with a role as a major neurotransmitter/neuromodulator within certain midbrain nuclei, especially the interpeduncular nucleus and the superior colliculus.  相似文献   

13.
The efferent projections of the lateral hypothalamic area (LHA) at mid-tuberal levels were examined with the autoradiographic tracing method. Connections were observed to widespread regions of the brain, from the telencephalon to the medulla. Ascending fibers course through LHA and the lateral preoptic area and lie lateral to the diagonal band of Broca. Fibers sweep dorsally into the lateral septal nucleus, cingulum bundle and medial cortex. Although sparse projections are found to the ventromedial hypothalamic nucleus, a prominent pathway courses to the dorsal and medial parvocellular subnuclei of the paraventricular nucleus. Labeled fibers in the stria medullaris project to the lateral habenular nucleus. The central nucleus of the amygdala is encapsulated by fibers from the stria terminalis and the ventral amygdalofugal pathway. The substantia innominate, nucleus paraventricularis of the thalamus, and bed nucleus of the stria terminalis also receive LHA fibers. Three descending pathways course to the brainstem: (1) periventricular system, (2) central tegmental tract (CTT), and (3) medial forebrain bundle (MFB). Periventricular fibers travel to the ventral and lateral parts of the midbrain central gray, dorsal raphe nucleus, and laterodorsal tegmental nucleus of the pens. Dorsally coursing fibers of CTT enter the central tegmental field and the lateral and medial parabrachial nuclei. The intermediate and deep layers of the superior colliculus receive some fibers. Fibers from CTT leave the parabranchial region by descending in the ventrolateral pontine and medullary reticular formation; some of these fibers sweep dorsomedially into the nucleus tractus solitarius, dorsal motor nucleus of the vagus, and nucleus commissuralis. From MFB, fibers descend into the ventral tegmental area and to the border of the median raphe and raphe magnus nuclei.  相似文献   

14.
In the cat retractor bulbi (RB) muscle reflexively retracts the eye ball into the orbit. This reflex action is called the nictitating membrane response which, together with the reflex contraction of the orbicularis oculi muscle, constitutes the blink reflex. The retractor bulbi (RB) motoneuronal nucleus is a small cell group located in the lateral tegmentum of the caudal pons, just dorsal to the superior olivary complex. The nucleus is identical to the accessory abducens nucleus and sends its fibers through the abducens nerve. Autoradiographical tracing results indicate that the RB nucleus receives some fibers from the principal and rostral spinal trigeminal nuclei and from the dorsal red nucleus and dorsally adjoining tegmentum. The same areas project to the intermediate facial subnucleus, containing motoneurons innervating the orbicularis oculi muscle. It is suggested that the trigeminal projections take part in the anatomical framework for the R1 component of the blink reflex. Two other brainstem areas i.e.: a portion of the caudal pontine ventrolateral tegmental field and the medullary medial tegmentum at the level of the hypoglossal nucleus were also found to project to the RB motoneuronal cell group and to the intermediate facial subnucleus. These projections were much stronger than those derived from the trigeminal nuclei and red nucleus. Moreover, the medullary premotor area projects not only to the blink motoneuronal cell groups but also to the pontine premotor area. It is suggested that both areas are involved in the R2 blink reflex component. The medullary blink premotor area receives afferents especially from oculomotor control structures in the reticular formation of the brainstem while the pontine blink premotor area receives afferents from the olivary pretectal nucleus and/or the nucleus of the optic tract and from the dorsal red nucleus and its dorsally adjoining area. Because the oculomotor control structures in the reticular formation (by way of the superior colliculus) and the red nucleus receive afferents from trigeminal nuclei, they may play an important role in tactually induced reflex blinking, while the pretectum could take part in the neuronal framework of the visually induced blink reflex.  相似文献   

15.
Afferent and efferent connections of the fastigial oculomotor region (FOR) were studied in macaque monkeys by using axonal transport of wheat germ agglutinin conjugated horseradish peroxidase (WGA-HRP). When injected HRP is confined to the FOR, retrogradely labeled cells appear in lobules VIc and VII of the ipsilateral vermis and in group b of the contralateral medial accessory olive (MAO). In reference to the maps of topographical organization, the extent of the effective site in the fastigial nucleus (FN) could be assessed from the distributions of labeled Purkinje cells (P cells) in the vermis and labeled olivary neurons in the MAO. In contrast to the unilateral nature of the P-cell and climbing-fiber projections, those from the other brainstem regions to the FOR were bilateral. Following the injection of HRP into the FOR, the largest number of retrogradely labeled cells appeared in the pontine nuclei. Although the number of labeled cells was greater on the contralateral side in both the peduncular and dorsomedial pontine nuclei (DMPN), the number of each side was virtually identical in the dorsolateral pontine nucleus (DLPN). In the nucleus reticularis tegmenti pontis (NRTP), labeled cells were located only in its medial and dorsolateral portions bilaterally. In the vestibular complex, labeled cells appeared in the superior (SVN), medial (MVN), and inferior vestibular nuclei (IVN) bilaterally. The lateral vestibular nucleus (LVN), including y group and the ventrolateral vestibular nucleus, were free of labeled cells. Labeled cells appeared also in the perihypoglossal nucleus (PHN) bilaterally. In the pontine raphe (PR) and paramedian pontine reticular formation (PPRF), labeled cells appeared bilaterally in the caudal third of the area between the oculomotor and abducens nuclei. Labeled cells appeared also in the mesencephalic and medullary reticular formation. Tracing of anterogradely labeled axons demonstrated that most fibers from the FOR decussated within the cerebellum and entered the brainstem via the contralateral uncinate fasciculus. Some crossed fibers ascended with the contralateral brachium conjunctivum and terminated in the midbrain tegmentum. A small contingent of fibers advanced further to the thalamus. In the mesodiencephalic junction, labeled terminals were found contralaterally in the rostral interstitial nucleus of medial longitudinal fasciculus (riMLF) and a medial portion of FOrel's H Field. They appeared also in the central mesencephalic reticular formation (cMRF), the periaqueductal gray (PAG), the posterior commissure nucleus, and the superior colliculus. The oculomotor and trochlear nuclei, the red nucleus, and the interstitial nucleus of Cajal were free of labeled terminals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Characterization of the distribution of the peptide-degrading enzyme neutral endopeptidase-24.11 (E.C. 3.4.24.11; NEP; enkephalinase) in the rat brainstem was examined by means of a unique fluorescent histochemical method. Enzyme staining was completely blocked by three potent NEP inhibitors (thiorphan, phosphoramidon, and JHF-26) at a concentration of 50 nM, supporting the specificity of this method to visualize sites of NEP activity selectively. At all levels of the brainstem, NEP was localized to cell bodies, cell processes or terminal-like fields and was localized to more than 90 distinct nuclei or subnuclei. In the mesencephalon these included the central gray, cuneiform n., dorsal and lateral tegmental n., inferior colliculus, interpeduncular n., lateral and medial geniculate n., central linear raphe n., mesencephalic n. of the trigeminal nerve, mammillary nuclei, occulomotor n., red n., superior colliculus, ventral n. of the lateral lemniscus, substantia nigra-ventral tegmental area, and the zona incerta. In the pons, NEP staining was restricted to fewer regions or nuclei, including the dorsal and ventral cochlear n., facial n., motor trigeminal n., principal sensory trigeminal n., parabrachial nuclei, pontine n., the oral and caudal pontine reticular n., pontine olivary nuclei, several pontine tegmental nuclei, pontine raphe nuclei, and the trapezoid n. In the cerebellum, staining was localized largely to the granule cell layer of the cerebellar cortex. Scattered staining was observed in the molecular cell layer. The medulla contained extensive NEP staining localized to nuclei that included the ambiguous n., dorsal motor n. of the vagus, hypoglossal n., inferior olivary n., prepositus hypoglossus n., solitary tract n., nuclei of the spinal tract of the trigeminal n., and the lateral, medial, and superior vestibular nuclei. Nuclei of the medullary reticular formation that were also richly stained for NEP included the raphe magnus n., raphe obscurus n., raphe pallidus n., dorsal, lateral, and ventral reticular nuclei of the medulla, and the gigantocellular, lateral paragigantocellular, linear, paramedian and parvicellular reticular nuclei. The widespread distribution of NEP in the brainstem suggests the existence of a number of functional systems, including the pathways involved in the mechanisms of pain and analgesia, which are potential targets of NEP inhibitors. In most regions, the distribution of NEP closely overlapped with that reported for the enkephalins, and showed a more restricted overlap with the reported distribution of substance P.  相似文献   

17.
This distribution of choline acetyltransferase (CHAT) immunoreactivity (CHAT-I) in the rat lower brain stem was analyzed using a highly sensitive avidin-biotin immunocytochemical method and 3-amino-9-ethyl-carbazole visualization. A much wider and more abundant distribution of CHAT-I structures in the lower brain stem was demonstrated than in earlier studies. The following areas were newly identified as areas rich in CHAT-I fibers: the interpeduncular nucleus, medial geniculate body, central gray matter of pons, pontine nucleus, parabigeminal nucleus, dorsal tegmental nucleus of Gudden, lateral trapezoid nucleus, inferior colliculus, dorsal and ventral cochlear nuclei, medial and lateral vestibular nuclei, reticular formation of medulla oblongata, and gelatinosa of caudal trigeminal spinal tract nucleus. In addition to the areas in which they have been known to exist, CHAT-I perikarya were found in the caudal portion of substantia nigra pars reticulata, the area between trigeminal motor nucleus and superior olivary nucleus, the medial and spinal vestibular nucleus, prepositus hypoglossal nucleus, raphe magnus and obscurus, ventromedial portion of solitary tract nucleus and its just ventral reticular formation, and caudal trigeminal spinal tract nucleus.  相似文献   

18.
Following minor concussive brain injury when there is an otherwise general suppression of CNS activity, the ventral tegmental nucleus of Gudden (VTN) demonstrates increased functional activity (32). Electrical or pharmacological activation of a cholinoceptive region in this same general area of the medial pontine tegmentum contributes to certain components of reversible traumatic unconsciousness, including postural atonia (31, 32, 45). Therefore, in an effort to examine the neuroanatomical basis of the behavioral suppression associated with a reversible traumatic unconsciousness, the afferent and efferent connections of the VTN and putative cholinoceptive medial pontine reticular formation (cmPRF) were studied in the cat using the retrograde horseradish peroxidase (HRP), HRP/choline acetyltransferase (ChAT) double-labeling immunohistochemistry, and anterograde HRP and autoradiographic techniques. Based upon retrograde HRP labeling, the principal afferents to the VTN region of the cmPRF originated from the medial and lateral mammillary nuclei, and lateral habenular nucleus, and to a lesser extent from the interpeduncular nucleus, lateral hypothalamus, dorsal tegmental nucleus, superior central nucleus, and contralateral nucleus reticularis pontis caudalis. Other afferents, which were thought to have been labeled through spread of HRP into the medial longitudinal fasciculus (MLF), adjacent paramedian pontine reticular formation, or uptake by transected fibers descending to the inferior olive, included the nucleus of Darkschewitsch, interstitial nucleus of Cajal, zona incerta, prerubral fields of Forel, deep superior colliculus, nucleus of the posterior commissure, nucleus cuneiformis, ventral periaqueductal gray, vestibular complex, perihypoglossal complex, and deep cerebellar nuclei. In HRP/ChAT double labeling studies, only a very small number of cholinergic VTN afferent neurons were found in the medial parabrachial region of the dorsolateral pontine tegmentum, although the pedunculopontine and laterodorsal tegmental nuclei contained numerous single-labeled ChAT-positive cells. Anterograde HRP and autoradiographic findings demonstrated that the VTN gave rise almost exclusively to ascending projections, which largely followed the course of the mammillary peduncle (16,21) and medial forebrain bundle, or the tegmentopeduncular tract (4). The majority of fibers ascended to terminate in the medial and lateral mammillary nuclei, interpeduncular complex (especially paramedian subnucleus), ventral tegmental area, lateral hypothalamus, and the medial septum in the basal forebrain. Labeling that joined the mammillothalamic tract to terminate in the anterior nuclear complex of the thalamus was thought to occur transneuronally. Some projections were also observed to nucleus reticularis pontis oralis and caudalis, superior central nucleus, and dorsal tegmental nucleus adjacent to the VTN...  相似文献   

19.
By using intratissue injections of colchicine and an indirect immunoperoxidase technique, we studied the distribution of cell bodies and fibers containing neuropeptide Y-like immunoreactivity in the brain stem of the cat. The densest clusters of immunoreactive perikarya were observed in the following nuclei: anteroventral cochlear, lateral reticular (internal and external divisions), dorsal tegmental, inferior colliculus and dorsal nucleus of the lateral lemniscus. By contrast, the nuclei abducens, the nucleus of the trapezoid body, preolivary, interpeduncularis, infratrigeminal, gigantocellular tegmental field, coeruleus and dorsal motor nucleus of the vagus had the lowest density. Finally, a moderate density of neuropeptide Y-like immunoreactive cell bodies was found in the nuclei: lateral tegmental field, laminar spinal trigeminal, praepositus hypoglossi, superior colliculus, lateral vestibular and motor trigeminal. In addition, a mapping of the neuropeptide Y-like immunoreactive fibers was carried out. Thus, the densest network of immunoreactive fibers was observed in the laminar spinal trigeminal nucleus. The nuclei periaqueductal gray, inferior central, praepositus hypoglossi, postpyramidal raphe, dorsal raphe, incertus and medial vestibular contained a moderate density of immunoreactive fibers, whereas the nuclei interpeduncularis, inferior colliculus, superior central, gracile, retrorubral, K?lliker-Fuse, dorsal tegmental, ambiguus and alaminar spinal trigeminal had the lowest density of neuropeptide Y-like immunoreactive fibers. The anatomical location of neuropeptide Y-like immunoreactivity suggests that the peptide could play an important role in several physiological functions, e.g., those involved in cardiovascular, auditory, motor, visual, nociceptive and somatosensory mechanisms.  相似文献   

20.
The intergeniculate leaflet (IGL) and the ventral lateral geniculate nucleus (VLG) are ventral thalamic derivatives within the lateral geniculate complex. In this study, IGL and VLG efferent projections were compared by using anterograde transport of Phaseolus vulgaris-leucoagglutinin and retrograde transport of FluoroGold. Projections from the IGL and VLG leave the geniculate in four pathways. A dorsal pathway innervates the thalamic lateral dorsal nucleus (VLG), the reuniens and rhomboid nuclei (VLG and IGL), and the paraventricular nucleus (IGL). A ventral pathway runs through the geniculohypothalamic tract to the suprachiasmatic nucleus and the anterior hypothalamus (IGL). A medial pathway innervates the zona incerta and dorsal hypothalamus (VLG and IGL); the lateral hypothalamus and perifornical area (VLG); and the retrochiasmatic area (RCA), dorsomedial hypothalamic nucleus, and subparaventricular zone (IGL). A caudal pathway projects medially to the posterior hypothalamic area and periaqueductal gray and caudally along the brachium of the superior colliculus to the medial pretectal area and the nucleus of the optic tract (IGL and VLG). Caudal IGL axons also terminate in the olivary pretectal nucleus, the superficial gray of the superior colliculus, and the lateral and dorsal terminal nuclei of the accessory optic system. Caudal VLG projections innervate the lateral posterior nucleus, the anterior pretectal nucleus, the intermediate and deep gray of the superior colliculus, the dorsal terminal nucleus, the midbrain lateral tegmental field, the interpeduncular nucleus, the ventral pontine reticular formation, the medial and lateral pontine gray, the parabrachial region, and the accessory inferior olive. This pattern of IGL and VLG projections is consistent with our understanding of the distinct functions of each of these ventral thalamic derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号