首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
Exposing 7-day-old rat pups to hypoxia, 8% oxygen/92% nitrogen, for 3 h alters glutamate (GLU), glutamine and glutamine synthetase (GS) activity in the striatum, frontal cortex and hippocampus. Immediately following the hypoxic insult there is a rapid transient elevation of GLU followed by a fall and then recovery to control values within 6 h. Glutamine content initially decreased after the termination of the insult, rose thereafter and approached control values within 6 h. GS activity was depressed after hypoxia and gradually returned to normal levels within 6 h. GS mRNA was increased in the three brain regions studied after hypoxia and returned to control values within 24 h. These results suggest that hypoxia alters GLU metabolism in the immature brain.  相似文献   

2.
The localization and distribution of glutamine synthetase (GS) in the adult mouse brain were studied by immunohistochemistry. GS immunoreactivity was found in two morphologically distinct types of glial cells apart from Bergmann glia, one asteroid and the other ovoid. The light and electron microscopic features of the GS-positive asteroid and ovoid cells were well consistent with those of astrocytes and oligodendrocytes, respectively. The GS-positive asteroid cells were present in the hippocampus, cerebral cortex, neostriatum, and cerebellar granular layer, where many synapse receptors for excitatory amino acids such as glutamate are densely distributed. Weakly GS-positive asteroid cells were also scattered in the white matter. The GS-positive ovoid cells were present throughout the gray matter regions of the brain except for the hippocampus, and they were the predominant type of GS-positive cells in the thalamus and brainstem gray matter where excitatory amino acid receptors are relatively sparse. No GS-positive ovoid cells were found in the white matter. These results suggest that, in the mouse brain, GS is localized in oligodendrocytes of the gray matter and in astrocytes. These two types of GS-positive glial cells may play different roles in the metabolism of glutamate.  相似文献   

3.
As a promising method for treating intractable epilepsy, the inhibitory effect of low-frequency stimulation (LFS) is well known, although its mechanisms remain unclear. Excessive levels of cerebral glutamate are considered a crucial factor for epilepsy. Therefore, we designed experiments to investigate the crucial parts of the glutamate cycle. We evaluated glutamine synthetase (GS, metabolizes glutamate), glutaminase (synthesizes glutamate), and glutamic acid decarboxylase (GAD, a γ-aminobutyric acid [GABA] synthetase) in different regions of the brain, including the dentate gyrus (DG), CA3, and CA1 subregions of the hippocampus, and the cortex, using western blots, immunohistochemistry, and enzyme activity assays. Additionally, the concentrations of glutamate, GABA, and glutamine (a product of GS) were measured using high-performance liquid chromatography (HPLC) in the same subregions. The results indicated that a transiently promoted glutamate cycle was closely involved in the progression from focal to generalized seizure. Low-frequency stimulation (LFS) delivered to the ventral hippocampus had an antiepileptogenic effect in rats exposed to amygdaloid-kindling stimulation. Simultaneously, LFS could partly reverse the effects of the promoted glutamate cycle, including increased GS function, accelerated glutamate–glutamine cycling, and an unbalanced glutamate/GABA ratio, all of which were induced by amygdaloid kindling in the DG when seizures progressed to stage 4. Moreover, glutamine treatment reversed the antiepileptic effect of LFS with regard to both epileptic severity and susceptibility. Our results suggest that the effects of LFS on the glutamate cycle may contribute to the antiepileptogenic role of LFS in the progression from focal to generalized seizure.  相似文献   

4.
This study examined the expression of glial cell line-derived neurotrophic factor (GDNF) mRNA and the cellular localization of GDNF production in rats subjected to transient forebrain ischemia induced by four-vessel occlusion. Transient forebrain ischemia induced GDNF mRNA expression in the hippocampus from 3 h to 3 days after the ischemic episode, with peak expression at 6 h. The GDNF mRNA increase in the cerebral cortex was similar to that in the hippocampus, whereas no increase in GDNF mRNA was observed in the striatum and brainstem. Western blot analysis showed that GDNF in the hippocampal CA1 region was increased slightly from 3 to 24 h after the ischemia, and then subsequently declined to below the baseline level. In the hippocampus, GDNF was evenly produced in pyramidal neurons of both sham-operated rats and normal rats, as determined by immunohistochemistry. Interestingly, we found that ischemia-induced reactive astrocytes, as well as surviving neurons, produced GDNF in 3-7 days after the ischemia. On the other hand, in other regions, such as the cerebral cortex, striatum, and brainstem, there was no change in GDNF-positive cells secondary to ischemia. These findings suggest that expression of GDNF mRNA is regulated in part via ischemia-induced neuronal degeneration. They also suggest that ischemia-induced reactive astrocytes may produce GDNF to protect against neuronal death. Therefore, GDNF may play an important role in ischemia-induced neuronal death in the brain.  相似文献   

5.
The present study examined changes in angiotensin receptors (AT1 and AT2) and angiotensinogen mRNA level after global ischemia in the rat brain. The AT2 mRNA level increased by three-fold in both the cortex and hippocampus, which are known to be sensitive to ischemic injury, 3 h after ischemia. The increase thus appeared only during the early reperfusion period. In the striatum, amygdala and cerebellum, the level increased moderately 3 h and/or 24 h after ischemia; there was no change in the hypothalamus. On the other hand, the AT1A and AT1B receptor mRNA levels were not altered in the cortex or hippocampus during the early reperfusion period, even 3 h and 24 h after ischemia. There was no significant alteration in angiotensinogen mRNA level 3 h or 24 h after ischemia. These results suggest that the transient upregulation of AT2 receptor mRNA occurs in the cortex and hippocampus after injury and these changes may be in some way related to the molecular events which lead to delayed neuronal cell death.  相似文献   

6.
Glutamine synthetase (GS), localized to astrocyte is a key enzyme in the glutamate-glutamine pathway in the brain. 3-Nitropropionic acid (3-NPA) is an irreversible inhibitor of succinate dehydrogenase in the tricarboxylic-acid cycle, and provides ischemic tolerance to the brain. So far, there have been no reports on the relationship of astrocytic GS and ischemic tolerance by chemical preconditioning. In order to test the hypothesis that astrocytes serve a pivotal role in 3-NPA-induced chemical preconditioning, we have investigated the temporal profile of GS expression in astrocyte parallel with those of glial fibrillary acidic protein and heat-shock protein 70 (HSP70). In our rat model of permanent focal ischemia, preconditioning with 3-NPA singnificantly reduced the subsequent neurological deficits and infarct volume within 24-72 hours after treatment. Immunohistochemically, protoplasmic astrocytes in the cortex and striatum were activated in terms of upregulation of GS and more abundant protoplasmic processes with 3-NPA preconditioning, however, HSP70 expression could not be induced. Thus, the activation of astrocytes and upregulation of GS play an important role in 3-NPA-induced preconditioning but HSP70 does not. In view of glutamate being imposed on the cerebral ischemic damage, the astrocytic GS may contribute to 3-NPA-induced ischemic tolerance.  相似文献   

7.
The present study established a rat model of global cerebral ischemia induced by chest compression for six minutes to dynamically observe expressional changes of three glutamate transporters in the cerebral cortex and hippocampus. After 24 hours of ischemia, expression of glutamate transporter-1 significantly decreased in the cerebral cortex and hippocampus, which was accompanied by neuronal necrosis. At 7 days post-ischemia, expression of excitatory amino acid carrier 1 decreased in the hippocampal CA1 region and cortex, and was accompanied by apoptosis. Expression of glutamate-aspartate transporter remained unchanged at 6 hours-7 days after ischemia. These results suggested that glutamate transporter levels were altered at different periods of cerebral ischemia.  相似文献   

8.
Olsson T  Wieloch T  Smith ML 《Brain research》2003,982(2):260-269
The importance of particular genes in neuronal death following global cerebral ischemia can readily be studied in genetically modified mice provided a reliable model of ischemia is available. For that purpose, we developed a mouse model of global cerebral ischemia that induces consistent damage to different regions of the brain and with a low mortality rate. Twelve minutes of ischemia was induced in C57BL/6 mice by bilateral common carotid artery occlusion under halothane anesthesia and artificial ventilation. Body and brain temperature were monitored and cortical cerebral blood flow in each hemisphere was measured by laser Doppler flowmeter before, during, and for 5 min after ischemia. Extensive damage was found in the striatum and marked cell damage was observed in the CA1 and CA2 regions of hippocampus and in thalamus. Mild damage was seen in the CA3 region, dentate gyrus and cortex. Hippocampal damage in the CA1 region is delayed and developed over 48 h. Intraischemic hypothermia of 33 degrees C provided a robust neuroprotection. The non-competitive N-methyl-D-aspartate receptor blocker, MK-801, did not provide protection in the hippocampus, cortex, striatum or thalamus when administered 30 min prior to ischemia or 2 h after the end of ischemia, but selectively mitigated damage in the hippocampus, when administered immediately following ischemia. This model of global cerebral ischemia may be useful in pharmacological and genomic studies of ischemic brain damage.  相似文献   

9.
Zhao X  Ahram A  Berman RF  Muizelaar JP  Lyeth BG 《Glia》2003,44(2):140-152
Neuronal-glial interactions are important for normal brain function and contribute to the maintenance of the brain's extracellular environment. Damage to glial cells following traumatic brain injury (TBI) could therefore be an important contributing factor to brain dysfunction and neuronal injury. We examined the early fate of astrocytes and neurons after TBI in rats. A total of 27 rats were euthanized at 0.5, 1, 2, 4, or 24 h after moderate lateral fluid percussion TBI or after sham TBI. Ipsilateral and contralateral hippocampi were examined in coronal sections from -2.12 to -4.80 mm relative to bregma. Adjacent sections were processed with markers for either astrocytes or degenerating neurons. Astrocytes were visualized using glial fibrillary acidic protein (GFAP) or glutamine synthetase immunohistochemistry. Neuronal degeneration was visualized using Fluoro-Jade (FJ) histofluorescence. At 30 min, there was a significant loss of GFAP immunoreactivity in ipsilateral hippocampal CA3 with some loss of normal astrocyte morphology in the remaining cells. The number of normal staining astrocytes decreased progressively over time with extensive astrocyte loss at 24 h. At 4 h, lightly stained FJ-positive neurons were scattered in the ipsilateral CA3. The intensity and number of FJ-positive neurons progressively increased over time with moderate numbers of degenerating neurons in the ipsilateral hippocampal CA3 evident at 24 h. We conclude that astrocyte loss occurs in the hippocampus early after TBI. The data suggest that loss of supporting glial cell may contribute to subsequent neuronal degeneration.  相似文献   

10.
(-)-Epigallocatechin gallate has a potent antioxidant property and can reduce free radical-induced lipid peroxidation as a green tea polyphenol. In previous study, systemic administration of (-)-epigallocatechin gallate immediately after ischemia has been shown to inhibit the hippocampal neuronal damage in the gerbil model of global ischemia. Polyamines are thought to be important in the generation of brain edema and neuronal cell damage associated with various types of excitatory neurotoxicity. We examined the effects of delayed administration of (-)-epigallocatechin gallate on the changes in polyamine levels and neuronal damage after transient global ischemia in gerbils. To produce transient global ischemia, both common carotid arteries were occluded for 3 min with micro-clips. The gerbils were treated with (-)-epigallocatechin gallate (50 mg/kg, i.p.) at 1 or 3 h after ischemia. The polyamines; putrescine, spermidine, and spermine levels were examined using high performance liquid chromatography in the cerebral cortex and hippocampus 24 h after ischemia. Putrescine levels in the cerebral cortex and hippocampus were increased significantly after ischemia and the delayed administrations of (-)-epigallocatechin gallate (1 or 3 h after ischemia) attenuated the increases. Only minor changes were noted in the spermidine and spermine levels after ischemia. In histology, neuronal injuries in the hippocampal CA1 regions were evaluated quantitatively 5 days after ischemia. (-)-Epigallocatechin gallate administered 1 h or 3 after ischemia significantly reduced hippocampal neuronal damage. The present results show that the delayed administrations of (-)-epigallocatechin gallate inhibit the transient global ischemia-induced increase of putrescine levels in the cerebral cortex and hippocampus. (-)-Epigallocatechin gallate is neuroprotective against neuronal damage even when administered up to 3 h after global ischemia. These findings suggest that (-)-epigallocatechin gallate may be promising in the acute treatment of stroke.  相似文献   

11.
Sequential alterations of [3H]nimodipine and [3H]ryanodine binding in gerbils were investigated in selectively vulnerable regions, such as the striatum and hippocampus, 1 h to 7 days after 10 min of transient cerebral ischemia. [3H]Nimodipine binding showed no significant changes in the striatum and hippocampus up to 48 h after ischemia. Seven days after ischemia, however, a severe reduction in [3H]nimodipine binding was observed in the dorsolateral striatum, hippocampal CA1 (stratum oriens, stratum pyramidale and stratum radiatum) and hippocampal CA3 sector. On the other hand, [3H]ryanodine binding showed a significant increase in the hippocampus 1 h after ischemia. Five hours after ischemia, a significant reduction in [3H]ryanodine binding was observed only in the hippocampal CA1 sector. Thereafter, the striatum and hippocampus showed no significant alterations in [3H]ryanodine binding up to 48 h after ischemia. After 7 days, a marked reduction in [3H]ryanodine binding was observed in the striatum and hippocampus which were particularly vulnerable to ischemia. These results demonstrate that postischemic alteration in [3H]nimodipine and [3H]ryanodine binding is produced with different processes in the hippocampus. They also suggest that the mechanism for striatal cell damage caused by transient cerebral ischemia may, at least in part, differ from that for hippocampal neuronal damage. Furthermore, our findings suggest that abnormal calcium release from intracellular stores may play a pivotal role in the development of hippocampal neuronal damage.  相似文献   

12.
Summary Anesthetized Mongolian gerbils were subjected to 5-min ischemia and 8 h of recirculation. Vibratiom sections were taken for studying changes in ornithine decarboxylase (ODC) immunoreactivity using an antiserum to ODC, and tissue samples were taken for measuring ODC activity. After 5-min ischemia and 8-h recirculation ODC activity increased 11.5-, 5.9-, and 7.9-fold in the cerebral cortex, striatum and hippocampus, respectively (P0.05 to 0.01). In the cortex, striatum and hippocampus of control animals immunoreactivity was low but clearly above the detection limit. The reaction was confined to neurons. After 5-min ischemia and 8-h recirculation a sharp increase in immunoreactivity was observed confined to neurons, indicating that the postischemic activation of polyamine metabolism is a neuronal response to ischemia. The immunoreactivity was markedly increased in the perinuclear cytoplasm and the dendrites. In the striatum the density of neurons exhibiting a sharp increase in immunoreactivity was more pronounced in the lateral than in the ventral part. In the hippocampus a strong reaction was present in all subfields but the CA1 subfield was particularly affected. The present study demonstrates for the first time that biosynthesis of a protein is markedly activated during the first 24 h of recirculation after 5-min cerebral ischemia of gerbils even in the vulnerable CA1 subfield, in which the overall protein synthesis is sharply reduced at the same time. Studying polyamine metabolism after ischemia may, thus, provide new information about the basic molecular mechanisms responsible for the altered gene expression after metabolic stress.Supported by the Deutsche Forschungsgemeinschaft, Grant Pa 266/3-2, and by grants provided by the National Research Council for Natural Sciences, Academy of Finland and the Cancer Society of Finland.  相似文献   

13.
Glutamate is the main excitatory transmitter in the cerebral cortex. The physiologically high spatial and temporal resolution in glutamatergic transmission requires effective transmitter removal. Thus, a close topochemical relation to the glutamatergic synapse is a prerequisite for an enzyme involved in glutamate transmitter degradation. Here we report that immunoreactivity against glutamine synthetase (GS), one of the glutamate metabolizing enzymes, is localized in the fine astrocytic processes associated with identified glutamatergic synapses in the rat hippocampus. We suggest that glutamate transmitter is rapidly taken up by these fine perisynaptic astrocytic processes and degraded by GS.  相似文献   

14.
Calpain activity in the rat brain after transient forebrain ischemia.   总被引:11,自引:0,他引:11  
Activity of the Ca(2+)-dependent protease calpain is increased in neurons after global and focal brain ischemia, and may contribute to postischemic injury cascades. Understanding the time course and location of calpain activity in the post-ischemic brain is essential to establishing causality and optimizing therapeutic interventions. This study examined the temporal and spatial characteristics of brain calpain activity after transient forebrain ischemia (TFI) in rats. Male Long Evans rats underwent 10 min of normothermic TFI induced by bilateral carotid occlusion with hypovolemic hypotension (MABP 30 mm Hg). Brain calpain activity was examined between 1 and 72 h after reperfusion. Western blot analysis of regional brain homogenates demonstrated a bimodal pattern of calpain-mediated alpha-spectrin degradation in the hippocampus, cortex, and striatum with an initial increase at 1 h followed by a more prominent secondary increase at 36 h after reperfusion. Immunohistochemical analysis revealed that calpain activity was primarily localized to dendritic fields of selectively vulnerable neurons at one hour after reperfusion. Between 24 and 48 h after reperfusion neuronal calpain activity progressed from the dorsal to ventral striatum, medial to lateral CA1 hippocampus, and centripetally expanded from watershed foci in the cerebral cortex. This progression was associated with fragmentation of dendritic processes, calpain activation in the neuronal soma and subsequent neuronal degeneration. These observations demonstrate a clear association between calpain activation and subsequent delayed neuronal death and suggest broad therapeutic window for interventions aimed at preventing delayed intracellular Ca(2+) overload and pathologic calpain activation.  相似文献   

15.
Mongolian gerbils were anesthetized with halothane and forebrain ischemia was induced by occluding both common carotid arteries. After 2, 4, 6, 8, or 10 min of vascular occlusion clips were removed and animals allowed to recover for 8 or 24 h. At the end of the experiments animals were reanesthetized and their brains frozen in situ. Tissue samples were taken from the cerebral cortex, striatum, hippocampus, and thalamus for determination of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) activity by measurement of the release of 14CO2 from [14C]ornithine and S-[14C]adenosylmethionine, respectively. A transient increase in ODC activity was found after 8 h of recirculation following cerebral ischemia in all brain structures studied. ODC activity was significantly increased after 8 h of recirculation in the hippocampus of animals subjected to 4 min of ischemia, in the cortex and striatum after 6 min of ischemia, and in the thalamus after 8 min of vascular occlusion. ODC activity had already reached a plateau in the hippocampus after 4 min of vascular occlusion and in the cortex, striatum, and thalamus after 8 min, since there is no further increase in activity even after 10 min of ischemia. After cerebral ischemia and 24 h of recirculation ODC activity returned to control levels throughout the forebrain regardless of the duration of ischemia. SAMDC activity was significantly reduced after 8 h of recirculation following 4 to 10 min of ischemia in the cortex and 8 min of ischemia in the striatum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
谷氨酸转运体在全脑缺血性癫痫中作用的研究   总被引:2,自引:1,他引:1  
目的比较三种谷氨酸转运体在全脑缺血性癫痫中的动态变化特征,为癫痫治疗提供有意义靶点.方法SD大鼠以胸部压迫8分钟造成全脑缺血性癫痫模型,分对照组、假手术组、全脑缺血无癫痫组和全脑缺血癫痫组.后两组又根据脑缺血后时间分为6h,24h,48h,72h,5d,7d组.应用免疫组化法研究谷氨酸转运体EAAT-1,EAAT-2,EAAT-3在海马CA1及皮质区表达;研究病理形态变化,同时测定大鼠脑电图改变.结果大鼠癫痫发生率为64%,全脑缺血癫痫大鼠神经损害较无癫痫组严重.与全脑缺血无癫痫大鼠比较,癫痫大鼠海马CA1及皮质区EAAT-2显著持续降低及EAAT-3表达明显升高.结论大鼠癫痫发生与脑缺血严重程度密切相关.海马CA1及皮层区EAAT-2、EAAT-3表达变化是抗癫痫治疗的作用靶点.  相似文献   

17.
Glutamate uptake is reduced during ischemia because of perturbations of ionic gradients across neuronal and glial membranes. Using immunohistochemical and Western blot analyses, the authors examined the expression of the glutamate transporters EAAC1, GLAST, and GLT-1 in the rat hippocampus and cerebral cortex 8 hours and 1 to 28 days after transient forebrain ischemia. Densitometric analysis of immunoblots of CA1 homogenates showed a moderate increase in EAAC1 protein levels early after the insult. Consistently, it was observed that EAAC1 immunostaining in CA1 pyramidal neurons was more intense after 8 hours and 1 day of reperfusion and reduced at later postischemia stages. A similar transient increase of EAAC1 immunolabeling was detected in layer V pyramidal neurons of the cerebral cortex. In addition, the authors observed that EAAC1 also was located in oligodendroglial progenitor cells in subcortical white matter. The number of EAAC1-labeled cells in this region was increased after 3 and 28 days of reperfusion. Finally, changes in GLAST and GLT-1 expression were not observed in the CA1 region after ischemia using immunohistochemical study or immunoblotting. Enhanced expression of EAAC1 may be an adaptive response to increased levels of extracellular glutamate during ischemia.  相似文献   

18.
We employed a canine model to test the effects of global cerebral ischemia and reperfusion on binding to α-amino-3-hydroxy-5-methyl-4-isoxazole proprionate (AMPA), kainate (KA), and metabotropic glutamate receptors. Ischemia was induced by 10 min of cardiac arrest, followed by restoration of spontaneous circulation for periods of 0, 0.5, 2, 4, and 24 h. Frozen sections were prepared from parietal and temporal cortex, hippocampus, and striatum, and in vitro autoradiography was performed with one of three radioligands: [3H]AMPA, [3H]KA, or [3H]glutamate (using conditions allowing specific labeling of the metabotropic binding site). In striatum, metabotropic binding was unchanged, whereas AMPA and KA binding decreased by 20–30% at 30 min postischemia, remaining depressed through 24h. In cortex, AMPA and metabotropic binding were decreased at several timepoints after ischemia and recirculation, particularly in parietal cortex, whereas KA binding was unaffected in this tissue. Binding to hippocampal regions was largely unchanged, except for a decrease in KA binding at 2 and 4 h postischemia. These findings contrast with results from parallel studies showing increased striatal binding to NMDA receptors following ischemia. Decreased binding to non-NMDA glutamate receptors in striatum and parietal cortex may serve to protect against damage mediated through these receptors.  相似文献   

19.
Brief focal ischemia leading to temporary neurological deficits induces delayed hyperintensity on T1-weighted magnetic resonance imaging (MRI) in the striatum of humans and rats. The T1 hyperintensity may stem from biochemical alterations including manganese (Mn) accumulation after ischemia. To clarify the significance of this MRI modification, we investigated the changes in the dorsolateral striatum of rats from 4 hours through 16 weeks after a 15-minute period of middle cerebral artery occlusion (MCAO), for MRI changes, Mn concentration, neuronal number, reactivities of astrocytes and microglia/macrophages, mitochondrial Mn-superoxide dismutase (Mn-SOD), glutamine synthetase (GS), and amyloid precursor protein. The cognitive and behavioral studies were performed in patients and rats and compared with striatal T1 hyperintensity to show whether alteration in brain function correlated with MRI and histological changes. The T1-weighted MRI signal intensity of the dorsolateral striatum increased from 5 days to 4 weeks after 15-minute MCAO, and subsequently decreased until 16 weeks. The Mn concentration of the dorsolateral striatum increased after ischemia in concert with induction of Mn-SOD and GS in reactive astrocytes. The neuronal survival ratio in the dorsolateral striatum decreased significantly from 4 hours through 16 weeks, accompanied by extracellular amyloid precursor protein accumulation and chronic glial/inflammatory responses. The patients and rats with neuroradiological striatal degeneration had late-onset cognitive and/or behavioral declines after brief focal ischemia. This study suggests that (1) the hyperintensity on T1-weighted MRI after mild ischemia may involve tissue Mn accumulation accompanied by Mn-SOD and GS induction in reactive astrocytes, (2) the MRI changes correspond to striatal neurodegeneration with a chronic inflammatory response and signs of oxidative stress, and (3) the subjects with these MRI changes are at risk for showing a late impairment of brain function even though the transient ischemia is followed by total neurological recovery.  相似文献   

20.
探讨脑缺血再灌流不同时程及不同程度缺血对海马及皮层胶质源性神经营养因子(glialcellline derived neurotrophic factor, GDNF)基因表达的影响,以及N甲基D天冬氨酸(Nm ethylDsapartate, NMDA)受体拮抗剂,钙离子通道阻断剂是否能调节缺血病态下GDNFm RNA的表达。参照Sm ith 等方法建立大鼠前脑缺血再灌流动物模型。用DIGOligonucleotide 3′end labeling Kit,标记51 m er的GDNF寡核苷酸探针在含有海马结构的冰冻组织切片上进行原位杂交检测GDNFm RNA的表达。10 m in 缺血再灌流2 h,齿状回GDNFm RNA表达上调。再灌流6 h,CA1,CA3 和皮层PAR区GDNFm RNA表达亦见增多,24 h 达高峰。Ketam ine 可使GDNF的基因表达在海马结构及皮层PAR区明显低于相应的缺血再灌流组,统计学差异显著(P< 005)。脑缺血再灌流时GDNF基因表达增加,对缺血神经元可能起保护作用。Ketam ine可阻断缺血后GDNFm RNA 的表达增加,提示NMDA谷氨酸受体很可能参与介导了缺  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号