首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of pretreatment with an AMPA receptor antagonist, NBQX, on MK-801-induced alterations in glucose use was examined using [14C]-2-deoxyglucose autoradiography. NBQX (7 mg/kg) had minimal effect on glucose utilisation in all anatomical regions examined. The intravenous administration of MK-801 (0.2 mg/kg) induced increases in glucose use in the limbic system and cingulate cortex. MK-801 reduced glucose utilisation in the sensory motor and auditory cortices. Pretreatment with NBQX attenuated the MK-801-induced hypermetabolism in the posterior cingulate cortex. The decreases in glucose utilisation induced by MK-801 were not exacerbated by the pretreatment with NBQX. The interaction between NBQX and MK-801 suggests a possible method of attenuating some of the adverse effects of the non-competitive NMDA receptor antagonists in the posterior cingulate cortex.  相似文献   

2.
The effect of AMPA-receptor stimulation on MMP and on the concentration of intracellular calcium ([Ca2+]i) was studied in dissociated CGC from rat pups, by flow cytometry. In the presence of cyclothiazide, AMPA induced a sodium-independent decrease in MMP up to 30.7 ± 2.5%. This effect was antagonized by CNQX and NBQX. Mepacrine and dibucaine reversed the effect of AMPA on MMP, suggesting that it is mediated by a release of arachidonic acid. AMPA alone induced a slight (about 7%) increase in [Ca2+]i. In the presence of cyclothiazide, AMPA induced a concentration-dependent [Ca2+]i increase up to 29.10 ± 2.10% that was not reversed by flunarizine. This increase was similar to that observed in a Na+-free medium, and was antagonized by CNQX and NBQX, but not by MK-801. Mitochondria play a key role in the modulation of [Ca2+]i since a significant [Ca2+]i increase was found in the presence of FCCP. On the other hand, the dantrolene-sensitive calcium pools do not participate in the [Ca2+]i increase induced by stimulation of AMPA receptors. It is concluded that when AMPA-receptor desensitization is blocked, a decrease in MMP and an increase in [Ca2+]i occurs, which could be additional events to potentiate neuronal cell death induced by glutamate. J. Neurosci. Res. 52:684–690, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Statins are widely being used for the treatment of a variety of conditions beyond their original indication for lowering cholesterol. We have previously reported that simvastatin affected the dopaminergic system in the rat brain. This study aims to investigate locomotor and anxiety effects along with the regional changes of N-methyl-d-aspartate (NMDA) receptors in the rat brain after 4-week administration of simvastatin. Hyperlocomotive and anxiolytic-like activities in the rat were observed after chronic administration of high dose simvastatin (10 mg/kg/day). Distributions and alterations of NMDA receptors in the post-mortem rat brain were detected by [3H] MK-801 binding autoradiography. Simvastatin increased [3H] MK-801 binding, predominantly in the prefrontal cortex (20%, p = 0.003), primary motor cortex (20%, p < 0.001), cingulate cortex (28%, p < 0.001), hippocampus (41%, p < 0.001), caudate putamen (30%, p = 0.029), nucleus accumbens (27%, p = 0.035) and amygdala (45%, p < 0.001) compared to controls. Significant positive correlations were identified between hyperlocomotive as well as anxiolytic-like activities and the upregulation of NMDA receptors in different brain regions. Our results also provide strong evidence that chronic high dose simvastatin administration is to exhibit NMDA antagonist-like effects, which would partially explain the anxiolytic and hyperlocomotor activities. These findings contribute to a better understanding of the critical roles of simvastatin in modulating psycho-neurodegenerative disorders, via NMDA receptors.  相似文献   

4.
In the present study we investigated the effect of in vivo intrastriatal injection of quinolinic acid (QA) on cytoskeletal proteins in astrocytes and neurons of young rats at early stage (30 min) after infusion. QA (150nmoles/0.5 µL) significantly increased the in vitro phosphorylation of the low molecular weight neurofilament subunit (NFL) and the glial fibrillary acidic protein (GFAP) of neurons and astrocytes, respectively. This effect was mediated by cAMP-dependent protein kinase A (PKA), protein kinase C (PKC) and Ca2+/calmodulin-dependent protein kinase II (PKCaMII). In contrast, mitogen activated protein kinases were not activated by QA infusion. Furthermore, the specific N-methyl-D-aspartate (NMDA) antagonist MK-801 (0.25 mg/kg i.p), the antioxidant L-NAME (60 mg\kg\day), and diphenyldisselenide (PheSe)2 (0.625 mg\kg\day) injected prior to QA infusion totally prevented QA-induced cytoskeletal hyperphosphorylation. We also observed that QA-induced hyperphosphorylation was targeted at the Ser55 phosphorylating site on NFL head domain, described as a regulatory site for NF assembly in vivo. This effect was fully prevented by MK801, by the PKA inhibitor H89 and by (PheSe)2, whereas staurosporine (PKC inhibitor) only partially prevented Ser55 phosphorylation. The PKCaMII inhibitor (KN93) and the antioxidant L-NAME failed to prevent the hyperphosphorylation of Ser55 by QA infusion. Therefore, we presume that QA-elicited hyperphosphorylation of the neural cytoskeleton, and specially of NFLSer55, achieved by intrastriatal QA injection could represent an early step in the pathophysiological cascade of deleterious events exerted by QA in rat striatum. Our observations also indicate that NMDA-mediated Ca2+ events and oxidative stress may be related to the altered protein cytoskeleton hyperphosphorylation observed with important implications for brain function.  相似文献   

5.
Polyamines such as spermidine potentiate activation of theN-methyl-D-aspartate (NMDA)-type excitatory amino acid receptor. The goal of the present study was to investigate interactions between the putative polyamine binding site and previously described sites for glutamate and glycine. Binding of the high-potency PCP receptor ligand [3H]MK-801 to well-washed rat brain membranes was used as an in vitro probe of NMDA receptor activation. Spermidine concentration-response studies were performed in the absence and presence of both glutamate and glycine, with and withoutD-(−)-2-amino-5-phosphonovaleric acid (D(−)AP-5) or 7-chlorokynurenic acid (7Cl-KYN). Incubation in the presence of spermidine alone induced a 20.4-fold increase in [3H]MK-801 binding with an EC50 value of 13.3 μM. The mean concentration of spermidine which induced maximal stimulation of binding was 130 μM (n = 10,S.E.M.= 24.66,range= 25–250 μM). Glutamate (10 μM) decreased the EC50 value for spermidine-induced stimulation of [3H]MK-801 binding to 3.4 μM. Glycine (10 μM) did not significantly alter either maximum spermidine-induced [3H]MK-801 binding or the EC50 value for spermidine-induced stimulation of [3H]MK-801 binding. Incubation in the presence of the specific glutamate antagonistD(−)AP-5 attenuated [3H]MK-801 binding in a glutamate-reversible fashion. The competitive glycine antagonist 7Cl-KYN decreased maximum spermidine-induced [3H]MK-801 binding in a glycine-reversible fashion. In addition, 7Cl-KYN increased the EC50 value for spermidine-induced stimulation of [3H]MK-801 binding whileD(−)AP-5 was without effect. These findings suggest that glutamate and glycine regulate the polyamine binding site differentially. PCP-like agents induce a psychotomimetic state closely resembling schizophrenia by inhibiting NMDA receptor-mediated neurotransmission. The ability of polyamines to modulate NMDA receptor functioning suggests a potential site for pharmacological intervention.  相似文献   

6.
Schizophrenia is a severe mental illness characterized by positive and negative symptoms and cognitive deficits. Reduction of glutamatergic neurotransmission by NMDA receptor antagonists mimics symptoms of schizophrenia. Modeling social interaction and cognitive impairment in animals can be of great benefit in the effort to develop novel treatments for negative and cognitive symptoms of schizophrenia. Studies have demonstrated that these behavioral changes are, in some cases, sensitive to remediation by antipsychotic drugs. The zebrafish has been proposed as a candidate to study the in vivo effects of several drugs and to discover new pharmacological targets. In the current study we investigated the ability of antipsychotic drugs to reverse schizophrenia-like symptoms produced by the NMDA receptor antagonist MK-801. Results showed that MK-801 (5 μM) given pre-training hindered memory formation while both atypical antipsychotics sulpiride (250 μM) and olanzapine (50 μM) improved MK-801-induced amnesia. The same change was observed in the social interaction task, where atypical antipsychotics reversed the MK-801-induced social interaction deficit whereas the typical antipsychotic haloperidol (9 μM) was ineffective to reverse those behavioral deficits. Therefore, MK-801-treated zebrafish showed some behavioral features observed in schizophrenia, such as cognitive and social interaction deficits, which were reverted by current available atypical drugs.  相似文献   

7.
In this study, we examined whether topical treatment of glutamate receptor antagonists attenuate hyperexcitability of lumbar spinal dorsal horn neurons following low thoracic hemisection spinal cord injury in rats. Four weeks after spinal hemisection, neuronal activity in response to mechanical stimuli applied on the peripheral receptive field was significantly increased in three different phenotypes of lumbar spinal dorsal horn neurons: wide dynamic range (WDR), low threshold (LT) and high threshold (HT). Topical application of MK-801 (NMDA receptor antagonist, 50 µg) significantly attenuated the activity of WDR, but not LT and HT neurons; whereas, NBQX (AMPA receptor antagonist, 0.5 and 1 µg) significantly attenuated neuronal activity in all three phenotypes of neurons (*p < 0.05). However, MCPG (group I/II metabotropic glutamate receptor antagonist, 100 µg) had no effect. The present study, in the context of previous work, suggests that ionotropic glutamate receptor activation play critical roles in the maintenance of neuronal hyperexcitability and neuropathic “below-level” pain behavior following spinal hemisection injury.  相似文献   

8.
MK-801 (5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine maleate) is a novel anticonvulsant agent reported to antagonize certain N-methyl-spd-aspartate (NMDA)-mediated effects non-competitively. The question arises of the mechanism underlying the anti-NMDA and anticonvulsant effects of MK-801. In the present study MK-801 is shown to be an extremely potent inhibitor of the binding of N-[3H](1-[2-thienyl]cyclohexy)piperidine) ([s3H]TCP to brain phencyclidine (PCP)/δ-receptors. It is IC5) value of 3.8 ± 0.8 nM in this assay ranks it as the most potent known ligand of brain PCP/δ-receptors. Addition of MK-801 altered the apparent Kd but not the apparent Bmax values for [3H]TCP binding, indicating a competitive interaction. The specificity of action of MK-801 is supported by the finding that MK-801 strongly inhibited the binding of (+)-N-[3H]allylnormetazocine ((+)-[3H]SKF 10.047) to the PCP/δ-receptor but its effect on (+)-[3H]SKF 10.047 binding to the non-PCP, haloperidol-sensitive δ-binding site was weaker by several orders of magnitude. Furthermore, MK-801 exerts PCP-like antagonistic effects upon NMDA-induced [3H]norepinephrine release. These findings support the concept that the anticonvulsant and anti-NMDA effects of MK-801 result from its being the most potent known ligand of PCP/δ-receptors.  相似文献   

9.
The effect of acute pretreatment with MK-801 on the binding in vivo of both 3H-N-methylspiperone (NMSP) and 3H-raclopride (RAC) were compared in mice. In the striatum, MK-801 significantly increase 3H-NMSP binding, whereas no significant alterations in 3H-RAC binding were seen. In contrast, binding in the cerebral cortex of both radiolabeled ligands was not changed by MK-801. Kinetic analysis revealed that the increase in 3H-NMSP binding induced by MK-801 was due to an increase in the rate constant k3 (k3 = kon·Bmax). In vivo saturation experiments showed that Bmax for 3H-NMSP binding was relatively unchanged and an increase in the apparent association rate constant (kon) was the main reason for an increase in the k3 for 3H-NMSP binding. As 3H-RAC binding is known to be much more sensitive to competitive inhibition than is 3H-NMSP binding, these results strongly suggest that factors other than competition by endogenous dopamine may contribute to changes in receptor binding in vivo caused by NMDA-antagonism.  相似文献   

10.
[3H]MK-801 binding was found to decline with age in well washed membranes from human frontal cortex taken from an age series from 24 weeks gestation to 100 years old. The decline was significant under basal conditions (no added modulators) (P < 0.01), and highly significant under stimulation with glutamate, glycine and spermidine alone and in combination (P < 0.001). Scatchard analysis in the presence of glutamate and glycine showed this decline was due to a loss in the number [3H]MK-801 binding sites rather than a change in the affinity of the binding site. There was a highly significant age related reduction in the attenuation of [3H]MK-801 binding by zinc (P < 0.001). In foetal and neonatal cases up to 7 weeks of age spermidine behaved in an antagonistic manner, inhibiting rather than stimulating [3H]MK-801 binding, when alone or in the presence of glutamate and glycine. The changes in influence of glutamate, glycine, spermidine and zinc on [3H]MK-801 binding during development and aging were not due to other pre- or postmortem factors. The reverse effect of spermidine in the foetal and neonatal cases has therapeutic implications in the treatment of neonates with antiischaemic agents whose action involves the polyamine site.  相似文献   

11.
To examine the role of calcium influx in the early phase after brief forebrain ischemia and subsequent delayed neuronal cell death in the hippocampus,45Ca autoradiography and electron microscopic cytochemistry, by a combined oxalate-pyroantimonate method, were carried out in gerbil brains after 5 min bilateral common carotid arterial occlusion. Further, neuronal during the ischemic and postischemic periods was determined by conventional or immunohistochemical staining for microtubule-associated protein 2 (MAP2) with and without calcium-entry blockers.45Ca autoradiography showed a high peak of calcium in the hippocampus at 5 min of recirculation. Electron cytochemical microscopy also demonstrated accumulation of intracellular calcium pyroantimonate deposits in the neuronal cells in all regions. At 30 min of reperfusion, amounts of calcium in the hippocampus returned to the control levels, and intracellular dense calcium pyroantimonate deposits were reduced in these areas. Loss of the reaction for MAP2 was noted in the medial CA1 of the hippocampus immediately after 5 min ischemia and at 5 and 30 min after reperfusion. MK-801 (10 mg kg−1, anN-methyl-d-aspartate (NMDA) receptor antagonist, injected intraperitoneally 1 h before ischemia, suppressed the early increase of calcium in the forebrain and neuronal cell necrosis in the CA1. However, neither injection of MK-801 30 min after reperfusion nor preischemic treatment with 0.5 mg kg−1 Nicardipine, voltage-sensitive calcium channel antagonists, prevented neuronal death. In immunohistochemical staining for MAP2, the ischemic lesion in the medial CA1 maintained after 5 min ischemia and the subsequent early reperfusion period in the untreated brains was protected by the preischemic injection of 10 mg kg−1 MK-801, but was not restored by the injection of 0.5 mg kg−1 Nimodipine or 1 mg kg−1 Nicardipine. In conclusion, it is suggested that an early excess of calcium influx could be caused mainly by excitatory amino acid overload through NMDA receptor-mediated calcium channels during the ischemic and early postischemic periods.  相似文献   

12.
Early enriched environment (EE) prevents several deficits associated with postnatal MK-801 [N-Methyl-d-Aspartate (NMDA) receptor antagonist] treatment such as cognitive and locomotor deficits. We sought physiological correlates to such changes by looking at inhibitory synaptic inputs onto pyramidal cells in a prefrontal cortex slice preparation. Pharmacologically isolated γ-amino-butyric acid A (GABAA) receptor-mediated currents were measured using whole-cell patch clamp recordings. Wistar rats were raised in standard or EE from birth up to the time of experiments and were injected with saline or MK-801 (1 mg/ kg) on postnatal days (P) 6–10. We recorded miniature inhibitory post-synaptic currents (mIPSCs) of pyramidal cells in layer II/III of prefrontal cortex and measured their frequency, amplitude and kinetics. In control animals, the amplitude and frequency of mIPSCs increased strikingly during development from P21 to P28. MK-801 accelerated the development of mIPSCs frequency but caused a significant decrease in the amplitude of mIPSCs on P28 suggesting a significant reduction of inhibition onto pyramidal cells. EE per se led to a significant increase in both frequency and amplitude of mIPSCs, but its application to MK-801-treated rats resulted in moderate rescue of GABAergic transmission on P28. We conclude that postnatal MK-801 leads to reduced inhibitory transmission onto pyramidal cells of prefrontal cortex at adolescence which may underlie behavioural and morphological differences detected in vivo in rats. EE presentation from birth rather prevents GABAergic alterations associated with postnatal MK-801 treatment at adolescence.  相似文献   

13.
The development of N-methyl-d-aspartate (NMDA) receptors and the effects of vibrissectomy upon [3H]MK-801 binding were examined in the barrel cortex of mice. Autoradiograhic studies showed that initially very low binding of [3H]MK-801 sharply increased during the second postnatal week reaching the adult level by the end of the third week. Scatchard analysis performed on cortical membrane preparations indicated that this rise of [3H]MK-801 labelling was due to an increase in the number of binding sites and a decrease of Kd at postnatal day 15 and 28. The interlaminar differences of labelling were registered from postnatal day 8. Changes of interlaminar distribution were found during the second and third postnatal weeks. In adult barrel cortex the highest binding was found in supragranular layers. In layer IV of the cortex, the pattern of binding resembled the pattern of barrels. Unilateral denervation of vibrissae performed in neonatal and adult mice did not alter the intensity of [3H]MK-801 labelling or the laminar distribution of binding sites. These results suggest that NMDA receptor binding does not reflect the plastic changes occurring in the barrel cortex.  相似文献   

14.
In the present study, we have investigated the effects of prolonged inhibition of NMDA receptor by infusion of subtoxic dose of MK-801 to examine the modulation of GABAA receptor binding and GABAA receptor subunit mRNA level in rat brain. It has been reported that NMDA-selective glutamate receptor stimulation alters GABAA receptor pharmacology in cerebellar granule neurons in vitro by altering the levels of selective subunit. However, we have investigated the effect of NMDA antagonist, MK-801, on GABAA receptor binding characteristics in discrete brain regions by using autoradiographic and in situ hybridization techniques. The GABAA receptor bindings were analyzed by quantitative autoradiography using [3H]muscimol, [3H]flunitrazepam, and [35S]TBPS in rat brain slices. Rats were infused with MK-801 (1 pmol/10 μl per h, i.c.v.) for 7 days, through pre-implanted cannula by osmotic minipumps (Alzet, model 2ML). The levels of [3H]muscimol binding were highly elevated in almost all of brain regions including cortex, caudate putamen, thalamus, hippocampus, and cerebellum. However, the [3H]flunitrazepam binding and [35S]TBPS binding were increased only in specific regions; the former level was increased in parts of the cortex, thalamus, and hippocampus, while the latter binding sites were only slightly elevated in parts of thalamus. The levels of β2-subunit were elevated in the frontal cortex, thalamus, hippocampus, brainstem, and cerebellar granule layers while the levels of β3-subunit were significantly decreased in the cortex, hippocampus, and cerebellar granule layers in MK-801-infused rats. The levels of α6- and δ-subunits, which are highly localized in the cerebellum, were increased in the cerebellar granule layer after MK-801 treatment. These results show that the prolonged suppression of NMDA receptor function by MK-801-infusion strongly elevates [3H]muscimol binding throughout the brain, increases regional [3H]flunitrazepam and [35S]TBPS binding, and alters GABAA receptor subunit mRNA levels in different directions. The chronic MK-801 treatment has differential effect on various GABAA receptor subunits, which suggests involvement of differential regulatory mechanisms in interaction of NMDA receptor with the GABA receptors.  相似文献   

15.
The independent and combined effects of Ca2+, Mg2+, Zn2+, Al3+ and Li+ on [ 3H]MK-801 binding in human cerebral cortical membranes were studied to further characterize the modulatory effects of metal ions on the N-methyl-d-aspartate (NMDA) receptor-ionophore. Glycine, in the presence of glutamate, significantly intensified the Mg2+ inhibition of [ 3H]MK-801 binding whereas it masked the Ca2+ enhancement and slightly diminished the Zn2+ inhibition. Both Ca2+ and Mg2+ reduced the Zn2+ inhibitory potency. Aluminum demonstrated a potent, relatively glycine-insensitive inhibition of [ 3H]MK-801 binding as an amorphous Al(OH)3 polymer rather than as the free ion. Cationic modulation of the NMDA receptor-ionophore appears to be regulated at multiple sites which have significant allosteric interactions.  相似文献   

16.
In vitrocombinations of MK-801, an NMDA receptor antagonist, and α-phenyl-tert-butyl-nitrone (PBN), a free radical scavenger, have been tested for possible additive neuroprotective effects against anoxia/hypoglycemia (Ax/Hg)-induced neuronal damage. Rat organotypic hippocampal slice cultures were exposed to Ax/Hg for different lengths of time to vary the severity of the insult. Cell death (CD) was assessed using propidium iodide fluorescence and expressed as a percentage of the total neuronal cells present. Pretreatment with PBN alone (500 μM) provided significant protection against moderate ischemic injury and reduced CD from 65% in controls to 2% in the treated group (P < 0.003). A longer ischemic exposure time caused more neuronal damage, which was only slightly reduced by PBN, but significantly reduced by MK-801 (30 μM) (4% CD with MK-801 vs 75% CD in controls;P < 0.0003). With a further increase in the time of ischemic exposure, MK-801 was still protective (33% CD with MK-801 vs 90% CD in controls;P < 0.002), although the combination MK-801 + PBN was more efficient (7% CD with combination,P < 0.01 compared to MK-801 alone). With yet a further increase in the ischemic exposure, PBN or MK-801 alone was not protective; however, a combination of the two still provided significant protection (64% CD with combination vs 100% CD with MK-801 alone;P < 0.01). PBN was protective when administered up to 2 h after Ax/Hg (66% CD in controls vs 36% CD with PBN 500 μM;P < 0.007). The combination MK-801 + PBN was able to increase the therapeutic window up to 3 h (61% CD in controls vs 41% with PBN alone vs 7% with MK-801 + PBN;P < 0.002 compared to PBN alone). In conclusion, the combination of MK-801 and PBN increases both the efficacy and the time window of protection against ischemia.  相似文献   

17.
We studied the effect of ZnCl2 application on GABAA receptor-mediated 36Cl flux in microsacs prepared from whole rat hippocampus and in region-specific hippocampal slices. Slices were obtained from the dentate gyrus (DG), which contains the zinc-enriched hilar region, and from the CA1 region which contains lower levels of endogenous zinc. Muscimol (10 μM)-evoked 36Cl flux was significantly reduced by ZnCl2 (100 μM) in hippocampal microsacs. In hippocampal slices, muscimol (50 μM)-evoked 36Cl efflux was higher in CA1 (112.5 ± 27.9% above basal efflux rate) than in DG slices (29.7 ± 5.6%). In the presence of ZnCl2, the muscimol effect on efflux rate in CA1 and DG regions was decreased to 10.6 ± 5.4% and 6.9 ± 4.9%, respectively. Preincubation with the zinc chelator, tetrakis(2-pyridylmethyl)ethylenediamine (TPEN, 20 μM), caused a significant increase in muscimol-evoked 36Cl efflux only in DG slices (57.2 ± 7.0%), suggesting that GABAA receptors in the DG of rat hippocampus under physiological conditions may function under the inhibitory influence of endogenous chelatable zinc. In intracellular recordings, ZnCl2 (100 μM) application had no effect on the responses to GABA applied perisomatically or in the dendritic region of CA1 neurons. The lack of Zn2+ effect on the postsynaptic GABAA receptor-mediated responses suggests that the decreases of the 36Cl efflux observed in the biochemical assays may be due to zinc action on neurons other than the principal pyramidal CA1 cells, and possibly the non-neuronal cell populations.  相似文献   

18.

Background

P2Y1 and P2Y12 receptors are expressed in platelet membranes and are involved in ADP-induced platelet aggregation. Genetic polymorphisms of P2Y1 and P2Y12 play a major role in the variation of ADP-induced platelet aggregation and in response in antiplatelet therapy.

Objective

To evaluate the allele frequencies of P2Y1 and P2Y12 genetic polymorphisms in a Korean population and to assess their role in ADP (5 μmol/L)-induced maximal platelet aggregation.

Methods

P2Y1 (c.1622A > G) and P2Y12 (i-139C > T, i-744 T > C, i-ins801, c.52G > T, c.34C > T) polymorphisms were analyzed in 158 Korean healthy participants using pyrosequencing methods. Their ADP-induced maximal platelet aggregation was assessed by the turbidometric method.

Results

The observed allele frequencies of P2Y1 and P2Y12 were as follows: 0.3101 for P2Y1 c.1622A > G; 0.1804 for P2Y12 i-139C > T, 0.1804 for i-744 T > C, 0.1804 for i-801insA, 0.1266 for P2Y12 c.52G > T, and 0.2658 for P2Y12 c.34C > T. ADP-induced maximal platelet aggregation was not influenced by the P2Y1 c.1622A > G polymorphism and was also not affected by three intronic P2Y12 polymorphisms and the P2Y12 c.34C > T polymorphism. However, the P2Y12 c.52G > T polymorphism caused a substantial difference in ADP-induced maximal platelet aggregation (62.75% for c.52GG, 66.27% for c.52GT, and 80.60% for c.52TT; P = 0.0092).

Conclusions

The P2Y1 and P2Y12 genes were very polymorphic in a Korean population. Three intronic P2Y12 polymorphisms (i-139C > T, i-744 T > C, i-801insA) were in complete linkage disequilibrium but not with the c.52C > T polymorphism in this population. Maximal platelet aggregation in response to ADP is associated with the c.52C > T polymorphism but not with the three intronic polymorphisms or the P2Y1 c.1622A > T polymorphism.  相似文献   

19.
The extracellular calcium concentration ([Ca2+]ec) was recorded by calcium-sensitive microelectrodes in the parietal cortex of 9–11 day old rats during anoxia. During the first 10 min of anoxia, [Ca2+]ec increased from 1.1 mM to 1.5 ± 0.23 mM, and thereafter it started to decrease reaching below basal level after around 13 min. The [Ca2+]ec decrease was either slow and continuous, or biphased with a rapid initial decrease followed by a continuous slow decrease. After 60 min of anoxia, the [Ca2+]ec had reached 0.2–0.3 mM. Changes in [Ca2+]ec in animals treated with the NMDA receptor antagonist MK-801 (0.3 mg/kg i.p.) did not display any significant differences compared to controls. Thus, the strong neuroprotective effect of MK-801 in ischemic situations in the immature brain can not be explained by a prevention of calcium entry during anoxic depolarization.  相似文献   

20.
Glutaric acidemia type I (GA-I) is an inherited metabolic disease characterized by accumulation of glutaric acid (GA) and striatal degeneration. Although growing evidence suggests that excitotoxicity and oxidative stress play central role in the neuropathogenesis of this disease, mechanism underlying striatal damage in this disorder is not well established. Thus, we decided to investigate the in vitro effects of GA 10 nM (a low concentration that can be present initial development this disorder) on l-[3H]glutamate uptake and reactive oxygen species (ROS) generation in synaptosomes from striatum of rats. GA reduced l-[3H]glutamate uptake in synaptosomes from 1 up to 30 min after its addition. Furthermore, we also provided some evidence that GA competes with the glutamate transporter inhibitor l-trans-pyrrolidine-2,4-dicarboxylate (PDC), suggesting a possible interaction of GA with glutamate transporters on synaptosomes. Moreover, GA produced a significant decrease in the VMAX of l-[3H]glutamate uptake, but did not affect the KD value. Although the GA did not show oxidant activity per se, it increased the ROS generation in striatal synaptosomes. To evaluate the involvement of reactive species generation in the GA-induced l-[3H]glutamate uptake inhibition, trolox (0.3, 0.6 and 6 μM) was added on the incubation medium. Statistical analysis showed that trolox did not decrease inhibition of GA-induced l-[3H]glutamate uptake, but decreased GA-induced reactive species formation in striatal synaptosomes (1, 3, 5, 10, 15 and 30 min), suggesting that ROS generation appears to occur secondarily to glutamatergic overstimulation in this model of organic acidemia. Since GA induced DCFH oxidation increase, we evaluate the involvement of glutamate receptor antagonists in oxidative stress, showing that CNQX, but not MK-801, decreased the DCFH oxidation increase in striatal synaptosomes. Furthermore, the results presented in this report suggest that excitotoxicity elicited by low concentration of GA, could be in part by maintaining this excitatory neurotransmitter in the synaptic cleft by non-competitive inhibition of glutamate uptake. Thus the present data may explain, at least partly, initial striatal damage at birth, as evidenced by acute bilateral destruction of caudate and putamen observed in children with GA-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号