共查询到20条相似文献,搜索用时 156 毫秒
1.
Angiogenesis requires integration of cues from growth factors, extracellular matrix (ECM) proteins, and their receptors in endothelial cells. In the present study, we show that the adaptor protein Shc is required for angiogenesis in zebrafish, mice, and cell-culture models. Shc knockdown zebrafish embryos show defects in intersegmental vessel sprouting in the trunk. Shc flox/flox; Tie2-Cre mice display reduced angiogenesis in the retinal neovascularization model and in response to VEGF in the Matrigel plug assay in vivo. Functional studies reveal a model in which Shc is required for integrin-mediated spreading and migration specifically on fibronectin, as well as endothelial cell survival in response to VEGF. Mechanistically, Shc is required for activation of the Akt pathway downstream of both integrin and VEGF signaling, as well as for integration of signals from these 2 receptors when cells are grown on fibronectin. Therefore, we have identified a unique mechanism in which signals from 2 critical angiogenic signaling axes, integrins and VEGFR-2, converge at Shc to regulate postnatal angiogenesis. 相似文献
2.
Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress 总被引:1,自引:0,他引:1
Camici GG Schiavoni M Francia P Bachschmid M Martin-Padura I Hersberger M Tanner FC Pelicci P Volpe M Anversa P Lüscher TF Cosentino F 《Proceedings of the National Academy of Sciences of the United States of America》2007,104(12):5217-5222
Increased production of reactive oxygen species (ROS) and loss of endothelial NO bioavailability are key features of vascular disease in diabetes mellitus. The p66(Shc) adaptor protein controls cellular responses to oxidative stress. Mice lacking p66(Shc) (p66(Shc-/-)) have increased resistance to ROS and prolonged life span. The present work was designed to investigate hyperglycemia-associated changes in endothelial function in a model of insulin-dependent diabetes mellitus p66(Shc-/-) mouse. p66(Shc-/-) and wild-type (WT) mice were injected with citrate buffer (control) or made diabetic by an i.p. injection of 200 mg of streptozotocin per kg of body weight. Streptozotocin-treated p66(Shc-/-) and WT mice showed a similar increase in blood glucose. However, significant differences arose with respect to endothelial dysfunction and oxidative stress. WT diabetic mice displayed marked impairment of endothelium-dependent relaxations, increased peroxynitrite (ONOO(-)) generation, nitrotyrosine expression, and lipid peroxidation as measured in the aortic tissue. In contrast, p66(Shc-/-) diabetic mice did not develop these high-glucose-mediated abnormalities. Furthermore, protein expression of the antioxidant enzyme heme oxygenase 1 and endothelial NO synthase were up-regulated in p66(Shc-/-) but not in WT mice. We report that p66(Shc-/-) mice are resistant to hyperglycemia-induced, ROS-dependent endothelial dysfunction. These data suggest that p66(Shc) adaptor protein is part of a signal transduction pathway relevant to hyperglycemia vascular damage and, hence, may represent a novel therapeutic target against diabetic vascular complications. 相似文献
3.
Annalisa Natalicchio Federica Tortosa Rossella Labarbuta Giuseppina Biondi Nicola Marrano Emanuele Carchia Anna Leonardini Angelo Cignarelli Marco Bugliani Piero Marchetti Gian Paolo Fadini Marco Giorgio Angelo Avogaro Sebastio Perrini Luigi Laviola Francesco Giorgino 《Diabetologia》2015,58(6):1260-1271
4.
Yi Shi Gianluigi Savarese Pasquale Perrone-Filardi Thomas F. Lüscher Giovanni G. Camici 《International journal of cardiology》2014
Background
Aging is an independent risk factor for cardiovascular and cerebrovascular disease. To date, little is known about the mechanisms of aging of cerebral arteries and whether the aging gene p66Shc is implicated in it. The present study was designed to assess age-induced vascular dysfunction in cerebral and systemic arteries of wild type (wt) and p66Shc −/− mice.Methods
Basilar arteries and size matched second order femoral arteries of 3-month (3M), 6-month (6M) and 2-year old (2Y) mice were studied in wt and p66Shc −/− mice. To assess vascular function, arterial rings mounted in a myograph for isometric tension recordings were exposed to increasing concentrations of acetylcholine and sodium nitroprusside. Reactive oxygen species (ROS) generation was assessed in femoral and basilar arteries using the spin trap 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine.Results
In wt mice, endothelial function of the femoral artery was not affected by age unlike in the basilar artery where an age-dependent dysfunction was observed. In p66Shc −/− a similar response was observed in the femoral artery; however, age-dependent endothelial dysfunction of the basilar artery was blunted as compared to wt. Levels of ROS were comparable in the femoral arteries of 3M and 2Y of wt and p66Shc −/− mice. Differently, ROS levels in the basilar artery of wt mice were strongly increased by age unlike in p66Shc −/− mice where they remained comparable irrespective of age.Conclusions
Endothelial function in cerebral arteries, but not in size-matched systemic ones, is heavily impaired by aging. This process is paralleled by an increased ROS production and is mediated by the p66Shc gene. 相似文献5.
6.
7.
8.
The Shc adaptor protein is critical for VEGF induction by Met/HGF and ErbB2 receptors and for early onset of tumor angiogenesis 总被引:3,自引:0,他引:3 下载免费PDF全文
Saucier C Khoury H Lai KM Peschard P Dankort D Naujokas MA Holash J Yancopoulos GD Muller WJ Pawson T Park M 《Proceedings of the National Academy of Sciences of the United States of America》2004,101(8):2345-2350
The etiology and progression of a variety of human malignancies are linked to the deregulation of receptor tyrosine kinases (RTKs). To define the role of RTK-dependent signals in various oncogenic processes, we have previously engineered RTK oncoproteins that recruit either the Shc or Grb2 adaptor proteins. Although these RTK oncoproteins transform cells with similar efficiencies, fibroblasts expressing the Shc-binding RTK oncoproteins induced tumors with short latency (approximately 7 days), whereas cells expressing the Grb2-binding RTK oncoproteins induced tumors with delayed latency (approximately 24 days). The early onset of tumor formation correlated with the ability of cells expressing the Shc-binding RTK oncoproteins to produce vascular endothelial growth factor (VEGF) in culture and an angiogenic response in vivo. Consistent with this, treatment with a VEGF inhibitor, VEGF-Trap, blocked the in vivo angiogenic and tumorigenic properties of these cells. The importance of Shc recruitment to RTKs for the induction of VEGF was further demonstrated by using mutants of the Neu/ErbB2 RTK, where the Shc, but not Grb2, binding mutant induced VEGF. Moreover, the use of fibroblasts derived from ShcA-deficient mouse embryos, demonstrated that Shc was essential for the induction of VEGF by the Met/hepatocyte growth factor RTK oncoprotein and by serum-derived growth factors. Together, our findings identify Shc as a critical angiogenic switch for VEGF production downstream from the Met and ErbB2 RTKs. 相似文献
9.
10.
Protein kinase C alpha promotes angiogenic activity of human endothelial cells via induction of vascular endothelial growth factor 总被引:2,自引:0,他引:2
AIMS: Protein kinase C (PKC) plays an important role in the regulation of angiogenesis. However, downstream targets of PKC in endothelial cells are poorly defined. METHODS AND RESULTS: mRNA expression of vascular endothelial growth factor (VEGF) was analysed by quantitative real-time RT-PCR in human umbilical vein endothelial cells (HUVEC) and HUVEC-derived EA.hy 926 cells. siRNA was used to knockdown PKC isoforms and VEGF. Matrigel tube formation assay was used to analyse the angiogenic activity of endothelial cells. Phorbol-12-myristate-13-acetate (PMA) enhanced the ability of HUVEC to organize into tubular networks when plated on Matrigel, a phenomenon that could be prevented by PKC inhibitors. PMA markedly increased the expression of VEGF in HUVEC and EA.hy 926 cells. The enhancement in VEGF expression was prevented by PKC inhibitors and by an inhibitor of the Erk1/2 pathway. PMA-induced tube formation was reduced by inhibition of the VEGF receptor kinase, or by VEGF knockdown. PMA led to an activation of PKC isoforms alpha, delta and epsilon in HUVEC. Knockdown of PKC alpha diminished PMA-induced VEGF expression and angiogenesis. Also endothelial progenitor cells isolated from human peripheral blood showed enhanced VEGF expression and improved angiogenic activity in response to PKC activation. Moreover, incubation of HUVEC with VEGF led to PKC alpha activation and PKC-dependent VEGF upregulation. CONCLUSIONS: PKC alpha activation promotes angiogenic activity of human endothelial cells. This is likely to be largely mediated by induction of VEGF. VEGF enhances its own expression via a PKC alpha-dependent positive feedback mechanism. 相似文献
11.
12.
13.
Annalisa Natalicchio Federica Tortosa Rossella Labarbuta Giuseppina Biondi Nicola Marrano Emanuele Carchia Anna Leonardini Angelo Cignarelli Marco Bugliani Piero Marchetti Gian Paolo Fadini Marco Giorgio Angelo Avogaro Sebastio Perrini Luigi Laviola Francesco Giorgino 《Diabetologia》2015,58(11):2682-2682
14.
15.
16.
A mammalian adaptor protein with conserved Src homology 2 and phosphotyrosine-binding domains is related to Shc and is specifically expressed in the brain. 总被引:5,自引:0,他引:5 下载免费PDF全文
J P O''Bryan Z Songyang L Cantley C J Der T Pawson 《Proceedings of the National Academy of Sciences of the United States of America》1996,93(7):2729-2734
The Shc adaptor protein, hereafter referred to as ShcA, possesses two distinct phosphotyrosine-recognition modules, a C-terminal Src homology 2 (SH2) domain and an N-terminal phosphotyrosine-binding (PTB) domain, and is itself phosphorylated on tyrosine in response to many extracellular signals. Phosphorylation of human ShcA at Tyr-317 within its central (CH1) region induces binding to the Grb2 SH2 domain and is thereby implicated in activation of the Ras pathway. Two shc-related genes (shcB and shcC) have been identified in the mouse. shcB is closely related to human SCK, while shcC has not yet been found in other organisms. The ShcC protein is predicted to have a C-terminal SH2 domain, a CH1 region with a putative Grb2-binding site, and an N-terminal PTB domain. The ShcC and ShcB SH2 domains bind phosphotyrosine-containing peptides and receptors with a specificity related to, but distinct from, that of the ShcA SH2 domain. The ShcC PTB domain specifically associates in vitro with the autophosphorylated receptors for nerve growth factor and epidermal growth factor. These results indicate that ShcC has functional SH2 and PTB; domains. In contrast to shcA, which is widely expressed, shcC RNA and proteins are predominantly expressed in the adult brain. These results suggest that ShcC may mediate signaling from tyrosine kinases in the nervous system, such as receptors for neurotrophins. 相似文献
17.
Aquaporin 1 is required for hypoxia-inducible angiogenesis in human retinal vascular endothelial cells 总被引:2,自引:0,他引:2
Kaneko K Yagui K Tanaka A Yoshihara K Ishikawa K Takahashi K Bujo H Sakurai K Saito Y 《Microvascular research》2008,75(3):297-301
Aquaporin 1 (AQP1) was first purified from red blood cell membranes and is now known to be an osmolarity-driven water transporter that is widely expressed in many epithelial and endothelial cells outside the brain. Several recent studies have shown strong expression of AQP1 in proliferating tumor microvessels, suggesting that AQP1 may have an important role in tumor angiogenesis. Hypoxia is thought to be a common precursor to neovascularization in many retinal diseases, including diabetic retinopathy, and therefore we analyzed the expression pattern and function of AQP1 in human retinal vascular endothelial cells cultured under hypoxic conditions. The levels of AQP1 mRNA and protein expression significantly increased under hypoxia, and inhibition of VEGF signaling did not affect AQP1 expression. To examine the effect of AQP1 on hypoxia-inducible angiogenesis, a tube formation assay was performed. Reduction of AQP1 expression using siRNA and inhibition of VEGF signaling both significantly inhibited tube formation, and these effects were additive. Therefore, our data suggest that AQP1 is involved in hypoxia-inducible angiogenesis in retinal vascular endothelial cells through a mechanism that is independent of the VEGF signaling pathway. 相似文献
18.
目的 观察葡萄糖对内皮祖细胞(EPC)表达低氧诱导因子1α(HIF-1α)和血管内皮生长因子(VEGF)的影响.方法 在EPC培养体系中加入不同浓度葡萄糖,分别在常氧(21%氧浓度)和低氧(1%氧浓度)条件下培养.检测各组HIF-1α及VEGF的基因和蛋白表达水平.结果 葡萄糖浓度相同,低氧组表达HIF-1α mRNA高于常氧组,VEGF的表达无统计学差异;氧浓度相同,10mmol/L葡萄糖组EPC表达HIF-1α mRNA高于其余两组,且随着葡萄糖浓度增加,VEGF表达逐渐下降.常氧浓度下测不到HIF-1α蛋白表达;低氧浓度下,10mmol/L葡萄糖组EPC表达HIF-1α最高.结论 高糖对低氧条件下的EPC具有毒性作用,能减弱其表达HIF-1α和VEGF. 相似文献
19.
Graiani G Lagrasta C Migliaccio E Spillmann F Meloni M Madeddu P Quaini F Padura IM Lanfrancone L Pelicci P Emanueli C 《Hypertension》2005,46(2):433-440
Angiotensin II (Ang II), acting through its G protein-coupled AT1 receptor (AT1), contributes to the precocious heart senescence typical of patients with hypertension, atherosclerosis, and diabetes. AT1 was suggested to transactivate an intracellular signaling controlled by growth factors and their tyrosin-kinase receptors. In cultured vascular smooth muscle cells, this downstream mechanism comprises the p66Shc adaptor protein, previously recognized to play a role in vascular cell senescence and death. The aim of the present study was 2-fold: (1) to characterize the cardiovascular phenotype of p66Shc knockout mice (p66Shc(-/-)), and (2) to test the novel hypothesis that disrupting the p66Shc might protect the heart from the damaging action of elevated Ang II levels. Compared with wild-type littermates (p66Shc(+/+)), p66Shc(-/-) showed similar blood pressure, heart rate, and left ventricular wall thickness. However, cardiomyocyte number was increased in mutant animals, indicating a condition of myocardial hyperplasia. In p66Shc(+/+), infusion of a sub-pressor dose of Ang II (300 nmol/kg body weight [BW] daily for 28 days) caused left ventricular hypertrophy and apoptotic death of cardiomyocytes and endothelial cells. In contrast, p66Shc(-/-) were resistant to the proapoptotic/hypertrophic action of Ang II. Consistently, in vitro experiments showed that Ang II causes apoptotic death of cardiomyocytes isolated from p66Shc(+/+) hearts to a greater extent as compared with p66Shc(-/-) cardiomyocytes. Our results indicate a fundamental role of p66Shc in Ang II-mediated myocardial remodeling. In perspective, p66Shc inhibition may be envisioned as a novel way to prevent the deleterious effects of Ang II on the heart. 相似文献
20.
Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells 总被引:17,自引:0,他引:17
The tissue repair response to hypoxic stimuli during wound healing includes enhanced production of angiogenic factors, such as vascular endothelial growth factor (VEGF). Hepatic stellate cells are oxygen-sensing cells, capable of producing VEGF. We hypothesized that hypoxia-stimulated signaling in activated stellate cells mediate VEGF secretion during liver injury. The specific aim was to evaluate the effect of hypoxia on the gene expression of VEGF in HSC-T6 cells, an immortalized rat hepatic stellate cell line, and in rat primary cultures of stellate cells. Hypoxic induction of VEGF mRNA was dose- and time-dependent. The hypoxic stimulation of VEGF messenger RNA (mRNA) correlated with the secretion of VEGF protein in conditioned media by hypoxic T6 cells. S-Nitroso-N-acetyl-D, L-penicillamine (SNAP), a nitric oxide (NO) donor, and desferrioxamine (DFx) and cobalt chloride, mimics of cellular hypoxia, similarly stimulated VEGF mRNA expression and secretion. Four previously described splice variants of the VEGF mRNA (VEGF-120, 144, 164, 188) were detected in both normoxic- or hypoxic-activated stellate cells. There was differential expression of the VEGF receptors, Flt-1 and Flk-1, in hypoxic T6 cells. Hypoxic conditions selectively stimulated Flt-1 mRNA expression, whereas Flk-1 mRNA remained unchanged. Hypoxic induction of VEGF was also demonstrated in primary stellate cell cultures and after in vivo injury. Hypoxia stimulates cell signaling in stellate cells, culminating in the rapid induction of VEGF and Flt-1 mRNA expression and VEGF secretion. The hypoxic induction of VEGF is mimicked by NO and may be of mechanistic importance in the pathogenesis of hepatic wound healing and hepatocarcinogenesis. 相似文献