首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Daily rhythms in physiological and behavioural processes are controlled by a network of circadian clocks. In mammals, at the top of the network is a master clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus. The nocturnal synthesis and release of melatonin by the pineal gland are tightly controlled by the SCN clock. Several roles of melatonin in the circadian system have been identified. As a major hormonal output, melatonin distributes temporal cues generated by the SCN to the multitude of tissues expressing melatonin receptors. In some target tissues, these melatonin signals can drive daily rhythmicity that would otherwise be lacking. In other target structures, melatonin signals are used for the synchronization (i.e., adjustment of the timing of existing oscillations) of peripheral oscillators. Due to the expression of melatonin receptors in the SCN, endogenous melatonin is also able to feedback onto the master clock. Of note, pharmacological treatment with exogenous melatonin can synchronize the SCN clock. From a clinical point of view, provided that the subject is not exposed to light at night, the daily profile of circulating melatonin provides a reliable estimate of the timing of the human SCN. During the past decade, a number of melatonin agonists have been developed. These drugs may target the SCN for improving circadian timing or act indirectly at some downstream level of the circadian network to restore proper internal synchronization.  相似文献   

2.
3.
4.
In mammals, day length (photoperiod) is read and encoded in the main circadian clock, the suprachiasmatic nuclei (SCN). In turn, the SCN control the seasonal rhythmicity of various physiological processes, in particular the secretion pattern of the pineal hormone melatonin. This hormone then operates as an essential mediator for the control of seasonal physiological functions on some tissues, especially the pars tuberalis (PT). In the European hamster, both hormonal (melatonin) and behavioral (locomotor activity) rhythms are strongly affected by season, making this species an interesting model to investigate the impact of the seasonal variations of the environment. The direct (on SCN) and indirect (via melatonin on PT) effect of natural short and long photoperiod was investigated on the daily expression of clock genes, these being expressed in both tissues. In the SCN, photoperiod altered the expression of all clock genes studied. In short photoperiod, whereas Clock mRNA levels were reduced, Bmal1 expression became arrhythmic, probably resulting in the observed dramatic reduction in the rhythm of Avp expression. In the PT, Per1 and Rev-erbalpha expressions were anchored to dawn in both photoperiods. The daily profiles of Cry1 mRNA were not concordant with the daily variations in plasma melatonin although we confirmed that Cry1 expression is regulated by an acute melatonin injection in the hamster PT. The putative role of such seasonal-dependent changes in clock gene expression on the control of seasonal functions is discussed.  相似文献   

5.
Photoperiod regulates the seasonal physiology of many mammals living in temperate latitudes. Photoperiodic information is decoded by the master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and then transduced via pineal melatonin secretion. This neurochemical signal is interpreted by tissues expressing melatonin receptors (e.g. the pituitary pars tuberalis, PT) to drive physiological changes. In this study we analysed the photoperiodic regulation of the circadian clockwork in the SCN and PT of the Siberian hamster. Female hamsters were exposed to either long or short photoperiod for 8 weeks and sampled at 2-h intervals across the 24-h cycle. In the SCN, rhythmic expression of the clock genes Per1, Per2, Cry1, Rev-erbalpha, and the clock-controlled genes arginine vasopressin (AVP) and d-element binding protein (DBP) was modulated by photoperiod. All of these E-box-containing genes tracked dawn, with earlier peak mRNA expression in long, compared to short, photoperiod. This response occurred irrespective of the presence of additional regulatory cis-elements, suggesting photoperiodic regulation of SCN gene expression through a common E-box-related mechanism. In long photoperiod, expression of Cry1 and Per1 in the PT tracked the onset and offset of melatonin secretion, respectively. However, whereas Cry1 tracked melatonin onset in short period, Per1 expression was not detectably rhythmic. We therefore propose that, in the SCN, photoperiodic regulation of clock gene expression primarily occurs via E-boxes, whereas melatonin-driven signal transduction drives the phasing of a subset of clock genes in the PT, independently of the E-box.  相似文献   

6.
In mammals, the suprachiasmatic nucleus (SCN) contains a central clock that synchronizes daily (i.e., 24-h) rhythms in physiology and behavior. SCN neurons are cell-autonomous oscillators that act synchronously to produce a coherent circadian rhythm. In addition, the SCN helps regulate seasonal rhythmicity. Photic information is perceived by the SCN and transmitted to the pineal gland, where it regulates melatonin production. Within the SCN, adaptations to changing photoperiod are reflected in changes in neurotransmitters and clock gene expression, resulting in waveform changes in rhythmic electrical activity, a major output of the SCN. Efferent pathways regulate the seasonal timing of breeding and hibernation. In humans, seasonal physiology and behavioral rhythms are also present, and the human SCN has seasonally rhythmic neurotransmitter levels and morphology. In summary, the SCN perceives and encodes changes in day length and drives seasonal changes in downstream pathways and structures in order to adapt to the changing seasons.  相似文献   

7.
The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus contains a central circadian pacemaker, which adjusts circadian rhythms within the body to environmental light-dark cycles. It has been shown that dark exposure in the day causes phase shifts in circadian rhythms, but it does not induce changes in the melatonin levels in the pineal gland. In this study, we examined the effect of dark exposure on two "circadian clock" genes Period1 and Period2 mRNA levels in the rat SCN, and on Period1, Period2, and arylalkylamine N-acetyltransferase (Aa-Nat, the rate-limiting enzyme in melatonin synthesis) gene expression in the pineal gland. Period1 and Period2 mRNA levels were significantly decreased in the SCN after 0.5 and 2 h, respectively, therefore suggesting that changes in those mRNA levels may be the part of the mechanisms of dark-induced phase shifts. Period1 and Aa-Nat mRNA levels in the pineal gland were not affected by darkness, but Period2 was moderately affected. Since Period1 and Aa-Nat mRNA levels in the pineal gland did not respond to dark stimulation, we further examined whether the pineal gland itself is capable of responding to adrenergic stimulation at this time of the day. Isoproterenol significantly induced Period1 and Aa-Nat mRNA levels; however, it did not affect Period2. Although previous studies have reported that during the day the SCN "gates" the dark information reaching the pineal, our data demonstrate that dark information may reach the pineal during the daytime.  相似文献   

8.
9.
Wu YH  Swaab DF 《Sleep medicine》2007,8(6):623-636
Circadian rhythm disturbances, such as sleep disorders, are frequently seen in aging and are even more pronounced in Alzheimer's disease (AD). Alterations in the biological clock, the suprachiasmatic nucleus (SCN), and the pineal gland during aging and AD are considered to be the biological basis for these circadian rhythm disturbances. Recently, our group found that pineal melatonin secretion and pineal clock gene oscillation were disrupted in AD patients, and surprisingly even in non-demented controls with the earliest signs of AD neuropathology (neuropathological Braak stages I-II), in contrast to non-demented controls without AD neuropathology. Furthermore, a functional disruption of the SCN was observed from the earliest AD stages onwards, as shown by decreased vasopressin mRNA, a clock-controlled major output of the SCN. The observed functional disconnection between the SCN and the pineal from the earliest AD stage onwards seems to account for the pineal clock gene and melatonin changes and underlies circadian rhythm disturbances in AD. This paper further discusses potential therapeutic strategies for reactivation of the circadian timing system, including melatonin and bright light therapy. As the presence of melatonin MT1 receptor in the SCN is extremely decreased in late AD patients, supplementary melatonin in the late AD stages may not lead to clear effects on circadian rhythm disorders.  相似文献   

10.
To investigate the functional involvement of the pineal gland in circadian expression of the rat period homolog gene (rPer2) in the suprachiasmatic nucleus (SCN) and peripheral tissues, we performed Northern blot analysis in tissues from pinealectomized rats. The ectomy did not have any significant effects on rPer2 mRNA expression patterns both in a daily light-dark condition and in a constant darkness. These results suggest that the rhythmic secretion of pineal melatonin is not essential for the circadian expression of clock genes in the SCN and other peripheral tissues of rats.  相似文献   

11.
The suprachiasmatic nuclei (SCN) residing in the anterior hypothalamus maintains a near-24-h rhythm of electrical activity, even in the absence of environmental cues. This circadian rhythm is generated by intrinsic molecular mechanisms in the neurons of the SCN; however, the circadian clock is modulated by a wide variety of influences, including glutamate and pituitary adenylate cyclase-activating peptide (PACAP) from the retinohypothalamic tract, melatonin from the pineal gland, and neuropeptide Y from the intergeniculate leaflet. By virtue of these and other inputs, the SCN responds to environmental cues such as light, social and physical activities. In turn, the SCN controls or influences a wide variety of physiologic and behavioral functions, including attention, endocrine cycles, body temperature, melatonin secretion, and the sleep-wake cycle. Regulation of the sleep-wake cycle by the SCN has important implications for development of therapies for sleep disorders, including those involving desynchronization of circadian rhythms and insomnia.  相似文献   

12.
Melatonin directly resets the rat suprachiasmatic circadian clock in vitro.   总被引:4,自引:0,他引:4  
The environmental photoperiod regulates the synthesis of melatonin by the pineal gland, which in turn induces daily and seasonal adjustments in behavioral and physiological state. The mechanisms by which melatonin mediates these effects are not known, but accumulating data suggest that melatonin modulates a circadian biological clock, either directly or indirectly via neural inputs. The hypothesis that melatonin acts directly at the level of the suprachiasmatic nucleus (SCN), a central mammalian circadian pacemaker, was tested in a rat brain slice preparation maintained in vitro for 2-3 days. Exposure of the SCN to melatonin for 1 h late in the subjective day or early subjective night induced a significant advance in the SCN electrical activity rhythm; at other times melatonin was without apparent effect. These results demonstrate that melatonin can directly reset this circadian clock during the period surrounding the day-night transition.  相似文献   

13.
Effects of melatonin on vertebrate circadian systems.   总被引:10,自引:0,他引:10  
In many species of vertebrates the pineal gland and its indoleamine hormone melatonin play central roles in the control of circadian rhythms, whereas in some species, the pineal gland appears to hold little importance. However, recent research indicates that the circadian rhythms of many species of reptiles, birds and mammals, including humans, are synchronized by the administration of exogenous melatonin. These studies have led to questions concerning the role of this hormone in circadian organization in general. Studies of the sites and mechanisms of melatonin action further indicate that melatonin may be an excellent pharmacological tool for research on the cellular mechanisms of circadian clock function and have pointed to the possibility that melatonin or melatonin analogues may be therapeutically useful for the control of circadian clock dysfunctions such as jet lag, shift-work syndrome and sleep disorders.  相似文献   

14.
The temporal order of physiology and behaviour in mammals is regulated by the coordination of the master circadian clock in the suprachiasmatic nucleus (SCN) and peripheral clocks in various tissues outside the SCN. Because the circadian oscillator(s) in the olfactory bulb (OB) is regarded as SCN independent, we examined the relationship between the SCN master clock and the circadian clock in the OB. We also examined the role of vasoactive intestinal peptide receptor 2 in the circadian organization of the OB. We continuously monitored the circadian rhythms of a clock gene product PER2 in the SCN and OB of freely moving mice by means of a bioluminescence reporter and an optical fibre implanted in the brain. Robust circadian rhythms were detected in the OB and SCN for up to 19 days. Bilateral SCN lesions abolished the circadian behaviour rhythms and disorganized the PER2 rhythms in the OB. The PER2 rhythms in the OB showed more than one oscillatory component of a similar circadian period, suggesting internal desynchronization of constituent oscillators. By contrast, significant circadian PER2 rhythms were detected in the vasoactive intestinal peptide receptor 2‐deficient mice, despite the substantial deterioration or abolition of circadian behavioural rhythms. These findings indicate that the circadian clock in the OB of freely moving mice depends on the SCN master clock but not on the circadian behavioural rhythms. The circadian PER2::LUC rhythm in the cultured OB was as robust as that in the cultured SCN but reset by slice preparation, suggesting that culturing of the slice reinforces the circadian rhythm.  相似文献   

15.
Generation and reception of melatonin signals in the goldfish, Carassius auratus, are reviewed. The photoreceptive pineal gland of the goldfish generates circulating melatonin rhythms according to a given photoperiod under light-dark cycles and in a circadian manner under continuous dark conditions. Melatonin is also produced in the retina in a similar fashion. Melatonin produced in the pineal gland and retina is considered to act as internal zeitgeber in the brain and retina, respectively, controlling various physiological events via specific melatonin binding sites that are coupled with G protein. The goldfish exhibit clear diurnal locomotor activity rhythms under light-dark cycles and free-running rhythms under constant conditions. However, the relationship between melatonin and locomotor activity rhythms in the goldfish remains unclear. Further studies should be required to demonstrate the roles of melatonin in the circadian system in this species.  相似文献   

16.
Generation and reception of melatonin signals in the goldfish, Carassius auratus, are reviewed. The photoreceptive pineal gland of the goldfish generates circulating melatonin rhythms according to a given photoperiod under light-dark cycles and in a circadian manner under continuous dark conditions. Melatonin is also produced in the retina in a similar fashion. Melatonin produced in the pineal gland and retina is considered to act as internal zeitgeber in the brain and retina, respectively, controlling various physiological events via specific melatonin binding sites that are coupled with G protein. The goldfish exhibit clear diurnal locomotor activity rhythms under light-dark cycles and free-running rhythms under constant conditions. However, the relationship between melatonin and locomotor activity rhythms in the goldfish remains unclear. Further studies should be required to demonstrate the roles of melatonin in the circadian system in this species.  相似文献   

17.
The mammalian pineal gland is known to receive a noradrenergic sympathetic efferent signal from the suprachiasmatic nucleus (SCN) via the superior cervical ganglion. Arg-vasopressin (AVP) containing neurons in the SCN is one of the output paths of circadian information to the other brain areas. AVP release from the SCN is suppressed by melatonin. In turn, we determined the direct effect of AVP on melatonin release using pineal gland explant culture. AVP (1 μM) suppressed melatonin release. Noradrenaline stimulated melatonin release was attenuated by AVP. In turn, the expression of the melatonin synthesis enzyme arylalkylamine N-acetyltransferase mRNA in the rat SCN was reported. We measured melatonin content in the SCN in rats kept under the light–dark cycle and constant dim light. Melatonin in the SCN was higher during the dark period than that in the light. A similar tendency was also observed in the SCN of animals kept under a constant dim light. It was suggested that the reciprocal regulation of melatonin release and AVP release occurs in the SCN and pineal gland.  相似文献   

18.
19.
The circadian clock in the suprachiasmatic nucleus (SCN) is synchronized by the 24 h, light : dark cycle, and is reset by photic and non-photic cues. The acute effects of light in the SCN include the increase of mRNA levels of the circadian clock gene Per1 and a dramatic reduction of pineal melatonin. Neuropeptide Y (NPY), which appears to mediate the phase-resetting effects of non-photic stimuli, prevents the ability of light, and stimuli that mimic light, to phase shift the circadian clock when injected into the SCN. The purpose of the present study was to determine if NPY inhibits the ability of light to suppress pineal melatonin. Surprisingly, NPY injected into the SCN of hamsters mimicked the effects of light by suppressing pineal melatonin levels. To confirm that NPY inhibited the effects of light on the induction of Per1 mRNA levels, Per1 mRNA levels in the SCN were measured in these same animals. NPY significantly reduced Per1 mRNA levels induced by the light pulse. The suppression of melatonin by NPY appears to be mediated by the same subtype of NPY receptors in the SCN that mediate the modulation of phase shifts. Injection of Y5 receptor agonists mimicked the effects of NPY on pineal melatonin, while injection of a Y2 agonist did not. Thus, these data are the first to demonstrate the paradoxical effects of NPY within the SCN. NPY mimics the effects of light on pineal melatonin and inhibits the effects of light on the induction of Per1 mRNA.  相似文献   

20.
Suprachiasmatic nuclei (SCN) and pars tuberalis (PT) are two structures in the rat exhibiting high affinity receptors for melatonin. Melatonin receptor density in these two structures was previously shown to be inversely related to endogenous ligand concentration, thus elevated at daytime. We now demonstrate that, in the PT, these daily variations are directly induced by the circadian rhythm of plasma melatonin concentration. Variations persist in constant darkness and can only be blocked by pinealectomy. Thus, autoregulation loop of melatonin receptors determines the circadian rhythm in PT melatonin receptor de density. However, this process of densensitization does not determine the daily variations in SCN melatonin receptor density. Indeed, in the SCN, the light/dark cycle is the regulatory factor: melatonin receptor density was shown to be specifically reduced during the night even in pinealectomized animals, while one h light was shown to reverse this nocturnal decrease in the SCN. Moreover, this darkness-induced down-regulation of SCN melatonin receptors has a masking effect on the earlier shown ligand-dependent desensitization process in this structure. This explain why, in constant darkness, SCN melatonin receptor density did not show any variation throughout the 24 h subjective day and night, although the circadian rhythm of melatonin persisted. These results thus clearly show that although daily rhythms in the density of melatonin receptors are identical in the PT and in the SCN, their regulation is totally different in each of these two structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号