首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In continuation to our studies on radioresistance in meningioma, here we show that radiation treatment (7 Gy) induces G2/M cell cycle arrest in meningioma cells. Phosphorylation of Chk2, Cdc25c and Cdc2 were found to be key events since interference with Chk2 activation and cyclin B1/Cdc2 interaction led to permanent arrest followed by apoptosis. Irradiated cells showed recovery and formed aggressive intracranial tumors with rapid spread and morbidity. Nevertheless, knock down of uPAR with or without radiation induced permanent arrest in G2/M phase and subsequent apoptosis in vitro and in vivo. In conclusion, our data suggest that combination treatment with radiation and uPAR knock down or other inhibitors resulting in non-reversible G2/M arrest may be beneficial in the management of meningiomas.  相似文献   

2.
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, and novel effective drugs against NSCLC are urgently needed. Isodon species are rich in ent-kaurane diterpenoids that have been reported to have antitumor bioactivity. Acetyl-macrocalin B (A-macB) is a novel ent-kaurane diterpenoid isolated from Isodon silvatica, and its antitumor efficacy against NSCLC and the underlying mechanisms were scrutinized in depth. The viability of cells treated with A-macB was detected by CCK-8 and colony formation assays. Apoptosis and cell cycle distribution were analyzed by flow cytometry. The mechanisms were investigated by detecting ROS and performing western blotting and verification experiments with specific inhibitors. The in vivo effect of A-macB was explored in a nude mouse xenograft model. A-macB effectively inhibited H1299 and A549 cell viability, triggered apoptosis and delayed cells in the G2/M phase. A-macB induced cellular ROS production and then activated the p38 MAPK-mediated, caspase 9-dependent apoptotic pathway. Both the ROS scavenger NAC and the specific p38 inhibitor SB203580 inactivated the function of p38 induced by A-macB, thus preventing cells from apoptosis. A-macB activated the Chk1/2-Cdc25C-Cdc2/cyclin B1 axis to induce G2/M phase arrest. AZD7762 abrogated the function of Chk1/2, abolished the G2/M delay and enhanced the cytotoxicity of A-macB. Moreover, A-macB efficiently suppressed tumor growth in a mouse xenograft model without noticeable toxicity to normal tissues. Having both efficacy and relative safety, A-macB is a potential lead compound that is worthy of further exploration for development as an anticancer agent.  相似文献   

3.
Terfenadine (TF), a highly potent histamine H1 receptor antagonist, has been shown to exert no significant central nervous system side effects in clinically effective doses. In this study, we demonstrated that TF induced significant growth inhibition of human cancer cells, including Hep G2, HT 29, and COLO 205 cells, through induction of G(0)/G(1) phase cell-cycle arrest. The minimal dose of TF induced significant G(0)/G(1) arrest in these cells was 1-3 microM. The protein levels of p53, p21/Cip1, and p27/Kip1 were significantly elevated, whereas the kinase activities of cyclin-dependent kinase 2 (CDK2) and CDK4 were inhibited simultaneously in the TF-treated cells. On the other hand, significant apoptosis, but not G(0)/G(1) arrest, was induced in the HL 60 (p53-null) or Hep 3B (with deleted p53) cells when treated with TF (3-5 microM). To clarify the roles of p21/Cip1 and p27/Kip1 protein expression, which was involved in G(0)/G(1) arrest and apoptosis induced by TF in human cancer cells, antisense oligodeoxynucleotides (ODNs) specific to p21/Cip1 and p27/Kip1 were used, and the expression of the p21/Cip1 and p27/Kip1 were monitored by immunoblotting analysis. Our data demonstrated that the percentage of the apoptotic cells detected by annexin V/PI analysis in the TF-treated group was clearly attenuated by pretreatment with p27/Kip1-specific ODNs. These results indicated that p27/Kip1 (but not p21/Cip1) protein indeed played a critical role in the TF-induced apoptosis. We also demonstrated that the TF-induced G(0)/G(1) cell-cycle arrest effect was not reversed by TF removal, and this growth inhibition lasted for at least 7 d. Importantly, the occurrence of apoptosis and cell growth arrest was not observed in the TF-treated normal human fibroblast, even at a dose as high as 25 microM. Our study showed the molecular mechanisms for TF-induced cell growth inhibition and the occurrence of apoptosis in human cancer cells.  相似文献   

4.
Curcumin has been shown to inhibit the growth of various types of cancer cells; however, at concentrations much above the clinically achievable levels in humans. The concentration of curcumin achieved in the plasma after oral administration in humans was estimated to be around 1.8 μM. Here, we report that treatment of BxPC-3 human pancreatic cancer cells with a low and single exposure of 2.5 μM curcumin for 24 h causes significant arrest of cells in the G2/M phase and induces significant apoptosis. Immunoblot studies revealed increased phosphorylation of H2A.X at Ser-139 and Chk1 at Ser-280 and a decrease in DNA polymerase-β level in curcumin-treated cells. Phosphorylation of H2A.X and Chk1 proteins are an indicator of DNA damage whereas DNA polymerase-β plays a role in the repair of DNA strand breaks. Normal immortalised human pancreatic ductal epithelial (HPDE-6) cells remained unaffected by curcumin treatment. In addition, we also observed a significant increase in the phosphorylation of Chk1 at Ser-345, Cdc25C at Ser-216 and a subtle increase in ATM phosphorylation at Ser-1981. Concomitant decrease in the expressions of cyclin B1 and Cdk1 were seen in curcumin-treated cells. Further, curcumin treatment caused significant cleavage of caspase-3 and PARP in BxPC-3 but not in HPDE-6 cells. Silencing ATM/Chk1 expression by transfecting BxPC-3 cells with ATM or Chk1-specific SiRNA blocked the phosphorylation of ATM, Chk1 and Cdc25C and protected the cells from curcumin-mediated G2/M arrest and apoptosis. This study reflects the critical role of ATM/Chk1 in curcumin-mediated G2/M cell cycle arrest and apoptosis in pancreatic cancer cells.  相似文献   

5.
Previous work based on mono-methyl selenium compounds that are putative precursors of methylselenol has strongly implicated this metabolite in the induction of caspase-mediated apoptosis of human prostate carcinoma and leukemia cells and G1 arrest in human vascular endothelial and cancer epithelial cells. To test the hypothesis that methylselenol itself is responsible for exerting these cellular effects, we examined the apoptotic action on DU145 human prostate cancer cells and the G1 arrest effect on the human umbilical vein endothelial cells (HUVECs) of methylselenol generated with seleno-L-methionine as a substrate for L-methionine-alpha-deamino-gamma-mercaptomethane lyase (EC4.4.1.11, also known as methioninase). Exposure of DU145 cells to methylselenol so generated in the sub-micromolar range led to caspase-mediated cleavage of poly(ADP-ribose) polymerase, nucleosomal DNA fragmentation, and morphologic apoptosis and resulted in a profile of biochemical effects similar to that of methylseleninic acid (MSeA) exposure as exemplified by the inhibition of phosphorylation of protein kinase AKT and extracellularly regulated kinases 1/2. In HUVEC, methylselenol exposure recapitulated the G1 arrest action of MSeA in mitogen-stimulated G1 progression during mid-G1 to late G1. This stage specificity was mimicked by inhibitors of phosphatidylinositol 3-kinase. The results support methylselenol as an active selenium metabolite for inducing caspase-mediated apoptosis and cell-cycle G1 arrest. This cell-free methylselenol-generation system is expected to have significant usefulness for studying the biochemical and molecular targeting mechanisms of this critical metabolite and may constitute the basis of a novel therapeutic approach for cancer, using seleno-L-methionine as a prodrug.  相似文献   

6.
Gadd45介导抑癌基因BRCA1诱导的G2/M期阻滞   总被引:6,自引:0,他引:6  
Song YM  Tong T  Fu M  Dong LJ  Jin SQ  Wu M  Zhan QM 《癌症》2004,23(5):517-521
目前已经肯定,抑癌基因BRCAl是细胞周期监测点调控的重要因子,但BRCAl在细胞周期阻滞中的作用机制尚不完全清楚。本研究的目的是探讨Gadd45在BRCAl诱导的细胞周期阻滞中所起的作用。  相似文献   

7.
Flavonoid compounds have been shown to trigger cell cycle arrest at G0/G1, S and G2/M checkpoints, allowing cells to repair DNA damage before entry into mitosis. Jaceosidin, a flavonoid compound, has been reported to induce apoptosis in various cancer cell lines. In our previous study, we established that jaceosidin induces apoptosis in U87 glioblastoma cells through G2/M phase arrest. However the molecular mechanisms oremained unclear. In the present study, mRNA and protein expression levels of major cell cycle regulatory genes were analyzed by semi-quantitative RT-PCR and Western blot studies respectively. The results demonstrated that jaceosidin-induced G2/M phase arrest in U87 cells is associated with DNA fragmentation, up-regulation of p53 and p21 and subsequent down-regulation of cyclin B1 and CDK1 expression at mRNA as well as at protein level. These findings provide insights into jaceosidin-induced G2/M phase arrest in U87 glioblastoma cells.  相似文献   

8.
The tumor-suppressor p53 is a multifunctional protein mainly responsible for maintaining genomic integrity. p53 induces its tumor-suppressor activity by either causing cell-cycle arrest (G(1)/S or G(2)/M) or inducing cells to undergo apoptosis. This function of wild-type p53 as "guardian of the genome" is presumably achieved by forming molecular complexes with different DNA targets as well as by interacting with a number of cellular proteins, e.g., Mdm2, Gadd45, p21, 14-3-3sigma, Bax and Apaf-1. Upon activation, p53 activates p21, which in turn controls the cell cycle by regulating G(1) or G(2) checkpoints. Here, we report SMAR1 as one such p53-interacting protein that is involved in delaying tumor progression in vivo as well as in regulating the cell cycle. SMAR1 is a newly identified MARBP involved in chromatin-mediated gene regulation. The SMAR1 gene encodes at least 2 alternatively spliced variants: SMAR1(L) (the full-length form) and SMAR1(S) (the shorter form). We report that expression of SMAR1(S), but not of SMAR1(L), mRNA was decreased in most of the human cell lines examined, suggesting selective silencing of SMAR1(S). Overexpression of SMAR1(S) in mouse melanoma cells (B16F1) and their subsequent injection in C57BL/6 mice delays tumor growth. Exogenous SMAR1(S) causes significant retardation of B16F1 cells in the G(2)/M phase of the cell cycle compared to SMAR1(L). SMAR1(S) activates p53-mediated reporter gene expression in mouse melanoma cells, breast cancer cells (MCF-7) and p53 null cells (K562), followed by activation of its downstream effector, p21. We further demonstrate that SMAR1 physically interacts and colocalizes with p53. These data together suggest that SMAR1 is the only known MARBP that delays tumor progression via direct activation and interaction with tumor-suppressor p53.  相似文献   

9.
10.
Bose B  Motiwale L  Rao KV 《Cancer letters》2005,230(2):260-270
Malachite Green (MG), consisting of green crystals with a metallic luster, is highly soluble in water, cytotoxic to various mammalian cells and also acts as a liver tumor promoter. In view of its industrial importance and possible exposure to human beings, MG poses a potential environmental health hazard. We have earlier reported the malignant transformation of Syrian hamster embryo (SHE) cells in primary culture by MG. In this study, we have studied the ability of MG to cause DNA damage, cell cycle arrest, apoptosis and possible roles of ERK, JNK and p38 MAP kinases. Exposure of SHE cells to MG causes DNA damage. Flow cytometric analysis showed an increase of G2/M phase and apoptotic cells in MG treated cells compared to control SHE cells. Western blots of MG treated cells with phosphoactive antibodies showed elevated phosphorylation of ERK1 and JNK1 and no change in p38 kinase. However, total forms of ERKs, JNKs and p38 kinases showed similar levels of expression in control and MG treated SHE cells. The present study indicates that elevated phosphorylation of ERK1 and JNK1 and an increase in G2/M phase and apoptotic cells seems to be the changes associated with MG exposure to SHE cells in primary culture.  相似文献   

11.
Lee YM  Ting CM  Cheng YK  Fan TP  Wong RN  Lung ML  Mak NK 《Cancer letters》2008,268(2):295-307
2-Methoxyestradiol (2ME2) is an endogenous metabolite of 17beta-estradiol (E(2)). This study aims to examine the anti-tumour activities of 2ME2 on the poorly differentiated HONE-1 NPC cell line. At the concentration of 1muM, 2ME2 was found to induce a short-term reversible G2/M cell-cycle arrest. Further 10-fold increase to 10muM, 2ME2 induced both irreversible G2/M phase cell-cycle arrest and apoptosis. Induction of apoptosis and G2/M cell-cycle arrest was due to oxidative stress as both apoptosis and the proportion of cells arresting at G2/M phase could be reduced by the superoxide dismutase (SOD) mimetic, TEMPO. Induction of apoptosis was accompanied with proteolytic cleavage of caspase-9 and -3, but not caspase-8. Kinetics studies revealed that 2ME2 induced a time-dependent inhibition of extracellular signal-regulated protein kinase (ERK) and an activation of c-jun N-terminal kinases (JNKs). The chemical inhibitor of JNKs, SP600125, was found to reduce 2ME2-induced apoptosis of the HONE-1 cells. Confocal microscopy revealed that the induction of G2/M cell-cycle arrest was associated with the presence of immunoreactivity of p-cdc2 (Tyr15) in the nucleus. The G2/M cell-cycle arrest is also correlated with an increased level of inactive p-cdc25C (Ser216) in 2ME2-treated HONE-1 cells. Results from this study indicate that production of superoxide anions might be involved in 2ME2-induced apoptosis and G2/M cell-cycle arrest of the HONE-1 cells.  相似文献   

12.
13.
Matrix metalloproteinase‐2 (MMP‐2), is known to degrade the collagen IV, plays a role in radiation‐induced lung injury. We therefore investigated the antitumor effects of combining MMP‐2 inhibition using an adenovirus expressing siRNA against MMP‐2 (Ad‐MMP‐2‐Si) with radiation therapy (IR) on A549 lung cancer cells in vitro and in vivo. IR increased MMP‐2 mRNA, protein and activity in lung cancer cells. MMP‐2 inhibition along with IR enhanced radiosensitivity as determined by clonogenic assay, flow cytometry and TUNEL assay. We show that MMP‐2 inhibition prior to irradiation reduced p53 phosphorylation, with a corresponding reduction in the expression of the p53 downstream target gene p21Cip1/Waf1. Irradiated tumor cells induced the FoxM1‐mediated DNA repair gene, XRCC1 and Checkpoint kinases 2/1, which were abrogated with combined treatment of Ad‐MMP‐2‐Si and IR. Further, the combination of Ad‐MMP‐2‐Si with radiotherapy significantly increased antitumor efficacy in vivo compared to either agent alone. Indeed, histological analysis of tumor sections collected from the combination group revealed more apoptotic cells. These studies suggest that MMP‐2 inhibition in combination with radiotherapy abrogates G2 cell cycle arrest leading to apoptosis and provide evidence of the antitumor efficacy of combining MMP‐2 inhibition with irradiation as a new therapeutic strategy for the effective treatment of NSCLC patients. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Apigenin, a nonmutagenic flavonoid, has been shown to inhibit ultraviolet light-induced skin tumorigenesis when topically applied to mouse skin. Our previous studies have shown that apigenin treatment of cultured mouse keratinocytes induces G(2)/M arrest accompanied by an increase in p53 protein stability and expression of p21(waf1). In this study, we determined whether the G(2)/M arrest induced by apigenin was dependent upon the presence of the cyclin dependent kinase inhibitor p21(waf1). We exposed WWT.8 (p21(waf1) wild-type) and WKO.16 (p21(waf1) null) mouse keratinocytes to various doses of apigenin for 24 h and observed G(2)/M arrest in both cell lines, thereby establishing that the apigenin-induced G(2)/M arrest was p21(waf1) independent. A 4-h treatment with apigenin induced increases in p53 protein level by sixfold and tenfold in the WWT.8 p21(waf1) wild-type cells and WKO.16 p21(waf1) null cells, respectively. After 24 h in WWT.8 cells, p21(waf1) protein also was induced in a dose-dependent manner, but it was not expressed in WKO.16 keratinocytes. We then measured the effect of apigenin treatment on the mammalian homologue of the yeast cdc2 gene (p34(cdc2)) cyclin-dependent kinase and cyclin B1 (cycB1), because these proteins complex to regulate G(2)/M progression. Apigenin treatment decreased the protein level of p34(cdc2), and p34(cdc2) kinase activity was inhibited in both p21(waf1)(+/+) and p21(waf1)(-/-) cell lines by approximately 40%. The inhibition of p34(cdc2) kinase activity by apigenin treatment correlated with increasing levels of p34(cdc2) phosphorylation at Tyr15, a site in the p34(cdc2) kinase that undergoes inhibitory phosphorylation by Wee1 kinase. Apigenin treatment also had no effect on the protein level or activity of the competing phosphatase, cdc25c, which dephosphorylates p34(cdc2) kinase at Tyr15. Apigenin had little effect on the accumulation of cycB1 protein. These results supported the conclusion that G(2)/M arrest induced by apigenin was accompanied by inhibition of the p34(cdc2) cyclin-dependent kinase protein level and activity in a p21(waf1)-independent manner.  相似文献   

15.
16.
mTOR signalling is commonly dysregulated in cancer. Concordantly, mTOR inhibitors have demonstrated efficacy in a subset of tumors and are in clinical trials as combination therapies. Although mTOR is associated with promoting cell survival after DNA damage, the exact mechanisms are not well understood. Moreover, since mTOR exists as two complexes, mTORC1 and mTORC2, the role of mTORC2 in cancer and in the DNA damage response is less well explored. Here, we report that mTOR protein levels and kinase activity are transiently increased by DNA damage in an ATM and ATR-dependent manner. We show that inactivation of mTOR with siRNA or pharmacological inhibition of mTORC1/2 kinase prevents etoposide-induced S and G2/M cell cycle arrest. Further results show that Chk1, a key regulator of the cell cycle arrest, is important for this since ablation of mTOR prevents DNA damage-induced Chk1 phosphorylation and decreases Chk1 protein production. Furthermore, mTORC2 was essential and mTORC1 dispensable, for this role. Importantly, we show that mTORC1/2 inhibition sensitizes breast cancer cells to chemotherapy. Taken together, these results suggest that breast cancer cells may rely on mTORC2-Chk1 pathway for survival and provide evidence that mTOR kinase inhibitors may overcome resistance to DNA-damage based therapies in breast cancer.  相似文献   

17.
18.
19.
Moon DO  Kim MO  Choi YH  Kim GY 《Cancer letters》2008,264(2):181-191
β-Sitosterol (SITO) is a potentially valuable candidate for cancer chemotherapy, however the cellular and molecular mechanisms responsible for its anti-cancer activity are unknown. Therefore, we attempted to elucidate the mechanisms responsible for SITO-induced anti-proliferation in human leukemia cells. Treatment with SITO increased caspase-3 activation and DNA fragmentation in U937 and HL60 cells. This effect was associated with significant G2/M arrest and endoreduplication. We also demonstrated that SITO treatment significantly increases levels of polymeric -tubulin and promoted microtubule polymerization. We next elucidated that ectopic expression of Bcl-2 accelerates endoreduplication in U937 cells. Furthermore, the specific Bcl-2 inhibitor, HA14-1, prevented endoreduplication through G2 phase arrest. Interestingly, SITO treatment did not significantly promote endoreduplication or decrease cell viability in Bcl-2 null K562 cells. SITO treatment also induced a gradual increase of phosphatidyl-inositol 3-kinase (PI3K) and Akt phosphorylation. Treatment with the selective PI3K/Akt inhibitor LY29004 completely blocked endoreduplication and apoptosis in the presence of SITO. In addition, treatment with SITO-induced phosphorylation of extracellular signal-regulated protein kinase (ERK), however significance of ERK activation in the execution of apoptosis and endoreduplication is unknown. These results suggest that SITO induces endoreduplication by promoting spindle microtubule dynamics through the Bcl-2 and PI3K/Akt signaling pathways.  相似文献   

20.
 Imidazoacridinones are a new class of highly potent antineoplastic agents synthesised at the Technical University of Gdansk. The pharmacophoric alkyldiamine group, which is also present in anthracenediones (e.g. ametantrone, mitoxantrone), has been shown to be responsible for their antineoplastic activity. In view of their chemical similarity to anthracenediones, we anticipated that the imidazoacridinones would have a mechanism of action similar to that of these agents and that this would be reflected by a similar influence on cell-cycle progression. Flow cytometry was used to monitor the effect of three derivatives of imidazoacridinone (C-1263, C-1310 and C-1311) on L1210 cell cycle traverse at concentrations ranging from 0.01 to 0.9 μg/ml, corresponding to their 50% and 90% effective concentrations (EC50 and EC90 values), over times of drug treatment ranging from 1 to 48 h. The results demonstrate that all of the compounds produced a similar effect, inducing preferential and complete arrest (accumulation) of cells in the G2 phase of the cell cycle (i.e. G2 block). The kinetics of the induction of G2 arrest were dependent on both the dose and the duration of treatment. Cell-cycle arrest was reversible for up to about 3 h of treatment, being quite irreversible at longer incubation times. Microscopic inspection of cells performed in parallel with flow cytometry confirmed that imidazoacridinones induced a G2, not a G2/M, block. Received: 7 April 1995/Accepted: 25 August 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号