首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Role of histamine in rodent antinociception.   总被引:4,自引:1,他引:3       下载免费PDF全文
1. Effects of substances which are able to alter brain histamine levels on the nociceptive threshold were investigated in mice and rats by means of tests inducing three different kinds of noxious stimuli: mechanical (paw pressure), chemical (abdominal constriction) and thermal (hot plate). 2. A wide range of i.c.v. doses of histamine 2HCl was studied. Relatively high dose were dose-dependently antinociceptive in all three tests: 5-100 micrograms per rat in the paw pressure test, 5-50 micrograms per mouse in the abdominal constriction test and 50-100 micrograms per mouse in the hot plate test. Conversely, very low doses were hyperalgesic: 0.5 microgram per rat in the paw pressure test and 0.1-1 microgram per mouse in the hot plate test. In the abdominal constriction test no hyperalgesic effect was observed. 3. The histamine H3 antagonist, thioperamide maleate, elicited a weak but statistically significant dose-dependent antinociceptive effect by both parenteral (10-40 mg kg-1) and i.c.v. (1.1-10 micrograms per rat and 3.4-10 micrograms per mouse) routes. 4. The histamine H3 agonist, (R)-alpha-methylhistamine dihydrogenomaleate was hyperalgesic, with a rapid effect (15 min after treatment) following i.c.v. administration of 1 microgram per rat and 3 microgram per mouse, or i.p. administration of 100 mg kg-1 in mice. In rats 20 mg kg-1, i.p. elicited hyperalgesia only 4 h after treatment. 5. Thioperamide-induced antinociception was completely prevented by pretreatment with a non-hyperalgesic i.p. dose of (R)-alpha-methylhistamine in the mouse hot plate and abdominal constriction tests. Antagonism was also observed when both substances were administered i.c.v. in rats. 6. L-Histidine HCl dose-dependently induced a slowly occurring antinociception in all three tests. The doses of 250 and 500 mg kg-1, i.p. were effective in the rat paw pressure test, and those of 500 and 1500 mg kg-1, i.p. in the mouse hot plate test. In the mouse abdominal constriction test 500 and 1000 mg kg-1, i.p. showed their maximum effect 2 h after treatment. 7. The histamine N-methyltransferase inhibitor, metoprine, elicited a long-lasting, dose-dependent antinociception in all three tests by both i.p. (10-30 mg kg-1) and i.c.v. (50-100 micrograms per rat) routes. 8. To ascertain the mechanism of action of the antinociceptive effect of L-histidine and metoprine, the two substances were also studied in combination with the histamine synthesis inhibitor (S)-alpha-fluoromethylhistidine and with (R)-alpha-methylhistamine, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
This study concerned the effects of GABA(B) receptor agents on imipramine-induced antinociception in ligated and non-ligated mice in hot-plate test. The data showed that different doses of morphine (3, 6 and 9 mg/kg) induced a dose-dependent antinociception in non-ligated or ligated mice. However, the opioid response was decreased in the ligated animals. Intracerebroventricular (i.c.v.) administration of imipramine (5, 10, 20 and 40 microg/mouse) did not induce antinociception in either non-ligated or ligated mice. However, the response induced in the ligated mice was less than that induced in the non-ligated animals. Intraperitoneal (i.p.) administration of imipramine (10, 20, 30 and 40 mg/kg) induced antinociception in both ligated and non-ligated animals. The responses to the drug were not significantly different in the two groups. Administration of baclofen either i.c.v. (0.125, 0.25 and 0. 5 microg/mouse) or i.p. (0.5, 1, 2 and 4 mg/kg) induced antinociception. The response to the drug was not significantly different in ligated and non-ligated mice. I.c.v. administration of a lower dose of baclofen (0.125 microg/mouse) with different doses of imipramine (2.5, 5 and 10 mg/kg) potentiates the response of imipramine. This effect was reduced by i.c.v. injection of GABA(B) receptor antagonist, CGP35348 [P-(3-aminopropyl)-p-diethoxymethyl-phosphinic acid] (20 microg/mouse). The higher dose of antagonist (20 microg/mouse) also decreased the response induced by baclofen or imipramine. CGP35348 itself (2.5, 5, 10 and 20 microg/mouse) induced dose-dependent antinociception with no significant difference in the ligated and non-ligated mice. It is concluded that a GABA receptor mechanism(s) may modulate the antidepressant-induced antinociception.  相似文献   

3.
In the present study, the effects of gamma-aminobutyric acid (GABA) receptor agonists and antagonists on antinociception induced by morphine in the formalin test were investigated in rats. Intraperitoneal (i.p.) injection of different doses of morphine (1, 3, 6 and 9 mg/kg) and intracerebroventricular (i.c.v.) injection of different doses of muscimol (0.5, 1 and 2 microg per rat) or baclofen (0.25, 0.5 and 1 microg per rat) induced a dose-related antinociception in the both first and second phases of the formalin test. The responses induced by muscimol or baclofen in both phases were reduced by bicuculline or CGP35348 [p-(3-aminopropyl)-p-diethoxymethyl-phosphinic acid], respectively. Bicuculline alone has produced antinociception in the second phase and CGP35348 alone has had antinociception in both phases of the formalin test. Morphine in combination with different doses of muscimol or baclofen did not elicit potentiation. The opioid receptor antagonist naloxone reduced the response induced by muscimol in the second phase and baclofen in both phases of the formalin test. It may be concluded that central GABA(A) and GABA(B) receptor stimulation induces antinociception in the formalin test. However, the antinociception induced by GABA receptor agonists may be mediated partly through supraspinal opioid receptor mechanisms and, for the GABA(B) receptor agonist, through spinal and supraspinal opioid receptor mechanisms.  相似文献   

4.
The effect of systemic administration of the γ-aminobutyric acid (GABA) uptake inhibitor, R( − )N-(4,4-di(3-methyl-thien-2-yl)-but-3-enyl) nipecotic acid, hydrochloridc (tiagabine) (previously NO-328), on extracellular GABA levels in the globus pallidus, ventral pallidum and substantia nigra of awake Sprague-Dawley rats was investigated using in vivo microdialysis. Tiagabine was administered in doses of 11.5 or 21.0 mg/kg i.p. (ED50, and ED85 doses, respectively, for inhibiting pentylcnctetrazole-induced tonic seizures). Tiagabine increased the extracellular concentrations of GABA in globus pallidus with peak values 310% of basal level (after 21 mg/kg) and 240% of basal level (after 11.5 mg/kg). A significant increase in extracellular GABA levels was also found in the ventral pallidum (280% increase after 11.5 mg/kg and 350% increase after 21 mg/kg) and in the substantia nigra where the ED85 dose of tiagabine 621 mg/kg) produced a peak value of 200% compared to the basal level. Thus, tiagabine acts as a GABA uptake inhibitor in vivo also.  相似文献   

5.
1. The effect of the administration of pertussis toxin (PTX) as well as modulators of different subtypes of K+ channels on the antinociception induced by clonidine and guanabenz was evaluated in the mouse hot plate test. 2. Pretreatment with pertussis toxin (0.25 microg per mouse i.c.v.) 7 days before the hot-plate test, prevented the antinociception induced by both clonidine (0.08-0.2 mg kg(-1), s.c.) and guanabenz (0.1-0.5 mg kg(-1), s.c.). 3. The administration of the K(ATP) channel openers minoxidil (10 microg per mouse, i.c.v.), pinacidil (25 microg per mouse, i.c.v.) and diazoxide (100 mg kg(-1), p.o.) potentiated the antinociception produced by clonidine and guanabenz whereas the K(ATP) channel blocker gliquidone (6 microg per mouse, i.c.v.) prevented the alpha2 adrenoceptor agonist-induced analgesia. 4. Pretreatment with an antisense oligonucleotide (aODN) to mKv1.1, a voltage-gated K+ channel, at the dose of 2.0 nmol per single i.c.v. injection, prevented the antinociception induced by both clonidine and guanabenz in comparison with degenerate oligonucleotide (dODN)-treated mice. 5. The administration of the Ca2+-gated K+ channel blocker apamin (0.5-2.0 ng per mouse, i.c.v.) never modified clonidine and guanabenz analgesia. 6. At the highest effective doses, none of the drugs used modified animals' gross behaviour nor impaired motor coordination, as revealed by the rota-rod test. 7. The present data demonstrate that both K(ATP) and mKv1.1 K+ channels represent an important step in the transduction mechanism underlying central antinociception induced by activation of alpha2 adrenoceptors.  相似文献   

6.
The effects of different histamine receptor agonists and antagonists on the nociceptive threshold were investigated in mice by two different kinds of noxious stimuli: thermal (hot plate) and chemical (acetic acid-induced abdominal writhing). Intracerebroventricular (icv) injection of the histamine H(1) receptor agonist, HTMT (6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl) heptanecarboxamide) (50 microg/mouse), produced a hypernociception in the hot plate and writhing tests. Conversely, intraperitoneal (ip) injection of dexchlorpheniramine (30 and 40 mg/kg) and diphenhydramine (20 and 40 mg/kg) increased the pain threshold in both tests. The histamine H(2) receptor agonist, dimaprit (50 and 100 microg/mouse icv), or antagonist, ranitidine (50 and 100 microg/mouse icv), raised the pain threshold in both hot plate and writhing tests. In the mouse hot plate test, the histamine H(3) receptor agonist, imetit (50 mg/kg ip), reduced the pain threshold, while the histamine H(3) receptor antagonist, thioperamide (10 and 20 mg/kg ip), produced an antinociception. The hypernociceptive effects of HTMT and imetit were antagonized by dexchlorpheniramine (20 mg/kg ip) and thioperamide (5 mg/kg ip), respectively. The results suggest that histaminergic mechanisms may be involved in the modulation of nociceptive stimuli.  相似文献   

7.
1. CGP 35348, a new GABAB antagonist, was examined on antinociception induced by (+/-)-baclofen by use of the hot plate and writhing tests in mice and the paw pressure test in rats. CGP 35348 was also studied in mice on (+/-)-baclofen-induced impairment of rota-rod performance. 2. CGP 35348, injected either i.p. (60-100 mg kg-1 in mouse) or intracerebroventricularly (i.c.v.) (0.5-2.5 micrograms per mouse; 25 micrograms per rat) prevented (+/-)-baclofen-induced antinociception. 3. CGP 35348 did not modify oxotremorine- and morphine-induced antinociception in mice and rats. 4. CGP 35348 (2.5 micrograms i.c.v. per mouse) also prevented (+/-)-baclofen-induced impairment of the rota-rod test. 5. Two other GABAB antagonists, phaclofen (50 micrograms i.c.v. per mouse) and 2-OH-saclofen (2.5 micrograms-10 micrograms i.c.v. per mouse) did not modify (+/-)-baclofen-induced antinociception. 7. These results suggest that, at present, CGP 35348 is the only compound able to antagonize (+/-)-baclofen-induced antinociception.  相似文献   

8.
Role of muscarinic receptor subtypes in central antinociception.   总被引:7,自引:0,他引:7       下载免费PDF全文
1. The ability to modify the pain threshold by the two M1-muscarinic agonists: McN-A-343 and AF-102B and by the specific M2-agonist arecaidine was examined in mice and rats by using three different noxious stimuli: chemical (writhing test), thermic (hot-plate test) and mechanical (paw pressure test). 2. In the mouse hot-plate test McN-A-343 (20-50 micrograms per mouse i.c.v.) and AF-102B (1-10 mg kg-1 i.p.) produced significant antinociception which was prevented by atropine (1 microgram per mouse i.c.v.) and by the two selective M1 antagonists: pirenzepine (0.01 micrograms per mouse i.c.v.) and dicyclomine (0.08 micrograms per mouse i.c.v. or 10 mg kg-1 i.p.) but not by the specific M2-antagonist AFDX-116 (0.1 micrograms per mouse i.c.v.), naloxone (1 mg kg-1 i.p.) or by the acetylcholine (ACh) depletor hemicholinium-3 (HC-3) (1 micrograms per mouse i.c.v.). McN-A-343 and AF-102B were able to increase the pain threshold also in the mouse acetic acid writhing test and in rat paw pressure test. These antinociceptive effects were completely prevented by dicyclomine (0.08 micrograms per mouse i.c.v. or 10 mg kg-1 i.p.) but not by AFDX-116 (0.1 microgram per mouse or rat i.c.v.). 3. In contrast with the M1-agonists, the M2-agonist arecaidine (0.1-2 micrograms per mouse or rat i.c.v.) did not induce antinociception in all three analgesic tests. However, arecaidine, at the same i.c.v. doses, was able to reduce the pain threshold in the hot-plate and paw pressure tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The bioactivity-guided phytochemical investigation of the crude hydralcoholic extract of Nectandra megapotamica was carried out using the abdominal constriction test in mice, which led to the isolation of three active compounds: alpha-asarone (1), galgravin (2) and veraguensin (3). The crude extract (EBCA, 300 mg kg(-1)) and isolated compounds 1,2, and 3, at different doses, were evaluated using the acetic acid-induced abdominal constriction test in mice, carrageenan-induced paw oedema in rats, and hot plate tests in rats. The EBCA showed a significant effect in the abdominal constriction and hot plate tests, but did not show activity in the rat paw oedema assay. All isolated compounds displayed activity in the abdominal constriction test, but only compound 1 was active in the hot plate test. Compounds 2 and 3 displayed activity in the anti-inflammatory assay. It was suggested that the analgesic effects obtained for EBCA could be due mainly to the presence of its major compound, alpha-asarone (1).  相似文献   

10.
The antinociceptive effect of the D(2) antagonist prochlorperazine was examined in the mouse hot-plate and abdominal constriction tests. Prochlorperazine (1-2 mg kg(-1) s.c./i.p.) produced an increase of the pain threshold in the mouse hot-plate test. The antinociception produced by prochlorperazine was prevented by the D(2) selective agonist quinpirole, the unselective muscarinic antagonist atropine, the M(1) selective antagonist pirenzepine, and by the choline uptake inhibitor hemicholinium-3 hydrobromide (HC-3). Moreover, prochlorperazine antinociception was abolished by pretreatment with an aODN against the M(1) receptor subtype, administered at the dose of 2 nmol per single i.c.v. injection. By contrast the analgesic effect of prochlorperazine was not prevented by the opioid antagonist naloxone and the GABA(B) antagonist CGP-35348. Prochlorperazine also elicited a dose-dependent increase in ACh release from rat cerebral cortex. In the antinociceptive dose-range, prochlorperazine did not impair mouse performance evaluated by the rota-rod and hole-board tests. On the basis of the above data, it can be postulated that prochlorperazine exerted an antinociceptive effect mediated by a central cholinergic mechanism.  相似文献   

11.
1 A range of opioid receptor agonists were tested for activity in five antinociceptive models: the acetylcholine-induced abdominal constriction, tail-flick and hot plate tests in the mouse and the paw pressure test in the rat and guinea-pig. 2 Agonists acting preferentially at the kappa-opioid receptor were significantly more potent in the guinea-pig than in the rat paw pressure test, whereas mu-receptor preferring agonists were equipotent in the two tests. The mouse abdominal constriction test was of equal sensitivity to the guinea-pig pressure test for both types of agonist. 3 The mouse tail-flick and hot plate tests were progressively less sensitive than the other three tests, particularly to kappa-receptor preferring agonists. 4 The efficacy of an agonist can also markedly affect its activity in antinociceptive tests. Thus, partial kappa-agonists were weak or inactive in the rat paw pressure test, and partial agonists at both mu- and kappa-opioid receptors were relatively weak in the tests in which heat was the noxious stimulus, particularly the mouse hot plate test. 5 The mouse abdominal constriction test is suggested as the most appropriate antinociceptive model for testing a broad range of opioid agonists, whilst the relative potency of a drug in the rat and guinea-pig paw pressure tests may indicate the degree to which it is selective for kappa-opioid receptors in vivo.  相似文献   

12.
Rationale Tiagabine is an anticonvulsant drug which may also have sleep-enhancing properties. It acts by inhibiting reuptake at the gamma-aminobutyric acid (GABA) transporter (GAT-1). Objectives The aim of the study was to determine whether tiagabine acted as a discriminative stimulus and, if so, whether other GABAergic compounds would generalise to it. Materials and methods Rats were trained to discriminate tiagabine (30 mg/kg p.o.) from vehicle, and generalisation to drugs that modulate GABA was assessed. Results Gaboxadol (5–20 mg/kg p.o.), a selective extrasynaptic GABAA agonist, generalised to tiagabine, although the extent of the generalisation was inconclusive. Indiplon (1 mg/kg p.o.), a benzodiazepine-like hypnotic, also partially generalised to tiagabine, although zolpidem and S-zopiclone did not. Baclofen, a GABAB receptor agonist, and gabapentin, which increases synaptic GABA, did not generalise to tiagabine. (+)-Bicuculline (3 mg/kg i.p.), a GABAA receptor antagonist, blocked the tiagabine cue, but the less brain-penetrant salt form, bicuculline methochloride, had no effect. Conclusions These data suggest that tiagabine generates a discriminative stimulus in rats, and provides a central GABA-mediated cue, but is distinct from the other GABAergic compounds tested.  相似文献   

13.
The effect of the GABAA antagonists, bicuculline and picrotoxin, in the hot plate and writhing tests in mice and the paw-pressure test in rats was assessed. Subconvulsant doses of bicuculline (1.3-4 mumol kg-1, s.c.) or picrotoxin (0.8-2.5 mumol kg-1, s.c.) induced a dose-related increase in latency of licking in the hot plate test in mice, whereas subconvulsant doses of strychnine and thiosemicarbazide (0.9 and 6 mg kg-1, s.c. respectively), did not modify the threshold to thermal stimuli in mice. The effects of bicuculline and picrotoxin were not modified by naloxone (3 mg kg-1, i.p., a dose which inhibited the antinociceptive effect of morphine) or by atropine (5 mg kg-1, i.p., a dose which prevented oxotremorine-induced antinociception) but were antagonized by the GABAB antagonist CGP 35348 (2.5 micrograms, i.c.v., a dose which prevented (+/-)baclofen-induced antinociception). Mice, rendered tolerant to baclofen-induced antinociception by twice daily injection of increasing doses of baclofen (5-18 mg kg-1, s.c.), were unresponsive to the antinociceptive effects of bicuculline and picrotoxin but still responded to morphine. Bicuculline and picrotoxin, in the same range of doses which affected the three models of antinociception used, inhibited pentobarbital-induced hypnosis. Large doses of bicuculline and picrotoxin (4 and 2.5 mumol kg-1, s.c. respectively), reduced locomotor activity and impaired rota-rod performance in mice. The changes in response to noxious stimuli, induced by bicuculline and picrotoxin, are interpreted as an antinociceptive effect. It is then suggested that this effect might depend on an indirect activation of GABAB receptors through release of GABA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
1. Arginine vasopressin produced antinociception in the hot-plate test after intracerebroventricular injection (0.5 micrograms) and in the acetic acid abdominal constriction test after intraperitoneal injection (0.1 mg kg-1). 2. The antinociception produced by arginine vasopressin was sensitive to deamino(CH2)5Tyr(Me) arginine vasopressin (0.5 micrograms i.c.v.; 0.1 mg kg-1 i.p.) but not to naloxone (5 micrograms i.c.v.; 2 mg kg-1 i.p.) 3. Arginine vasopressin when administered by the intracerebroventricular route, but not by the intraperitoneal route, produced characteristic behaviour which was sensitive to deamino(CH2)5Tyr(Me) arginine vasopressin (0.5 micrograms, i.c.v.). 4. A 3 min swim at 20 degrees C produced antinociception on the hot-plate which was sensitive to naloxone (0.4 mg kg-1, i.p.) but not to deamino(CH2)5Tyr(Me) arginine vasopressin (0.5 micrograms, i.c.v.). 5. The reduction in the number of acetic acid-induced abdominal constrictions produced by a 30 s swim at 30 degrees C was not sensitive to either naloxone (2 mg kg-1, i.p.) or deamino(CH2)5Tyr(Me) arginine vasopressin (0.1 mg kg-1, i.p.). 6. Arginine vasopressin, at high doses, is antinociceptive in the mouse but does not appear to mediate stress-induced antinociception in this species.  相似文献   

15.
Improgan, an analgesic derived from histamine antagonists, acts in the brain stem to activate descending non-opioid, pain-relieving circuits, but the mechanism of action of this drug remains elusive. Because improgan has a moderate affinity for 5-HT(3) receptors, and, since cholinergic and serotonergic drugs can modulate descending analgesic circuits, roles for 5-HT(3), nicotinic and muscarinic receptors in improgan antinociception were presently investigated in rats. Improgan (80 microg, icv) induced nearly maximal inhibition of hot plate and tail flick nociceptive responses, and these actions we unaffected by antagonists of muscarinic (atropine, 5.9 mg/kg, i.p.) and nicotinic (mecamylamine, 2 mg/kg, i.p.) receptors. Control experiments verified that these antagonist treatments were maximally effective against muscarinic and nicotinic antinociception in both tests. In addition, improgan antinociception was unaffected by icv pretreatment with a 5-HT(3) antagonist (ondansetron, 20 microg). When given alone, icv treatment with neither this antagonist nor a 5-HT(3) agonist (m-chlorophenylbiguanide, 1000 nmol, icv) modified thermal nociceptive latencies. These results show no role for supraspinal cholinergic and 5-HT(3) receptors in improgan antinociception. The findings help to narrow the search for the relevant mediators of the action of this novel analgesic agent.  相似文献   

16.
The effects of adenosine A1 and A2A receptor agonists and antagonists administered intraperitoneally (i.p.) and their interaction with angiotensin II (Ang II) administered intracerebroventricularly (i.c.v.) were studied in mice using the acetic acid-induced abdominal constriction test. Ang II (0.1 microg/mouse) induced antinociception in this model. The adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA; 0.05, 0.25 and 0.5 mg/kg) also showed a well-developed antinociceptive effect. Ang II (0.1 microg/mouse) administered 5 min before CPA (0.25 mg/kg) decreased the number of writhes, i.e., it enhanced the antinociceptive effect of CPA. Losartan, an AT1 receptor antagonist (25 microg/mouse i.c.v.), enhanced the antinociceptive effect of CPA, while the AT2 receptor antagonist 1-[-4-(dimethylamino)-3-methylphenylmethyl]-5-diphenylacetyl)-4,5,6,7-tetrahydro 1H-4-imidazol [4,5c]pyridine-6 carboxylic acid, ditrifluoroacetate, dihydrate (PD 123319; 10 microg/mouse) had less effect. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.1 mg/kg), an adenosine A1 receptor antagonist, exhibited a pronociceptive effect and did not change the antinociceptive effect of Ang II. The adenosine A2A receptor agonist PD-125944 (DPMA; 0.1, 0.5 and 1 mg/kg) showed pronounced antinociceptive effect. Ang II (0.1 microg/mouse) did not significantly influence the antinociceptive effect of DPMA (0.1 mg/kg). The A2A receptor antagonist 3,7-dimethyl-1-propargilxanthine (DMPX; 0.1 mg/kg) had no effect on the number of writhes and did not influence the effect of Ang II. These data indicate that the antinociceptive effect of Ang II interacts with that produced by adenosine A1 receptor agonist.  相似文献   

17.
The effect on cholinergic analgesia of inactivation of the M(1) gene by an antisense oligodeoxyribonucleotide (aODN) was investigated in the mouse hot plate test. Mice received a single intracerebroventricular (i.c.v.) injection of anti-M(1) aODN (0.3, 1. 0 or 2.0 nmol per injection), degenerate ODN (dODN) or vehicle on days 1, 4 and 7. A dose-dependent inhibition of the antinociception induced by the muscarinic agonists oxotremorine (0.1 mg kg(-1) s.c.) and McN-A-343 (30 microg per mouse i.c.v.) and the cholinesterase inhibitor physostigmine (0.2 mg kg(-1) s.c.) was observed 24 h after the last i.c.v. injection of aODN. Time-course experiments revealed that, after the end of the aODN treatment, sensitivity to analgesic drugs progressively appeared reaching the normal range at 96 h. The anti-M(1) aODN was selective against muscarinic antinociception since the enhancement of pain threshold produced by morphine and baclofen were not affected by the above-mentioned treatment. dODN, used as control, did not affect muscarinic antinociception. Binding studies evidenced a selective reduction of M(1) receptor levels in the hippocampus of aODN-treated mice. Neither aODN, dODN nor vehicle produced any behavioural impairment of mice as revealed by the rota-rod and Animex experiments. These results indicate that activation of M(1) muscarinic receptor subtype is fundamental to induce central cholinergic analgesia in mice.  相似文献   

18.
The antinociceptive effect of (+)-matrine was examined in mice by writhing, tail-pressure and hot-plate tests. (+)-Matrine (5, 10 and 20 mg/kg s.c.) produced antinociception in a dose-dependent manner. In hot-plate test, the antinociception produced by (+)-matrine (10 mg/kg s.c.) was attenuated by muscarinic receptor antagonists atropine (5 mg/kg i.p.) and pirenzepine (0.1 mug/mouse i.c.v.) and acetylcholine depletor hemicholinium-3 (HC-3) (1 mug/mouse i.c.v.), but not by opioid receptor antagonist naloxone (2 mg/kg i.p.), dopamine D(2) receptor agonist (-)-quinpirole (0.1 mg/kg i.p.) or catecholamine depletor reserpine (2.5 mg/kg i.p.). Radioligand binding assay demonstrated that (+)-matrine had no affinity for mu-, kappa- or delta-opioid receptors in a wide concentration range (1 x 10(-11)-1 x 10(-3) M). The results suggest that (+)-matrine exerts its antinociceptive effect through multiple mechanism(s) such as increasing cholinergic activation in the CNS rather than acting on opioid receptors directly.  相似文献   

19.
Neuropathic pain is an important clinical problem and it is usually resistant to the current therapy. We have recently characterized a novel analgesic peptide, crotalphine, from the venom of the South American rattlesnake Crotalus durissus terrificus. In the present work, the antinociceptive effect of crotalphine was evaluated in an experimental model of neuropathic pain induced in rats by chronic constriction of sciatic nerve. The effect of the peptide was compared to that induced by the crude venom, which confirmed that crotalphine is responsible for the antinociceptive effect of the crotalid venom on neuropathic pain. For characterization of neuropathic pain, the presence of hyperalgesia, allodynia and spontaneous pain was assessed at different times after nerve constriction. These phenomena were detected 24 h after surgery and persisted at least for 14 days. The pharmacological treatments were performed on day 14 after surgery. Crotalphine (0.2-5 microg/kg) and the crude venom (400-1600 microg/kg) administered p.o. inhibited hyperalgesia, allodynia and spontaneous pain induced by nerve constriction. The antinociceptive effect of the peptide and crude venom was long lasting, since it was detected up to 3 days after treatment. Intraplantar injection of naloxone (1 microg/paw) blocked the antinociceptive effect, indicating the involvement of opioid receptors in this phenomenon. Gabapentin (200 mg/kg, p.o.), and morphine (5 mg/kg, s.c.), used as positive controls, blocked hyperalgesia and partially inhibited allodynia induced by nerve constriction. These data indicate that crotalphine induces a potent and long lasting opioid antinociceptive effect in neuropathic pain that surpasses that observed with standard analgesic drugs.  相似文献   

20.
1. L-Arginine (100-1000 mg kg-1) administered orally (p.o.) or intraperitoneally (i.p.), but not intracerebroventricularly (i.c.v., 0.08 mg per mouse), reduced the antinociceptive effect of morphine (0.5-10 mg kg-1 s.c.) assessed in mice using three different tests: hot plate, tail-flick and acetic acid-induced writhing. D-Arginine (up to 1000 mg kg-1 p.o. or i.p.) was ineffective. 2. NG-Monomethyl-L-arginine (L-NMMA, 5-50 mg kg-1 i.p.) and NG-nitro-L-arginine methyl ester (L-NAME, 5- 30 mg kg-1 i.p.), but not NG-nitro-D-arginine methyl ester (D-NAME, 30 mg kg-1 i.p.), reversed in all assays the effect of L-arginine on morphine-induced antinociception. 3. Morphine (10 mg kg-1 s.c.), L-arginine (1000 mg kg-1 p.o.) or L-NAME (30 mg kg-1 i.p.), either alone or in combination, did not produce changes in locomotor activity or sensorimotor performance of animals. 4. These results suggest that the L-arginine-nitric oxide pathway plays a modulating role in the morphine-sensitive nociceptive processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号