首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The final pathway of β cell destruction leading to insulin deficiency, hyperglycemia, and clinical type 1 diabetes is unknown. Here we show that circulating CTLs can kill β cells via recognition of a glucose-regulated epitope. First, we identified 2 naturally processed epitopes from the human preproinsulin signal peptide by elution from HLA-A2 (specifically, the protein encoded by the A*0201 allele) molecules. Processing of these was unconventional, requiring neither the proteasome nor transporter associated with processing (TAP). However, both epitopes were major targets for circulating effector CD8+ T cells from HLA-A2+ patients with type 1 diabetes. Moreover, cloned preproinsulin signal peptide–specific CD8+ T cells killed human β cells in vitro. Critically, at high glucose concentration, β cell presentation of preproinsulin signal epitope increased, as did CTL killing. This study provides direct evidence that autoreactive CTLs are present in the circulation of patients with type 1 diabetes and that they can kill human β cells. These results also identify a mechanism of self-antigen presentation that is under pathophysiological regulation and could expose insulin-producing β cells to increasing cytotoxicity at the later stages of the development of clinical diabetes. Our findings suggest that autoreactive CTLs are important targets for immune-based interventions in type 1 diabetes and argue for early, aggressive insulin therapy to preserve remaining β cells.  相似文献   

2.
Tumor-primed CD4+ T cells from splenocytes of tumor-rejection mice in combination with in vivo glucocorticoid-induced tumor necrosis factor receptor (GITR) ligation (the combination therapy) elicited effective host CD8+ T cell–dependent therapeutic immunity against a murine breast tumor. GITR ligation in vitro enhanced tumor-primed CD4+ T-cell activity and partially abrogated regulatory T cells (Treg) suppressor function. Dendritic cells (DCs) from tumor-draining lymph nodes (TDLNs) of tumor-bearing mice treated by the combination therapy stimulated Ag-specific T cells and produced interleukin (IL)-12 ex vivo. Whereas tumor-primed CD4+ T cells or in vivo GITR ligation alone induced a tumor-specific interferon (IFN)-γ-producing cellular response, the combination therapy enhanced and sustained it. Furthermore, the combination therapy in vivo attenuated Treg''s ability to suppress IL-12 production by DCs and IFN-γ production by effectors ex vivo. Importantly, tumor-primed CD4+ CD25 T cells from splenocytes of untreated tumor-bearing mice in combination with in vivo GITR ligation also elicited an effective therapeutic effect in this model. These data suggest that the combination therapy may improve DC function, accentuate tumor-specific T-cell responses, and attenuate Treg suppressor function, thereby eliciting effective therapeutic immunity.  相似文献   

3.
Type 1 regulatory T (Tr1) cells are an inducible subset of CD4+ Tr cells characterized by high levels of interleukin (IL)-10 production and regulatory properties. Several protocols to generate human Tr1 cells have been developed in vitro. However, the resulting population includes a significant fraction of contaminating non-Tr1 cells, representing a major bottleneck for clinical application of Tr1 cell therapy. We generated an homogeneous IL-10–producing Tr1 cell population by transducing human CD4+ T cells with a bidirectional lentiviral vector (LV) encoding for human IL-10 and the marker gene, green fluorescent protein (GFP), which are independently coexpressed. The resulting GFP+ LV-IL-10–transduced human CD4+ T (CD4LV-IL-10) cells expressed, upon T-cell receptor (TCR) activation, high levels of IL-10 and concomitant low levels of IL-4, and markers associated with IL-10. Moreover, CD4LV-IL-10 T cells displayed typical Tr1 features: the anergic phenotype, the IL-10, and transforming growth factor (TGF)-β dependent suppression of allogeneic T-cell responses, and the ability to suppress in a cell-to-cell contact independent manner in vitro. CD4LV-IL-10 T cells were able to control xeno graft-versus-host disease (GvHD), demonstrating their suppressive function in vivo. These results show that constitutive over-expression of IL-10 in human CD4+ T cells leads to a stable cell population that recapitulates the phenotype and function of Tr1 cells.  相似文献   

4.
Cytokine-induced killer (CIK) cells raised interest for use in cellular antitumor therapy due to their capability to recognize and destroy autologous tumor cells in a HLA-independent fashion. The antitumor attack of CIK cells, predominantly consisting of terminally differentiated CD8+CD56+ cells, can be improved by redirecting by a chimeric antigen receptor (CAR) that recognizes the tumor cell and triggers CIK cell activation. The requirements for CIK cell activation were, however, so far less explored and are likely to be different from those of “younger” T cells. We revealed that CD28 and OX40 CARs produced higher interferon- secretion as compared with the first-generation ζ-CAR; CD28-ζ and the third-generation CD28-ζ–OX40 CAR, however, performed similar in modulating most CIK cell effector functions. Compared with the CD28-ζ CAR, however, the CD28-ζ–OX40 CAR accelerated terminal maturation of CD56+ CIK cells producing high frequencies in activation-induced cell death (AICD) and reduced antitumor efficiency in vivo. Consequently, CD28-ζ CAR CIK cells of CD56 phenotype were superior in redirected tumor cell elimination. CAR-mediated CIK cell activation also increased antigen-independent target cell lysis; the CD28-ζ CAR was more efficient than the CD28-ζ–OX40 CAR. Translated into therapeutic strategies, CAR-redirected CIK cells benefit from CD28 costimulation; “super-costimulation” by the CD28-ζ–OX40 CAR, however, performed less in antitumor efficacy due to increased AICD.  相似文献   

5.
To enhance the strength of activation afforded by tumor antigen-specific receptors, we investigated the effect of adding combined CD28 and 4-1BB costimulatory signaling domains to a chimeric antigen receptor (CAR) specific for prostate-specific membrane antigen (PSMA). Having transferred receptors encompassing the CD28, 4-1BB, and/or CD3ζ cytoplasmic domains in primary human CD8+ T cells, we find that the P28BBz receptor, which includes all three signaling domains, is superior to receptors that only include one or two of these domains in promoting cytokine release, in vivo T-cell survival and tumor elimination following intravenous T-cell administration to tumor-bearing severe combined immunodeficient (SCID)/beige mice. Upon in vitro exposure to PSMA, the P28BBZ receptor-induced the strongest PI3Kinase/Akt activation and Bcl-XL expression, and the least apoptosis in transduced peripheral blood CD8+ T cells. These findings further support the concept of integrating optimized costimulatory properties into recombinant antigen receptors to augment the survival and function of genetically targeted T cells within the tumor microenvironment.  相似文献   

6.
7.
Glioblastoma multiforme (GM), the most frequent primary malignant brain tumor, is highly invasive due to the expression of proteases, including urokinase-type plasminogen activator (uPA). Here, we show the potential of our new and powerful recombinant Sendai virus (rSeV) showing uPA-specific cell-to-cell fusion activity [rSeV/dMFct14 (uPA2), named “BioKnife”] for GM treatment, an effect that was synergistically enhanced by arming BioKnife with the interferon-β (IFN-β) gene. BioKnife killed human GM cell lines efficiently in a uPA-dependent fashion, and this killing was prevented by PA inhibitor-1. Rat gliosarcoma 9L cells expressing both uPA and its functional receptor uPAR (9L-L/R) exhibited high uPA activity on the cellular surface and were highly susceptible to BioKnife. Although parent 9L cells (9L-P) were resistant to BioKnife and to BioKnife expressing IFN-β (BioKnife-IFNβ), cell–cell fusion of 9L-L/R strongly facilitated the expression of IFN-β, and in turn, IFN-β significantly accelerated the fusion activity of BioKnife. A similar synergy was seen in a rat orthotopic brain GM model with 9L-L/R in vivo; therefore, these results suggest that BioKnife-IFNβ may have significant potential to improve the survival of GM patients in a clinical setting.  相似文献   

8.
Transduction and transplantation of human hematopoietic stem/progenitor cells (HSPC) with the genes for a T-cell receptor (TCR) that recognizes a tumor-associated antigen may lead to sustained long-term production of T cells expressing the TCR and confer specific antitumor activity. We evaluated this using a lentiviral vector (CCLc-MND-F5) carrying cDNA for a human TCR specific for an HLA-A*0201-restricted peptide of Melanoma Antigen Recognized by T cells (MART-1). CD34+ HSPC were transduced with the F5 TCR lentiviral vector or mock transduced and transplanted into neonatal NSG mice or NSG mice transgenic for human HLA-A*0201 (NSG-A2). Human CD8+ and CD4+ T cells expressing the human F5 TCR were present in the thymus, spleen, and peripheral blood after 4–5 months. Expression of human HLA-A*0201 in NSG-A2 recipient mice led to significantly increased numbers of human CD8+ and CD4+ T cells expressing the F5 TCR, compared with control NSG recipients. Transduction of the human CD34+ HSPC by the F5 TCR transgene caused a high degree of allelic exclusion, potently suppressing rearrangement of endogenous human TCR-β genes during thymopoiesis. In summary, we demonstrated the feasibility of engineering human HSPC to express a tumor-specific TCR to serve as a long-term source of tumor-targeted mature T cells for immunotherapy of melanoma.  相似文献   

9.
We present genetic evidence that an in vivo role of α-synuclein (α-syn) is to inhibit phospholipase D2 (PLD2), an enzyme that is believed to participate in vesicle trafficking, membrane signaling, and both endo- and exocytosis. Overexpression of PLD2 in rat substantia nigra pars compacta (SNc) caused severe neurodegeneration of dopamine (DA) neurons, loss of striatal DA, and an associated ipsilateral amphetamine-induced rotational asymmetry. Coexpression of human wild type α-syn suppressed PLD2 neurodegeneration, DA loss, and amphetamine-induced rotational asymmetry. However, an α-syn mutant defective for inhibition of PLD2 in vitro also failed to inhibit PLD toxicity in vivo. Further, reduction of PLD2 activity in SNc, either by siRNA knockdown of PLD2 or overexpression of α-syn, both produced an unusual contralateral amphetamine-induced rotational asymmetry, opposite to that seen with overexpression of PLD2, suggesting that PLD2 and α-syn were both involved in DA release or reuptake. Finally, α-syn coimmunoprecipitated with PLD2 from extracts prepared from striatal tissues. Taken together, our data demonstrate that α-syn is an inhibitor of PLD2 in vivo, and confirm earlier reports that α-syn inhibits PLD2 in vitro. Our data also demonstrate that it is possible to use viral-mediated gene transfer to study gene interactions in vivo.  相似文献   

10.
Oncolytic virotherapy, the selective killing of tumor cells by oncolytic viruses (OVs), has emerged as a promising avenue of anticancer research. We have previously shown that KM100, a Herpes simplex virus type-1 (HSV) deficient for infected cell protein 0 (ICP0), possesses substantial oncolytic properties in vitro and has antitumor efficacy in vivo, in part by inducing antitumor immunity. Here, we illustrate through T-cell immunodepletion studies in nontolerized tumor-associated antigen models of breast cancer that KM100 treatment promotes antiviral and antitumor CD8+ cytotoxic T-cell responses necessary for complete tumor regression. In tolerized tumor-associated antigen models of breast cancer, antiviral CD8+ cytotoxic T-cell responses against infected tumor cells correlated with the induction of significant tumoristasis in the absence of tumor-associated antigen-specific CD8+ cytotoxic T-cells. To enhance oncolysis, we tested a more cytopathic ICP0-null HSV and a vesicular stomatitis virus M protein mutant and found that despite improved in vitro replication, oncolysis in vivo did not improve. These studies illustrate that the in vitro cytolytic properties of OVs are poor prognostic indicators of in vivo antitumor activity, and underscore the importance of adaptive antiviral CD8+ cytotoxic T-cells in effective cancer virotherapy.  相似文献   

11.
Even though other γδ T-cell subsets exhibit antitumor activity, adoptive transfer of γδ Tcells is currently limited to one subset (expressing Vγ9Vδ2 T-cell receptor (TCR)) due to dependence on aminobisphosphonates as the only clinically appealing reagent for propagating γδ T cells. Therefore, we developed an approach to propagate polyclonal γδ T cells and rendered them bispecific through expression of a CD19-specific chimeric antigen receptor (CAR). Peripheral blood mononuclear cells (PBMC) were electroporated with Sleeping Beauty (SB) transposon and transposase to enforce expression of CAR in multiple γδ T-cell subsets. CAR+γδ T cells were expanded on CD19+ artificial antigen-presenting cells (aAPC), which resulted in >109 CAR+γδ T cells from <106 total cells. Digital multiplex assay detected TCR mRNA coding for Vδ1, Vδ2, and Vδ3 with Vγ2, Vγ7, Vγ8, Vγ9, and Vγ10 alleles. Polyclonal CAR+γδ T cells were functional when TCRγδ and CAR were stimulated and displayed enhanced killing of CD19+ tumor cell lines compared with CARnegγδ T cells. CD19+ leukemia xenografts in mice were reduced with CAR+γδ T cells compared with control mice. Since CAR, SB, and aAPC have been adapted for human application, clinical trials can now focus on the therapeutic potential of polyclonal γδ T cells.  相似文献   

12.
Retrocyclins are humanized versions of the θ-defensin peptides expressed by the leukocytes of several nonhuman primates. Previous studies, performed in serum-free media, determined that retrocyclins 1 (RC1) and RC2 could prevent successful germination of Bacillus anthracis spores, kill vegetative B. anthracis cells, and inactivate anthrax lethal factor. We now report that retrocyclins are extensively bound by components of native mouse, human, and fetal calf sera, that heat-inactivated sera show greatly enhanced retrocyclin binding, and that native and (especially) heat-inactivated sera greatly reduce the direct activities of retrocyclins against spores and vegetative cells of B. anthracis. Nevertheless, we also found that retrocyclins protected mice challenged in vivo by subcutaneous, intraperitoneal, or intranasal instillation of B. anthracis spores. Retrocyclin 1 bound extensively to B. anthracis spores and enhanced their phagocytosis and killing by murine RAW264.7 cells. Based on the assumption that spore-bound RC1 enters phagosomes by “piggyback phagocytosis,” model calculations showed that the intraphagosomal concentration of RC1 would greatly exceed its extracellular concentration. Murine alveolar macrophages took up fluorescently labeled retrocyclin, suggesting that macrophages may also acquire extracellular RC1 directly. Overall, these data demonstrate that retrocyclins are effective in vivo against experimental murine anthrax infections and suggest that enhanced macrophage function contributes to this property.  相似文献   

13.
Malignant melanoma (MM) is a major public health problem. The development of effective, systemic therapies for MM is highly desired. We showed here that the transferrin receptor (TfR) was a suitable surface marker for targeting of gene therapy in MM and that the hypoxia-inducible factor-1α (HIF-1α) was an attractive therapeutic molecular target in MM. We observed that inhibition of HIF-1α blocked cell proliferation and induced cell apoptosis in vitro. We then showed that a transferrin–polyethylenimine–HIF-1α–short-hairpin RNA (Tf–PEI–HIF-1α–shRNA) complex could target MM specifically and efficiently both in vivo and in vitro, exploiting the high expression of the TfR in MM. The systemic delivery of sequence-specific small-interfering RNA (siRNA) against HIF-1α by the Tf– PEI–HIF-1α–shRNA complex dramatically inhibited tumor growth in the A375 MM xenograft model. The underlying concept of transfecting a HIF-1α shRNA expression vector complexed with Tf–PEI to block HIF-1α holds promise as a clinical approach to gene therapy for MM.  相似文献   

14.
15.

OBJECTIVE

Given evidence of both indirect and direct signaling, we tested the hypothesis that increased β-cell–mediated signaling of α-cells negates direct α-cell signaling in the regulation of glucagon secretion in humans.

RESEARCH DESIGN AND METHODS

We measured plasma glucagon concentrations before and after ingestion of a formula mixed meal and, on a separate occasion, ingestion of the sulfonylurea glimepiride in 24 basal insulin-infused, demonstrably β-cell–deficient patients with type 1 diabetes and 20 nondiabetic, demonstrably β-cell–sufficient individuals; the latter were infused with glucose to prevent hypoglycemia after glimepiride.

RESULTS

After the mixed meal, plasma glucagon concentrations increased from 22 ± 1 pmol/l (78 ± 4 pg/ml) to 30 ± 2 pmol/l (103 ± 7 pg/ml) in the patients with type 1 diabetes but were unchanged from 27 ± 1 pmol/l (93 ± 3 pg/ml) to 26 ± 1 pmol/l (89 ± 3 pg/ml) in the nondiabetic individuals (P < 0.0001). After glimepiride, plasma glucagon concentrations increased from 24 ± 1 pmol/l (83 ± 4 pg/ml) to 26 ± 1 pmol/l (91 ± 4 pg/ml) in the patients with type 1 diabetes and decreased from 28 ± 1 pmol/l (97 ± 5 pg/ml) to 24 ± 1 pmol/l (82 ± 4 pg/ml) in the nondiabetic individuals (P < 0.0001). Thus, in the presence of both β-cell and α-cell secretory stimuli (increased amino acid and glucose levels, a sulfonylurea) glucagon secretion was prevented when β-cell secretion was sufficient but not when β-cell secretion was deficient.

CONCLUSIONS

These data indicate that, among the array of signals, indirect reciprocal β-cell–mediated signaling predominates over direct α-cell signaling in the regulation of glucagon secretion in humans.The regulation of pancreatic islet α-cell glucagon secretion is complex (110). It involves direct signaling of α-cells (1) and indirect signaling of α-cells by β-cell (26) and δ-cell (7) secretory products, the autonomic nervous system (8,9), and gut incretins (10).Appropriate glucagon secretory responses occur from the perfused pancreas (3,5) and perifused islets (2). Low plasma glucose concentrations stimulate glucagon secretion from the transplanted (i.e., denervated) human pancreas (11) and the denervated dog pancreas (12). Therefore, we have focused on the intraislet regulation of glucagon secretion. Furthermore, because selective destruction of β-cells results in loss of the glucagon response to hypoglycemia in type 1 diabetes (13), and partial reduction of the β-cell mass in minipigs results in impaired postprandial suppression of glucagon secretion (14), we have focused on the role of β-cell–mediated signaling in the regulation of glucagon secretion.Findings from studies of the perfused rat (3,4) and human (5) pancreas, rats in vivo (6), rat islets (2), isolated rat α-cells (2), and humans (1518) have been interpreted to indicate that a β-cell secretory product or products tonically restrains basal α-cell glucagon secretion during euglycemia and that a decrease in β-cell secretion, coupled with low glucose concentrations at the α-cells, signals an increase in glucagon secretion in response to hypoglycemia. Parenthetically, the relative roles of the candidate β-cell secretory products (insulin, zinc, γ-aminobutyric acid, and amylin, among others) (2) that normally restrain α-cell glucagon secretion remain to be determined. However, that interpretation rests, in part, on results of studies in isolated rat α-cells (2), which are debated (1), and on the evidence that the islet microcirculation flows from β-cells to α-cells to δ-cells (4), which is also debated (19). Furthermore, it does not address the plausible possibility that a decrease in intraislet δ-cell somatostatin secretion might also signal an increase in α-cell glucagon secretion during hypoglycemia (7).Given that interpretation, it follows that an increase in β-cell secretion would signal a decrease in glucagon secretion in the postprandial state (14). The concept is an interplay of indirect reciprocal β-cell–mediated signaling of α-cells and of direct α-cell signaling in the regulation of glucagon secretion.There is, in our view, compelling evidence that, among other mechanisms, both indirect reciprocal β-cell–mediated signaling of α-cells (26) and direct α-cell signaling (1) are involved in the regulation of glucagon secretion by nutrients, hormones, neurotransmitters, and drugs. Given that premise, we posed the question: Which of these predominates in humans? Accordingly, we tested the hypothesis that increased β-cell–mediated signaling of α-cells negates direct α-cell signaling in the regulation of glucagon secretion in humans. To do so, we measured plasma glucagon responses to ingestion of a mixed meal and, on a separate occasion, to ingestion of the sulfonylurea glimepiride in patients with type 1 diabetes and in nondiabetic individuals. We conceptualized patients with type 1 diabetes as a model of α-cells isolated from β-cells because their β-cells had been destroyed but they have functioning α-cells. (Their α-cells are not, of course, isolated from other islet cells, including δ-cells.) Increased plasma amino acid and glucose levels after a mixed meal and sulfonylureas normally stimulate β-cell secretion; increased plasma amino acid and perhaps glucose (2) levels after a mixed meal and sulfonylureas (1) stimulate α-cell secretion. Our hypothesis predicts that such factors that normally stimulate both β-cells and α-cells would stimulate glucagon secretion in patients with type 1 diabetes but not in nondiabetic individuals, i.e., in the virtual absence and the presence of β-cell function, respectively. Indeed, a mixed meal (20,21) and the secretagogues tolbutamide (22), glyburide (23), and repaglinide (23) have been reported to raise plasma glucagon concentrations in patients with type 1 diabetes, but all of those studies lacked nondiabetic control subjects.  相似文献   

16.
17.

OBJECTIVE

To investigate the effect of 4 weeks of treatment with liraglutide on insulin dose and glycemic control in type 1 diabetic patients with and without residual β-cell function.

RESEARCH DESIGN AND METHODS

Ten type 1 diabetic patients with residual β-cell function (C-peptide positive) and 19 without (C-peptide negative) were studied. All C-peptide–positive patients were treated with liraglutide plus insulin, whereas C-peptide–negative patients were randomly assigned to liraglutide plus insulin or insulin monotherapy. Continuous glucose monitoring with identical food intake and physical activity was performed before (week 0) and during (week 4) treatment. Differences in insulin dose; HbA1c; time spent with blood glucose <3.9, >10, and 3.9–9.9 mmol/L; and body weight were evaluated.

RESULTS

Insulin dose decreased from 0.50 ± 0.06 to 0.31 ± 0.08 units/kg per day (P < 0.001) in C-peptide–positive patients and from 0.72 ± 0.08 to 0.59 ± 0.06 units/kg per day (P < 0.01) in C-peptide–negative patients treated with liraglutide but did not change with insulin monotherapy. HbA1c decreased in both liraglutide-treated groups. The percent reduction in daily insulin dose was positively correlated with β-cell function at baseline, and two patients discontinued insulin treatment. In C-peptide–positive patients, time spent with blood glucose <3.9 mmol/L decreased from 3.0 to 1.0 h (P = 0.03). A total of 18 of 19 patients treated with liraglutide lost weight during treatment (mean [range] −2.3 ± 0.3 kg [−0.5 to −5.1]; P < 0.001). Transient gastrointestinal adverse effects occurred in almost all patients treated with liraglutide.

CONCLUSIONS

Treatment with liraglutide in type 1 diabetic patients reduces insulin dose with improved or unaltered glycemic control.Glucagon-like peptide-1 (GLP-1) is secreted from the gut after meals (1) and enhances glucose-induced insulin secretion, inhibits glucagon secretion, and delays the gastric-emptying rate (1). GLP-1 receptor agonists improve glycemic control, induce weight loss in overweight subjects with type 2 diabetes (24), improve pancreatic β-cell function (5), and have displayed β-cell–protective and β-cell–proliferative effects in some animal studies (6). The glucose-lowering effects resulting from the inhibition of glucagon secretion and the gastric-emptying rate could be of clinical importance in type 1 diabetes (714). However, GLP-1 also reduces appetite and spontaneous food intake (15,16). Therefore, potential beneficial effects in terms of reduction of insulin dose, reduced risk of hypoglycemia, and improved glycemic control should be balanced against the occurrence of adverse effects (mainly nausea) and weight loss. We investigated whether 4 weeks of treatment with liraglutide, a once-daily human GLP-1 receptor analog, would reduce insulin dose while preserving or improving glycemic control and decreasing the risk of hypoglycemia in type 1 diabetic patients with and without residual β-cell function.  相似文献   

18.
19.
Osteopontin (OPN) is a secreted phosphoprotein which mediates tumorigenesis, local growth, and metastasis in a variety of cancers. It is a potential therapeutic target for the regulation of cancer metastasis. RNA aptamer technology targeting OPN may represent a clinically viable therapy. In this study, we characterize the critical sequence of an RNA aptamer, termed OPN-R3, directed against human OPN. It has a Kd of 18 nmol/l and binds specifically to human OPN as determined by RNA electrophoretic mobility assays. In MDA-MB231 human breast cancer cells examined under fluorescence microscopy, OPN-R3 ablates cell surface binding of OPN to its cell surface CD44 and αvβ3 integrin receptors. Critical enzymatic components of the OPN signal transduction pathways, PI3K, JNK1/2, Src and Akt, and mediators of extracellular matrix degradation, matrix metalloproteinase 2 (MMP2) and uroplasminogen activator (uPA), are significantly decreased following exposure to OPN-R3. OPN-R3 inhibits MDA-MB231 in vitro adhesion, migration, and invasion characteristics by 60, 50, and 65%, respectively. In an in vivo xenograft model of breast cancer, OPN-R3 significantly decreases local progression and distant metastases. On the basis of this “proof-of-concept” study, we conclude that RNA aptamer targeting of OPN has biologically relevance for modifying tumor growth and metastasis.  相似文献   

20.
β-Escin exhibits anticancer effects on a panel of established cancer cells. However, the effects of β-escin on human osteosarcoma (OS) are still unknown. The aim of the present study was to investigate whether β-escin was effective against OS both in vivo and in vitro. Our results showed that β-escin induced dose- and time-dependent effects against MG-63, OS732, U-2OS, HOS and SAOS-2 cell proliferation. β-Escin also exhibited excellent anti-proliferative and pro-apoptotic effects in an established OS xenograft model. β-Escin and cytotoxic drugs, including cisplatin, methotrexate (MTX), doxorubicin (Dox) and ifosfamide (Ifos), synergistically inhibited proliferation of MG-63 and OS732 cells in vitro. Moreover, β-escin induced apoptotic death, activated caspase-3, caspase-8 and caspase-9, and regulated expression of Bax and Bcl-2 in MG-63 cells. In addition, our results showed that β-escin treatment reduced expression of p-PI3K, p-Akt and p-mTOR both in MG-63 cells and in an MG-63 xenograft OS model. Interestingly, SC79, which is an Akt activator, inhibited the anti-proliferative effects of β-escin on MG-63 cells. Taken together, our data support the conclusion that β-escin effectively inhibits OS proliferation both in vivo and in vitro. The inhibitory effect of β-escin, at least in part, is due to the inactivation of the PI3K/Akt signalling pathway.

β-Escin exhibits anticancer effects on a panel of established cancer cells. However, the effects of β-escin on human osteosarcoma (OS) are still unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号