首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The inhibitory receptor programmed death 1 (PD-1) is upregulated on antigen-specific CD8+ T cells during persistent viral infections. Interaction with PD-1 ligand 1 (PD-L1) contributes to functional exhaustion of responding T cells and may limit immunopathology during infection. PD-L1 is expressed on both hematopoietic and nonhematopoietic cells in tissues. However, the exact roles of PD-L1 on hematopoietic versus nonhematopoietic cells in modulating immune responses are unclear. Here we used bone marrow chimeric mice to examine the effects of PD-L1 deficiency in hematopoietic or nonhematopoietic cells during lymphocytic choriomeningitis virus clone 13 (LCMV CL-13) infection. We found that PD-L1 expression on hematopoietic cells inhibited CD8+ T cell numbers and function after LCMV CL-13 infection. In contrast, PD-L1 expression on nonhematopoietic cells limited viral clearance and immunopathology in infected tissues. Together, these data demonstrate that there are distinct roles for PD-L1 on hematopoietic and nonhematopoietic cells in regulating CD8+ T cell responses and viral clearance during chronic viral infection.  相似文献   

2.
HIV-1 accumulates mutations in and around reactive epitopes to escape recognition and killing by CD8+ T cells. Measurements of HIV-1 time to escape should therefore provide information on which parameters are most important for T cell–mediated in vivo control of HIV-1. Primary HIV-1–specific T cell responses were fully mapped in 17 individuals, and the time to virus escape, which ranged from days to years, was measured for each epitope. While higher magnitude of an individual T cell response was associated with more rapid escape, the most significant T cell measure was its relative immunodominance measured in acute infection. This identified subject-level or “vertical” immunodominance as the primary determinant of in vivo CD8+ T cell pressure in HIV-1 infection. Conversely, escape was slowed significantly by lower population variability, or entropy, of the epitope targeted. Immunodominance and epitope entropy combined to explain half of all the variability in time to escape. These data explain how CD8+ T cells can exert significant and sustained HIV-1 pressure even when escape is very slow and that within an individual, the impacts of other T cell factors on HIV-1 escape should be considered in the context of immunodominance.  相似文献   

3.
Viral vector–based vaccines that induce protective CD8+ T cell immunity can prevent or control pathogenic SIV infections, but issues of preexisting immunity and safety have impeded their implementation in HIV-1. Here, we report the development of what we believe to be a novel antigen-targeting DNA vaccine strategy that exploits the binding of programmed death-1 (PD1) to its ligands expressed on dendritic cells (DCs) by fusing soluble PD1 with HIV-1 GAG p24 antigen. As compared with non–DC-targeting vaccines, intramuscular immunization via electroporation (EP) of the fusion DNA in mice elicited consistently high frequencies of GAG-specific, broadly reactive, polyfunctional, long-lived, and cytotoxic CD8+ T cells and robust anti-GAG antibody titers. Vaccination conferred remarkable protection against mucosal challenge with vaccinia GAG viruses. Soluble PD1–based vaccination potentiated CD8+ T cell responses by enhancing antigen binding and uptake in DCs and activation in the draining lymph node. It also increased IL-12–producing DCs and engaged antigen cross-presentation when compared with anti-DEC205 antibody-mediated DC targeting. The high frequency of durable and protective GAG-specific CD8+ T cell immunity induced by soluble PD1–based vaccination suggests that PD1-based DNA vaccines could potentially be used against HIV-1 and other pathogens.  相似文献   

4.
Exhaustion of CD8+ T cells and upregulation of programmed death 1 (PD-1), a negative regulator of T cell activation, are characteristic features of individuals chronically infected with human immunodeficiency virus type 1. In a previous study, we showed in mice that a dendritic cell-directed lentiviral vector (DCLV) system encoding the human immunodeficiency virus (HIV)-1 Gag protein was an efficient vaccine modality to induce a durable Gag-specific T cell immune response. In this study, we demonstrate that blocking of the PD-1/PD-1 ligand (PD-L) inhibitory signal via an anti-PD-L1 antibody generated an enhanced HIV-1 Gag-specific CD8+ immune response following both a single round of DCLV immunization and a homologous prime/boost regimen. The prime/boost regimen combined with PD-L1 blockade generated very high levels of Gag-specific CD8+ T cells comprising several valuable features: improved ability to produce multiple cytokines, responding to a broader range of Gag-derived epitopes, and long-lasting memory. This enhanced cellular immune response generated by DCLV immunization combined with anti-PD-L1 blockade correlated with improved viral control following challenge with Gag-expressing vaccinia virus. Taken together, our studies offer evidence to support the use of PD-1/PD-L1 blockade as an adjuvant modality to enhance antigen-specific immune responses elicited by T cell-based immunizations such as DCLV.  相似文献   

5.
Cellular senescence contributes to aging and decline in tissue function. p53 isoform switching regulates replicative senescence in cultured fibroblasts and is associated with tumor progression. Here, we found that the endogenous p53 isoforms Δ133p53 and p53β are physiological regulators of proliferation and senescence in human T lymphocytes in vivo. Peripheral blood CD8+ T lymphocytes collected from healthy donors displayed an age-dependent accumulation of senescent cells (CD28CD57+) with decreased Δ133p53 and increased p53β expression. Human lung tumor-associated CD8+ T lymphocytes also harbored senescent cells. Cultured CD8+ blood T lymphocytes underwent replicative senescence that was associated with loss of CD28 and Δ133p53 protein. In poorly proliferative, Δ133p53-low CD8+CD28 cells, reconstituted expression of either Δ133p53 or CD28 upregulated endogenous expression of each other, which restored cell proliferation, extended replicative lifespan and rescued senescence phenotypes. Conversely, Δ133p53 knockdown or p53β overexpression in CD8+CD28+ cells inhibited cell proliferation and induced senescence. This study establishes a role for Δ133p53 and p53β in regulation of cellular proliferation and senescence in vivo. Furthermore, Δ133p53-induced restoration of cellular replicative potential may lead to a new therapeutic paradigm for treating immunosenescence disorders, including those associated with aging, cancer, autoimmune diseases, and HIV infection.  相似文献   

6.
7.
The induction of persistent intraepithelial CD8+ T cell responses may be key to the development of vaccines against mucosally transmitted pathogens, particularly for sexually transmitted diseases. Here we investigated CD8+ T cell responses in the female mouse cervicovaginal mucosa after intravaginal immunization with human papillomavirus vectors (HPV pseudoviruses) that transiently expressed a model antigen, respiratory syncytial virus (RSV) M/M2, in cervicovaginal keratinocytes. An HPV intravaginal prime/boost with different HPV serotypes induced 10-fold more cervicovaginal antigen-specific CD8+ T cells than priming alone. Antigen-specific T cell numbers decreased only 2-fold after 6 months. Most genital antigen-specific CD8+ T cells were intra- or subepithelial, expressed αE-integrin CD103, produced IFN-γ and TNF-α, and displayed in vivo cytotoxicity. Using a sphingosine-1-phosphate analog (FTY720), we found that the primed CD8+ T cells proliferated in the cervicovaginal mucosa upon HPV intravaginal boost. Intravaginal HPV prime/boost reduced cervicovaginal viral titers 1,000-fold after intravaginal challenge with vaccinia virus expressing the CD8 epitope M2. In contrast, intramuscular prime/boost with an adenovirus type 5 vector induced a higher level of systemic CD8+ T cells but failed to induce intraepithelial CD103+CD8+ T cells or protect against recombinant vaccinia vaginal challenge. Thus, HPV vectors are attractive gene-delivery platforms for inducing durable intraepithelial cervicovaginal CD8+ T cell responses by promoting local proliferation and retention of primed antigen-specific CD8+ T cells.  相似文献   

8.
To delineate the in vivo role of different costimulatory signals in activating and expanding highly functional virus-specific cytotoxic CD8+ T cells, we designed synTacs, infusible biologics that recapitulate antigen-specific T cell activation signals delivered by antigen-presenting cells. We constructed synTacs consisting of dimeric Fc-domain scaffolds linking CD28- or 4-1BB–specific ligands to HLA-A2 MHC molecules covalently tethered to HIV- or CMV-derived peptides. Treatment of HIV-infected donor PBMCs with synTacs bearing HIV- or CMV-derived peptides induced vigorous and selective ex vivo expansion of highly functional HIV- and/or CMV-specific CD8+ T cells, respectively, with potent antiviral activities. Intravenous injection of HIV- or CMV-specific synTacs into immunodeficient mice intrasplenically engrafted with donor PBMCs markedly and selectively expanded HIV-specific (32-fold) or CMV-specific (46-fold) human CD8+ T cells populating their spleens. Notably, these expanded HIV- or CMV-specific CD8+ T cells directed potent in vivo suppression of HIV or CMV infections in the humanized mice, providing strong rationale for consideration of synTac-based approaches as a therapeutic strategy to cure HIV and treat CMV and other viral infections. The synTac platform flexibility supports facile delineation of in vivo effects of different costimulatory signals on patient-derived virus-specific CD8+ T cells, enabling optimization of individualized therapies, including HIV cure strategies.  相似文献   

9.
CD4+ T cell interactions with B cells play a critical role in the pathogenesis of systemic autoimmune diseases such as systemic lupus and chronic graft-versus-host disease (cGVHD). Extrafollicular CD44hiCD62LloPSGL1loCD4+ T cells (PSGL1loCD4+ T cells) are associated with the pathogenesis of lupus and cGVHD, but their causal role has not been established. With murine and humanized MHC–/–HLA-A2+DR4+ murine models of cGVHD, we showed that murine and human PSGL1loCD4+ T cells from GVHD target tissues have features of B cell helpers with upregulated expression of programmed cell death protein 1 (PD1) and inducible T cell costimulator (ICOS) and production of IL-21. They reside in nonlymphoid tissues without circulating in the blood and have features of tissue-resident memory T cells with upregulated expression of CD69. Murine PSGL1loCD4+ T cells from GVHD target tissues augmented B cell differentiation into plasma cells and production of autoantibodies via their PD1 interaction with PD-L2 on B cells. Human PSGL1loCD4+ T cells were apposed with memory B cells in the liver tissues of humanized mice and cGVHD patients. Human PSGL1loCD4+ T cells from humanized GVHD target tissues also augmented autologous memory B cell differentiation into plasma cells and antibody production in a PD1/PD-L2–dependent manner. Further preclinical studies targeting tissue-resident T cells to treat antibody-mediated features of autoimmune diseases are warranted.  相似文献   

10.
BACKGROUNDCD155 is an immune checkpoint protein in cancers and interacts with ligands to regulate the immune microenvironment. The expression of CD155 is correlated with the prognosis and pathological features of breast cancer.AIMTo investigate the expression status of CD155 and the association with exhausted CD4+ helper and CD8+ cytotoxic tumor infiltrating lymphocytes (TILs) and PD-L1 in the breast cancer microenvironment.METHODSOne hundred and twenty-six breast cancer patients with invasive ductal breast cancer were consecutively recruited into this study. Immunohistochemistry was used to detect the expression CD155, PD-L1 and PD-1 on tumor-infiltrating immune cells and tumor cells in the microenvironment.RESULTSThe proportion of patients with CD155 expression was higher in triple negative breast cancer (72.7%) than in Luminal A patients (22.2%, P < 0.05). Patients with positive CD155 expression had a higher percentage of CD4+/PD-1+ helper TILs (30%) than patients with negative CD155 expression (21%, P < 0.05). Patients with positive CD155 expression also had higher cell counts of exhausted CD4+ TILs [47 vs 20/high-power fields (HPF)] and unexhausted CD8+ TILs (30 vs 17/HPF) than patients with negative expression (P < 0.05). CD155 expression was correlated with increased PD-L1 expression in immune cells, 0.8% and 0.02% immune cells expressed PD-L1 in patients with positive and negative CD155 expression, respectively (P < 0.05).CONCLUSIONCD155 was related to an inhibitory immune breast cancer microenvironment. CD155 was associated with a high proportion of exhausted CD4+ and unexhausted CD8+ TILs and high PD-L1 expression in immune cells.  相似文献   

11.
12.
In HIV-1–infected patients, increased numbers of circulating CD8+ T cells are linked to increased risk of morbidity and mortality. Here, we identified a bystander mechanism that promotes CD8 T cell activation and expansion in untreated HIV-1–infected patients. Compared with healthy controls, untreated HIV-1–infected patients have an increased population of proliferating, granzyme B+, CD8+ T cells in circulation. Vβ expression and deep sequencing of CDR3 revealed that in untreated HIV-1 infection, cycling memory CD8 T cells possess a broad T cell repertoire that reflects the repertoire of the resting population. This suggests that cycling is driven by bystander activation, rather than specific antigen exposure. Treatment of peripheral blood mononuclear cells with IL-15 induced a cycling, granzyme B+ phenotype in CD8+ T cells. Moreover, elevated IL-15 expression in the lymph nodes of untreated HIV-1–infected patients correlated with circulating CD8+ T cell counts and was normalized in these patients following antiretroviral therapy. Together, these results suggest that IL-15 drives bystander activation of CD8+ T cells, which predicts disease progression in untreated HIV-1–infected patients and suggests that elevated IL-15 may also drive CD8+ T cell expansion that is linked to increased morbidity and mortality in treated patients.  相似文献   

13.
CD8+ T cell responses restricted by MHC-E, a nonclassical MHC molecule, have been associated with protection in an SIV/rhesus macaque model. The biological relevance of HLA-E–restricted CD8+ T cell responses in HIV infection, however, remains unknown. In this study, CD8+ T cells responding to HIV-1 Gag peptides presented by HLA-E were analyzed. Using in vitro assays, we observed HLA-E–restricted T cell responses to what we believe to be a newly identified subdominant Gag-KL9 as well as a well-described immunodominant Gag-KF11 epitope in T cell lines derived from chronically HIV-infected patients and also primed from healthy donors. Blocking of the HLA-E/KF11 binding by the B7 signal peptide resulted in decreased CD8+ T cell responses. KF11 presented via HLA-E in HIV-infected cells was recognized by antigen-specific CD8+ T cells. Importantly, bulk CD8+ T cells obtained from HIV-infected individuals recognized infected cells via HLA-E presentation. Ex vivo analyses at the epitope level showed a higher responder frequency of HLA-E–restricted responses to KF11 compared with KL9. Taken together, our findings of HLA-E–restricted HIV-specific immune responses offer intriguing and possibly paradigm-shifting insights into factors that contribute to the immunodominance of CD8+ T cell responses in HIV infection.  相似文献   

14.
Dendritic cell (DC)–based vaccines are a promising strategy for tumor immunotherapy due to their ability to activate both antigen-specific T-cell immunity and innate immune effector components, including natural killer (NK) cells. However, the optimal mode of antigen delivery and DC activation remains to be determined. Using M protein mutant vesicular stomatitis virus (ΔM51-VSV) as a gene-delivery vector, we demonstrate that a high level of transgene expression could be achieved in ~70% of DCs without affecting cell viability. Furthermore, ΔM51-VSV infection activated DCs to produce proinflammatory cytokines (interleukin-12, tumor necrosis factor-α, and interferon (IFN)α/β), and to display a mature phenotype (CD40highCD86high major histocompatibility complex (MHC II)high). When delivered to mice bearing 10-day-old lung metastatic tumors, DCs infected with ΔM51-VSV encoding a tumor-associated antigen mediated significant control of tumor growth by engaging both NK and CD8+ T cells. Importantly, depletion of NK cells completely abrogated tumor destruction, indicating that NK cells play a critical role for this DC vaccine-induced therapeutic outcome. Our findings identify ΔM51-VSV as both an efficient gene-delivery vector and a maturation agent allowing DC vaccines to overcome immunosuppression in the tumor-bearing host.  相似文献   

15.
The HIV-1 coreceptor CCR5 is a validated target for HIV/AIDS therapy. The apparent elimination of HIV-1 in a patient treated with an allogeneic stem cell transplant homozygous for a naturally occurring CCR5 deletion mutation (CCR5Δ32/Δ32) supports the concept that a single dose of HIV-resistant hematopoietic stem cells can provide disease protection. Given the low frequency of naturally occurring CCR5Δ32/Δ32 donors, we reasoned that engineered autologous CD34+ hematopoietic stem/progenitor cells (HSPCs) could be used for AIDS therapy. We evaluated disruption of CCR5 gene expression in HSPCs isolated from granulocyte colony-stimulating factor (CSF)-mobilized adult blood using a recombinant adenoviral vector encoding a CCR5-specific pair of zinc finger nucleases (CCR5-ZFN). Our results demonstrate that CCR5-ZFN RNA and protein expression from the adenoviral vector is enhanced by pretreatment of HSPC with protein kinase C (PKC) activators resulting in >25% CCR5 gene disruption and that activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway is responsible for this activity. Importantly, using an optimized dose of PKC activator and adenoviral vector we could generate CCR5-modified HSPCs which engraft in a humanized mouse model (albeit at a reduced level) and support multilineage differentiation in vitro and in vivo. Together, these data establish the basis for improved approaches exploiting adenoviral vector delivery in the modification of HSPCs.  相似文献   

16.
Effective long-term antiviral immunity requires specific cytotoxic T lymphocytes and CD4+ T lymphocyte help. Failure of these helper responses can be a principle cause of viral persistence. We sought evidence that variation in HIV-1 CD4+ T helper epitopes might contribute to this phenomenon. To determine this, we assayed fresh peripheral blood mononuclear cells from 43 asymptomatic HIV-1+ patients for proliferative responses to HIV-1 antigens. 12 (28%) showed a positive response, and we went on to map dominant epitopes in two individuals, to p24 Gag restricted by human histocompatibility leukocyte antigen (HLA)-DR1 and to p17 Gag restricted by HLA-DRB52c. Nine naturally occurring variants of the p24 Gag epitope were found in the proviral DNA of the individual in whom this response was detected. All variants bound to HLA-DR1, but three of these peptides failed to stimulate a CD4+ T lymphocyte line which recognized the index sequence. Antigenic variation was also detected in the p17 Gag epitope; a dominant viral variant present in the patient was well recognized by a specific CD4+ T lymphocyte line, whereas several natural mutants were not. Importantly, variants detected at both epitopes also failed to stimulate fresh uncultured cells while index peptide stimulated successfully. These results demonstrate that variant antigens arise in HIV-1+ patients which fail to stimulate the T cell antigen receptor of HLA class II–restricted lymphocytes, although the peptide epitopes are capable of being presented on the cell surface. In HIV-1 infection, naturally occurring HLA class II–restricted altered peptide ligands that fail to stimulate the circulating T lymphocyte repertoire may curtail helper responses at sites where variant viruses predominate.  相似文献   

17.
18.
The paradoxical coexistence of spontaneous tumor antigen–specific immune responses with progressive disease in cancer patients furthers the need to dissect the molecular pathways involved in tumor-induced T cell dysfunction. In patients with advanced melanoma, we have previously shown that the cancer-germline antigen NY-ESO-1 stimulates spontaneous NY-ESO-1–specific CD8+ T cells that up-regulate PD-1 expression. We also observed that PD-1 regulates NY-ESO-1–specific CD8+ T cell expansion upon chronic antigen stimulation. In the present study, we show that a fraction of PD-1+ NY-ESO-1–specific CD8+ T cells in patients with advanced melanoma up-regulates Tim-3 expression and that Tim-3+PD-1+ NY-ESO-1–specific CD8+ T cells are more dysfunctional than Tim-3PD-1+ and Tim-3PD-1 NY-ESO-1–specific CD8+ T cells, producing less IFN-γ, TNF, and IL-2. Tim-3–Tim-3L blockade enhanced cytokine production by NY-ESO-1–specific CD8+ T cells upon short ex vivo stimulation with cognate peptide, thus enhancing their functional capacity. In addition, Tim-3–Tim-3L blockade enhanced cytokine production and proliferation of NY-ESO-1–specific CD8+ T cells upon prolonged antigen stimulation and acted in synergy with PD-1–PD-L1 blockade. Collectively, our findings support the use of Tim-3–Tim-3L blockade together with PD-1–PD-L1 blockade to reverse tumor-induced T cell exhaustion/dysfunction in patients with advanced melanoma.There is ample evidence that patients with melanoma can develop immune responses directed against antigens expressed by their own tumor (Boon et al., 2006). Among these antigens, cancer-germline antigens (CGAs) are expressed by tumors of many different histological types, including melanoma, but not by normal tissues, except testis. Because germ cells in testis do not express HLA molecules on their surface (Haas et al., 1988), CGAs represent strictly tumor-specific T cell targets (Boon et al., 2006). Among CGAs, NY-ESO-1 has been shown to stimulate spontaneous cellular and humoral responses that are detectable only in patients with advanced NY-ESO-1–expressing cancer (Stockert et al., 1998; Jäger et al., 2000; Mandic et al., 2005; Fourcade et al., 2008). Understanding the failure of spontaneous NY-ESO-1–specific T cell responses to promote regression of NY-ESO-1+ tumors is therefore critical for the design of novel therapeutic interventions aimed at overcoming tumor-induced immune escape.We have previously shown that the large majority of spontaneous NY-ESO-1–specific CD8+ T cells up-regulates programmed death 1 (PD-1) expression (Fourcade et al., 2009), which appears to be associated with T cell exhaustion/dysfunction in chronic viral infections in animals and humans (Barber et al., 2006; Day et al., 2006; Petrovas et al., 2006; Trautmann et al., 2006). We observed that PD-1 up-regulation on spontaneous NY-ESO-1–specific CD8+ T cells occurs along with T cell activation and is not directly associated with an inability to produce cytokines ex vivo upon stimulation with cognate antigen. Blockade of the PD-1–programmed death ligand 1 (PD-L1) pathway in combination with prolonged antigen stimulation with PD-L1+ APCs or melanoma cells augmented the frequencies of cytokine-producing, proliferating, and total NY-ESO-1–specific CD8+ T cells. Our findings are in line with previous studies of PD-1 expression by HIV- and SIV-specific CD8+ T cells, demonstrating that PD-1 is a regulator of antigen-specific CD8+ T cell expansion in the context of chronic antigen exposure, although it does not exhibit a major impact upon their functionality on a cell-per-cell basis (Petrovas et al., 2006, 2007). To further determine whether other molecular pathways are involved in tumor antigen–specific T cell dysfunction, we studied T cell immunoglobulin and mucin-domain–containing molecule 3 (Tim-3) expression on spontaneous NY-ESO-1–specific CD8+ T cells from patients with advanced melanoma and investigated whether Tim-3 up-regulation defines a subgroup of dysfunctional tumor antigen–specific CD8+ T cells. Tim-3 is a transmembrane protein constitutively expressed on Th1/Tc1 cells in mice and humans (Monney et al., 2002). Several lines of evidence support the role of Tim-3 as an inhibitory molecule that down-regulates effector Th1/Tc1 cell responses. In mice, blocking the Tim-3–Tim-3L pathway resulted in hyperproliferation of Th1-type cells and abrogated the induction of peripheral and transplantation tolerance (Sabatos et al., 2003; Sánchez-Fueyo et al., 2003). Tim-3 interacts with its ligand galectin-9 to induce cell death in Th1 cells (Zhu et al., 2005). In humans, Tim-3 expression is defective in CD4+ T cells producing high levels of IFN-γ, as well as those isolated from cerebrospinal fluid of patients with multiple sclerosis (Koguchi et al., 2006). Recently, Tim-3 up-regulation has been reported in HIV-specific and HCV-specific CD8+ T cells in patients with progressive HIV infection and chronic hepatitis C, respectively (Jones et al., 2008; Golden-Mason et al., 2009). Tim-3+ HIV- and HCV-specific CD8+ T cells were distinct from the PD-1+ CD8+ T cells and exhibited T cell dysfunction. However, it is unknown whether tumor antigen–specific CD8+ T cells in patients with advanced cancers express Tim-3.In this study, we show that a fraction of PD-1+ NY-ESO-1–specific CD8+ T cells, which represents the large majority of circulating NY-ESO-1–specific CD8+ T cells in patients with advanced melanoma, up-regulates Tim-3 expression. Tim-3+PD-1+ NY-ESO-1–specific CD8+ T cells are highly dysfunctional compared with Tim-3PD-1+ and Tim-3PD-1 NY-ESO-1–specific CD8+ T cells. Tim-3–Tim-3L pathway blockade alone or in combination with PD-1–PD-L1 pathway blockade enhanced NY-ESO-1–specific CD8+ T cell numbers and functions. Collectively, our findings support the use of Tim-3–Tim-3L blockade in association with PD-1–PD-L1 blockade to reverse tumor-induced T cell exhaustion/dysfunction in patients with advanced melanoma.  相似文献   

19.
20.
Despite long-term antiretroviral therapy (ART), HIV-1 persists within a reservoir of CD4+ T cells that contribute to viral rebound if treatment is interrupted. Identifying the cellular populations that contribute to the HIV-1 reservoir and understanding the mechanisms of viral persistence are necessary to achieve an effective cure. In this regard, through Full-Length Individual Proviral Sequencing, we observed that the HIV-1 proviral landscape was different and changed with time on ART across naive and memory CD4+ T cell subsets isolated from 24 participants. We found that the proportion of genetically intact HIV-1 proviruses was higher and persisted over time in effector memory CD4+ T cells when compared with naive, central, and transitional memory CD4+ T cells. Interestingly, we found that escape mutations remained stable over time within effector memory T cells during therapy. Finally, we provided evidence that Nef plays a role in the persistence of genetically intact HIV-1. These findings posit effector memory T cells as a key component of the HIV-1 reservoir and suggest Nef as an attractive therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号