首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Current models of developmental evolution suggest changes in gene regulation underlie the evolution of morphology. Despite the fact that protein complexes regulate gene expression, the evolution of regulatory protein complexes is rarely studied. Here, we investigate the evolution of a protein-protein interaction (PPI) between Homeobox A11 (HoxA11) and Forkhead box 01A (Foxo1a). Using extant and "resurrected" ancestral proteins, we show that the physical interaction between HoxA11 and Foxo1a originated in the mammalian stem lineage. Functional divergence tests and coimmunoprecipitation with heterologous protein pairs indicate that the evolution of interaction was attributable to changes in HoxA11, and deletion studies demonstrate that the interaction interface is located in the homeodomain region of HoxA11. However, there are no changes in amino acid sequence in the homeodomain region during this time period, indicating that the origin of the derived PPI was attributable to changes outside the binding interface. We infer that the amino acid substitutions in HoxA11 altered Foxo1a's access to the conserved binding interface at the HoxA11 homeodomain. We also found an expansion in the number of paired Hox/Fox binding sites in the genomes of mammalian lineage species suggesting the complex has a biological function. Our data indicate that the physical interaction between HoxA11 and Foxo1a evolved through noninterface changes that facilitate the PPI, which prevents inappropriate interactions, rather than through the evolution of a novel binding interface. We speculate that evolutionary changes of intramolecular regulation have limited pleiotropic effects compared with changes to interaction domains themselves.  相似文献   

3.
4.
Whether and how human populations exposed to the agricultural revolution are still affected by Darwinian selection remains controversial among social scientists, biologists, and the general public. Although methods of studying selection in natural populations are well established, our understanding of selection in humans has been limited by the availability of suitable datasets. Here, we present a study comparing the maximum strengths of natural and sexual selection in humans that includes the effects of sex and wealth on different episodes of selection. Our dataset was compiled from church records of preindustrial Finnish populations characterized by socially imposed monogamy, and it contains a complete distribution of survival, mating, and reproductive success for 5,923 individuals born 1760-1849. Individual differences in early survival and fertility (natural selection) were responsible for most variation in fitness, even among wealthier individuals. Variance in mating success explained most of the higher variance in reproductive success in males compared with females, but mating success also influenced reproductive success in females, allowing for sexual selection to operate in both sexes. The detected opportunity for selection is in line with measurements for other species but higher than most previous reports for human samples. This disparity results from biological, demographic, economic, and social differences across populations as well as from failures by most previous studies to account for variation in fitness introduced by nonreproductive individuals. Our results emphasize that the demographic, cultural, and technological changes of the last 10,000 y did not preclude the potential for natural and sexual selection in our species.  相似文献   

5.
It has been claimed that a meaningful theory of cultural evolution is not possible because human beliefs and behaviors do not follow predictable patterns. However, theoretical models of cultural transmission and observations of the development of societies suggest that patterns in cultural evolution do occur. Here, we analyze whether two sets of related cultural traits, one tested against the environment and the other not, evolve at different rates in the same populations. Using functional and symbolic design features for Polynesian canoes, we show that natural selection apparently slows the evolution of functional structures, whereas symbolic designs differentiate more rapidly. This finding indicates that cultural change, like genetic evolution, can follow theoretically derived patterns.  相似文献   

6.
7.
8.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily, an ancient family of proteins found in all phyla. In nearly all cases, ABC proteins are transporters that couple the hydrolysis of ATP to the transmembrane movement of substrate via an alternating access mechanism. In contrast, CFTR is best known for its activity as an ATP-dependent chloride channel. We asked why CFTR, which shares the domain architecture of ABC proteins that function as transporters, exhibits functional divergence. We compared CFTR protein sequences to those of other ABC transporters, which identified the ABCC4 proteins as the closest mammalian paralogs, and used statistical analysis of the CFTR-ABCC4 multiple sequence alignment to identify the specific domains and residues most likely to be involved in the evolutionary transition from transporter to channel activity. Among the residues identified as being involved in CFTR functional divergence, by virtue of being both CFTR-specific and conserved among all CFTR orthologs, was R352 in the sixth transmembrane helix (TM6). Patch-clamp experiments show that R352 interacts with D993 in TM9 to stabilize the open-channel state; D993 is absolutely conserved between CFTRs and ABCC4s. These data suggest that CFTR channel activity evolved, at least in part, by converting the conformational changes associated with binding and hydrolysis of ATP, as are found in true ABC Transporters, into an open permeation pathway by means of intraprotein interactions that stabilize the open state. This analysis sets the stage for understanding the evolutionary and functional relationships that make CFTR a unique ABC transporter protein.  相似文献   

9.
Despite advances in understanding the patterns and processes of microevolution in RNA viruses, little is known about the determinants of viral diversification at the macroevolutionary scale. In particular, the processes by which viral lineages assigned as different "species" are generated remain largely uncharacterized. To address this issue, we use a robust phylogenetic approach to analyze patterns of lineage diversification in five representative families of RNA viruses. We ask whether the process of lineage diversification primarily occurs when viruses infect new host species, either through cross-species transmission or codivergence, and which are defined here as analogous to allopatric speciation in animals, or by acquiring new niches within the same host species, analogous to sympatric speciation. By mapping probable primary host species onto family level viral phylogenies, we reveal a strong clustering among viral lineages that infect groups of closely related host species. Although this is consistent with lineage diversification within individual hosts, we argue that this pattern more likely represents strong biases in our knowledge of viral biodiversity, because we also find that better-sampled human viruses rarely cluster together. Hence, although closely related viruses tend to infect related host species, it is unlikely that they often infect the same host species, such that evolutionary constraints hinder lineage diversification within individual host species. We conclude that the colonization of new but related host species may represent the principle mode of macroevolution in RNA viruses.  相似文献   

10.
11.
The genetic component of susceptibility to malaria is both complex and multigenic and the better‐known protective polymorphisms are those involving erythrocyte‐specific structural proteins and enzymes. In vivo and in vitro data have suggested that pyruvate kinase deficiency, which causes a nonspherocytic haemolytic anaemia, could be protective against malaria severity in humans, but this hypothesis remains to be tested. In the present study, we conducted a combined analysis of Short Tandem Repeats (STRs) and Single Nucleotide Polymorphisms (SNPs) in the pyruvate kinase‐encoding gene (PKLR) and adjacent regions (chromosome 1q21) to look for malaria selective signatures in two sub‐Saharan African populations from Angola and Mozambique, in several groups with different malaria infection outcome. A European population from Portugal, including a control and a pyruvate kinase‐deficient group, was used for comparison. Data from STR and SNP loci spread along the PKLR gene region showed a considerably higher differentiation between African and Portuguese populations than that usually found for neutral markers. In addition, a wider region showing strong linkage disequilibrium was found in an uncomplicated malaria group, and a haplotype was found to be associated with this clinical group. Altogether, this data suggests that malaria selective pressure is acting in this genomic region.  相似文献   

12.
A highly efficient selection method for enhanced enzyme enantioselectivity based on yeast surface display and fluorescence-activated cell sorting (FACS) is developed and validated. Its application to horseradish peroxidase has resulted in enzyme variants up to 2 orders of magnitude selective toward either substrate enantiomer at will. These marked improvements in enantioselectivity are demonstrated for the surface-bound and soluble enzymes and rationalized by computational docking studies.  相似文献   

13.
The way nature evolves and sculpts materials using proteins inspires new approaches to materials engineering but is still not completely understood. Here, we present a cell-free synthetic biological platform to advance studies of biologically synthesized solid-state materials. This platform is capable of simultaneously exerting many of the hierarchical levels of control found in natural biomineralization, including genetic, chemical, spatial, structural, and morphological control, while supporting the evolutionary selection of new mineralizing proteins and the corresponding genetically encoded materials that they produce. DNA-directed protein expression and enzymatic mineralization occur on polystyrene microbeads in water-in-oil emulsions, yielding synthetic surrogates of biomineralizing cells that are then screened by flow sorting, with light-scattering signals used to sort the resulting mineralized composites differentially. We demonstrate the utility of this platform by evolutionarily selecting newly identified silicateins, biomineralizing enzymes previously identified from the silica skeleton of a marine sponge, for enzyme variants capable of synthesizing silicon dioxide (silica) or titanium dioxide (titania) composites. Mineral composites of intermediate strength are preferentially selected to remain intact for identification during cell sorting, and then to collapse postsorting to expose the encoding genes for enzymatic DNA amplification. Some of the newly selected silicatein variants catalyze the formation of crystalline silicates, whereas the parent silicateins lack this ability. The demonstrated bioengineered route to previously undescribed materials introduces in vitro enzyme selection as a viable strategy for mimicking genetic evolution of materials as it occurs in nature.  相似文献   

14.
It is generally assumed that stabilizing selection promoting a phenotypic optimum acts to shape variation in quantitative traits across individuals and species. Although gene expression represents an intensively studied molecular phenotype, the extent to which stabilizing selection limits divergence in gene expression remains contentious. In this study, we present a theoretical framework for the study of stabilizing and directional selection using data from between-species divergence of continuous traits. This framework, based upon Brownian motion, is analytically tractable and can be used in maximum-likelihood or Bayesian parameter estimation. We apply this model to gene-expression levels in 7 species of Drosophila, and find that gene-expression divergence is substantially curtailed by stabilizing selection. However, we estimate the selective effect, s, of gene-expression change to be very small, approximately equal to Ns for a change of one standard deviation, where N is the effective population size. These findings highlight the power of natural selection to shape phenotype, even when the fitness effects of mutations are in the nearly neutral range.  相似文献   

15.
16.
The Earth possesses a number of regulatory feedback mechanisms involving life. In the absence of a population of competing biospheres, it has proved hard to find a robust evolutionary mechanism that would generate environmental regulation. It has been suggested that regulation must require altruistic environmental alterations by organisms and, therefore, would be evolutionarily unstable. This need not be the case if organisms alter the environment as a selectively neutral by-product of their metabolism, as in the majority of biogeochemical reactions, but a question then arises: Why should the combined by-product effects of the biota have a stabilizing, rather than destabilizing, influence on the environment? Under certain conditions, selection acting above the level of the individual can be an effective adaptive force. Here we present an evolutionary simulation model in which environmental regulation involving higher-level selection robustly emerges in a network of interconnected microbial ecosystems. Spatial structure creates conditions for a limited form of higher-level selection to act on the collective environment-altering properties of local communities. Local communities that improve their environmental conditions achieve larger populations and are better colonizers of available space, whereas local communities that degrade their environment shrink and become susceptible to invasion. The spread of environment-improving communities alters the global environment toward the optimal conditions for growth and tends to regulate against external perturbations. This work suggests a mechanism for environmental regulation that is consistent with evolutionary theory.  相似文献   

17.
18.
We construct a verbal and graphical theory (the "fecundity-limitation hypothesis") about how constraints on the brooding space for embryos probably truncate individual fecundity in male-pregnant and female-pregnant species in ways that should differentially influence selection pressures for multiple mating by males or by females. We then review the empirical literature on genetically deduced rates of multiple mating by the embryo-brooding parent in various fish species with three alternative categories of pregnancy: internal gestation by males, internal gestation by females, and external gestation (in nests) by males. Multiple mating by the brooding gender was common in all three forms of pregnancy. However, rates of multiple mating as well as mate numbers for the pregnant parent averaged higher in species with external as compared with internal male pregnancy, and also for dams in female-pregnant species versus sires in male-pregnant species. These outcomes are all consistent with the theory that different types of pregnancy have predictable consequences for a parent's brood space, its effective fecundity, its opportunities and rewards for producing half-sib clutches, and thereby its exposure to selection pressures for seeking multiple mates. Overall, we try to fit these fecundity-limitation phenomena into a broader conceptual framework for mating-system evolution that also includes anisogamy, sexual-selection gradients, parental investment, and other selective factors that can influence the relative proclivities of males versus females to seek multiple sexual partners.  相似文献   

19.
Spatial variation in the direction of selection drives the evolution of adaptive differentiation. However, few experimental studies have examined the relative importance of different environmental factors for variation in selection and evolutionary trajectories in natural populations. Here, we combine 8 y of observational data and field experiments to assess the relative importance of mutualistic and antagonistic interactions for spatial variation in selection and short-term evolution of a genetically based floral display dimorphism in the short-lived perennial herb Primula farinosa. Natural populations of this species include two floral morphs: long-scaped plants that present their flowers well above the ground and short-scaped plants with flowers positioned close to the ground. The direction and magnitude of selection on scape morph varied among populations, and so did the frequency of the short morph (median 19%, range 0–100%; n = 69 populations). A field experiment replicated at four sites demonstrated that variation in the strength of interactions with grazers and pollinators were responsible for among-population differences in relative fitness of the two morphs. Selection exerted by grazers favored the short-scaped morph, whereas pollinator-mediated selection favored the long-scaped morph. Moreover, variation in selection among natural populations was associated with differences in morph frequency change, and the experimental removal of grazers at nine sites significantly reduced the frequency of the short-scaped morph over 8 y. The results demonstrate that spatial variation in intensity of grazing and pollination produces a selection mosaic, and that changes in biotic interactions can trigger rapid genetic changes in natural plant populations.Spatial variation in the intensity of biotic interactions is an integral part of the geographic mosaic model of coevolution (1, 2), and may result in divergent selection and the maintenance of genetic variation in traits influencing the strength and outcome of interactions (3, 4). However, few studies have presented quantitative estimates of spatiotemporal variation in selection on traits influencing the outcome of biotic interactions across more than a handful of populations. In plants, variation in the composition of the mutualist and antagonist assemblages may result in spatially varying selection on morphology, phenology, and life-history traits (e.g., 512). Of particular interest are traits such as floral display that may be subject to conflicting selection from mutualists and antagonists, and where the magnitude and direction of net selection should depend on the relative strength of these interactions (1320).Experimental manipulation of environmental conditions is a powerful approach to identify agents of selection and to determine the evolutionary consequences of changes in the selection regime (21, 22). Experimental manipulation of pollen deposition (6, 23, 24) and interactions with herbivores (2528) can be used to assess the roles of pollinators and herbivores for patterns of selection. Conflicting selection on floral traits by pollinators and herbivores have been inferred in many systems (15, 19, 20), but no study has simultaneously manipulated the intensity of both interactions to determine their relative importance for spatiotemporal variation in selection on plant traits. There is also a lack of studies experimentally examining the importance of biotic interactions for the evolutionary trajectories of natural plant populations (28, 29).Here, we combine long-term observational data and field experiments to examine causes and consequences of spatial and temporal variation in selection on floral display in the rosette-forming, short-lived, perennial herb Primula farinosa. This species offers an ideal system to examine the outcome of conflicting selection by mutualists and antagonists. It is dimorphic for scape length, with a long-scaped morph displaying the umbellate inflorescence well above the soil surface and a short-scaped morph with the inflorescence very close to the ground. The segregation of scape morphs in controlled crosses is consistent with scape morph being determined by a single biallelic locus with a dominant allele coding for short scape (SI Text, SI Segregation of Scape Morphs in Crosses and Table S1). This difference in floral display affects interactions with both pollinators and antagonists. In previous studies, we have shown that seed production in the long-scaped morph is less likely to be limited by pollen availability (14, 30, 31), whereas the short-scaped morph is less frequently attacked by seed predators (14, 18, 32, 33). The inflorescence of the long-scaped morph should also have a higher probability of being damaged by grazers compared with that of the short-scaped morph. These interactions influence plant fitness largely via fruit production, which is a key fitness component of the study species and straightforward to quantify. In P. farinosa populations in the study area, plant mortality is high, overall fitness is strongly influenced by successful seedling recruitment (34), and total seed production is significantly correlated with number of intact mature fruits produced (r = 0.838, n = 442).We documented variation in scape morph frequencies among 69 populations and asked the following questions (1): Does selection on scape length vary among populations and years? We quantified selection on scape morph in about 40 populations in each of 2 y, and in five populations across 5 y (2). What are the drivers of variation in selection on scape morph? We documented the relationship between grazing intensity and selection on scape morph, and with a field experiment, we tested the hypothesis that spatial variation in grazing pressure and pollination intensity cause among-population variation in selection on scape morph (3). Do among-population differences in selection result in different evolutionary trajectories? We used observational data to examine whether changes in scape morph frequencies were correlated with estimates of selection on scape morph, and an 8-y field experiment to test whether the exclusion of grazers resulted in a reduced frequency of the short-scaped morph.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号