首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the aim to analyze the influence of stretching on muscle stiffness after eccentric exercise, 30 young men (18 - 32 years old), were divided into three groups: STR, undergoing a stretching program (SP) of the dominant quadriceps muscle, ECC, undergoing exhaustive eccentric exercise, and ECC/STR, undergoing eccentric exercise, followed by SP. Muscle stiffness (MS) was assessed immediately before the respective programs, and 1 and 24 hours after, measuring the following parameters during Wartenberg pendulum test: angle and angular velocity of first knee flexion (FKF) and following oscillating extension, time of oscillating movements and final resting knee angle (FRKA). Despite the slight (2%) but significant increase of FRKA, all further parameters did not change over time in STR. MS in ECC was documented by the reduced range of motion (ROM) and the slower angular velocity. Reduction in FRKA (10%) was still present after 24 hours, while other variables tended to recover eventually. Similar reduction in FKF was observed for ECC/STR, but with significantly less impairment in the range of pendulum movement one hour after the exercise and in tendency still remained less impaired 24 hours after. The results suggest that SP conducted after exhaustive eccentric exercise alleviated reductions in ROM induced by exercise.  相似文献   

2.
3.
Interleukin-6 expression after repeated bouts of eccentric exercise   总被引:3,自引:0,他引:3  
Plasma interleukin-6 (IL-6) is known to increase in response to eccentric exercise due to an acute-phase immune response. However, the severity of muscle injury is reduced with repeated bouts of eccentric exercise, possibly as a result of decreases in plasma IL-6. This study determined the response of IL-6 mRNA and IL-6, troponin-I (sTnI), muscle strength, and soreness as a result of repeated bouts of eccentric exercise. Eight males underwent two eccentric exercise bouts (3 wk apart) involving 7 sets of 10 repetitions at 150 % of the isotonic 1-RM of the dominant knee extensors. Blood samples were taken before, after and 2, 4, 6, 24, 48 and 96 h post-exercise. Strength and soreness ratings were assessed before and at 24, 48 and 96 h-post. Data were analyzed with 2 x 4 and 2 x 8 ANOVAs and the non-parametric Friedman test (p < 0.05). Both IL-6 mRNA and IL-6 underwent peak increases (p < 0.05) at 4 h-post and 6 h-post, respectively, but were not different between bouts. However, there were significant changes (p < 0.05) in sTnI, strength, and soreness that were greater after the first bout than the second, characteristic of the repeated bout effect. These results indicate that changes in sTnI, strength and soreness were less with the second eccentric exercise bout whereas the changes in both IL-6 mRNA and protein were not effected between bouts.  相似文献   

4.
5.
The repeated bout effect refers to the adaptation whereby a single bout of eccentric exercise protects against muscle damage from subsequent eccentric bouts. While the mechanism for this adaptation is poorly understood there have been significant recent advances in the understanding of this phenomenon. The purpose of this review is to provide an update on previously proposed theories and address new theories that have been advanced. The potential adaptations have been categorized as neural, mechanical and cellular. There is some evidence to suggest that the repeated bout effect is associated with a shift toward greater recruitment of slow twitch motor units. However, the repeated bout effect has been demonstrated with electrically stimulated contractions, indicating that a peripheral, non-neural adaptation predominates. With respect to mechanical adaptations there is evidence that both dynamic and passive muscle stiffness increase with eccentric training but there are no studies on passive or dynamic stiffness adaptations to a single eccentric bout. The role of the cytoskeleton in regulating dynamic stiffness is a possible area for future research. With respect to cellular adaptations there is evidence of longitudinal addition of sarcomeres and adaptations in the inflammatory response following an initial bout of eccentric exercise. Addition of sarcomeres is thought to reduce sarcomere strain during eccentric contractions thereby avoiding sarcomere disruption. Inflammatory adaptations are thought to limit the proliferation of damage that typically occurs in the days following eccentric exercise. In conclusion, there have been significant advances in the understanding of the repeated bout effect, however, a unified theory explaining the mechanism or mechanisms for this protective adaptation remains elusive.  相似文献   

6.
This study examined markers of muscle damage following a repeated bout of maximal isokinetic eccentric exercise performed prior to full recovery from a previous bout. Twenty non-resistance trained volunteers were randomly assigned to a control (CON, n=10) or experimental (EXP, n=10) group. Both groups performed 36 maximal isokinetic eccentric contractions of the elbow flexors of the non-dominant arm (ECC1). The EXP group repeated the same eccentric exercise bout two days later (ECC2). Total work and peak eccentric torque were recorded during each set of ECC1 and ECC2. Isometric torque, delayed onset muscle soreness (DOMS), flexed elbow angle and plasma creatine kinase (CK) activity were measured prior to and immediately following ECC1 and ECC2. at 24h intervals for 7 days following ECC1 and finally on day 11. In both groups, all dependent variables changed significantly during the 2 days following ECC1. A further acute post-exercise impairment in isometric torque (30 +/- 5%) and flexed elbow angle (20 +/- 4%) was observed following ECC2 (p<0.05), despite EXP subjects producing uniformly lower work and peak eccentric torque values during ECC2 (p<0.05). No other significant differences between the CON and EXP groups were observed throughout the study (p>0.05). These findings suggest that when maximal isokinetic eccentric exercise is repeated two days after experiencing of contraction-induced muscle damage, the recovery time course is not significantly altered.  相似文献   

7.
The purpose of this study was to determine if there were any beneficial or detrimental effects regarding delayed onset muscle soreness (DOMS), serum creatine kinase (CK), and maximum concentric strength at 80% of 1-RMconc, if a bout of eccentric exercise was repeated at 48 h after an initial bout. A secondary purpose was to determine whether unaccustomed eccentrics might affect plasma cholesterol (TC). Twenty-six men were randomly assigned to a control (Group 1) or experimental group (Group 2). Both groups performed three sets (12 repetitions per set) of the eccentric phase of a chest press, at 80% of one repetition maximum (1-RMconc); Group 2 repeated this exercise 48 h later. DOMS and CK were measured before, and every 24 h for 8 days after; TC was measured before, and every 24 h for 4 days. Maximum strength during the concentric phase of a chest press (1-RMconc) was measured before and at 48-h intervals after. A repeated measures analysis of variance revealed a significant time effect (P < 0.05) for DOMS, CK and strength, but no significant difference between groups (P < 0.05). An interesting finding was the significant (P < 0.05) reduction in TC at 24, 48 and 72 h, after exercise in both groups, which we hypothesized was associated with cellular repair. From these results we concluded that when a bout of eccentrics is repeated 48 h after an initial bout, there is no change in the characteristic time-course and/or intensity of DOMS, CK or 1-RMconc.  相似文献   

8.
Changes in muscle fascicle mechanics have been postulated to underpin the repeated bout effect (RBE ) observed following exercise‐induced muscle damage (EIMD ). However, in the medial gastrocnemius (MG ), mixed evidence exists on whether fascicle stretch amplitude influences the level of EIMD , thus questioning whether changes in fascicle mechanics underpin the RBE . An alternative hypothesis is that neural adaptations contribute to the RBE in this muscle. The aim of this study was to investigate the neuromechanical adaptations during and after repeated bouts of a highly controlled muscle lengthening exercise that aimed to maximize EIMD in MG . In all, 20 subjects performed two bouts of 500 active lengthening contractions (70% of maximal activation) of the triceps surae, separated by 7 days. Ultrasound constructed fascicle length‐torque (L‐T) curves of MG , surface electromyography (EMG ), maximum torque production, and muscle soreness were assessed before, 2 hours and 2 days after each exercise bout. The drop in maximum torque (4%) and the increase in muscle soreness (24%) following the repeated bout were significantly less than following the initial bout (8% and 59%, respectively), indicating a RBE . However, neither shift in the L‐T curve nor changes in EMG parameters were present. Furthermore, muscle properties during the exercise were not related to the EIMD or RBE . Our results show that there are no global changes in gastrocnemius mechanical behavior or neural activation that could explain the observed RBE in this muscle. We suggest that adaptations in the non‐contractile elements of the muscle are likely to explain the RBE in the triceps surae.  相似文献   

9.
BACKGROUND: Stretching is used in an attempt to improve performance and reduce the risk of muscle injury, with little evidence to support its effectiveness. HYPOTHESIS: Four weeks of static or ballistic stretching can attenuate the increased soreness and decreased flexibility seen after eccentric exercise. STUDY DESIGN: Controlled laboratory study. METHODS: Twenty-nine male subjects were randomly assigned to a static stretching, ballistic stretching, or control group. On each of 4 consecutive days, they completed 4 maximal range of motion stretches using a Cybex isokinetic dynamometer to passively stretch the hamstrings at 0.087 rad.s(-1) (5 deg.s(-1)). Stiffness from 0.87 to 1.48 rad (50 degrees -85 degrees ), peak range of motion, work absorption, peak resistive torque, and soreness were measured. Participants then completed 4 weeks of either static or ballistic stretching for a total stretching duration of 3600 seconds. After training, the 4 days of testing were repeated with an eccentric exercise task added after day 1. RESULTS: Stretching groups had an increase in range of motion and stretch tolerance after 4 weeks of stretching, with no change in muscle stiffness, work absorption, or delayed onset muscle soreness. After eccentric exercise, they also had greater range of motion and stretch tolerance than did controls. CONCLUSION: Both static stretching and ballistic stretching increase range of motion, most likely as a result of enhanced stretch tolerance rather than changes in muscle elasticity. Four weeks of stretching maintain range of motion and stretch tolerance in the days after eccentric exercise.  相似文献   

10.
This study compared changes in indirect markers of muscle damage following eccentric exercise of the elbow flexors among the exercises consisting of different number of eccentric actions. Sixty male athletes were placed into one of the six groups (n=10 per group) based on the number of eccentric actions for the first (ECC1) and second exercise bouts (ECC2). Single bout groups (30, 50, and 70) performed ECC1 only, and repeated bout groups (30-30, 50-50, and 70-70) performed ECC2 3 days after ECC1. Another 10 male athletes performed different number of eccentric actions for ECC1 (30) and ECC2 (70) separated by 3 days (30-70). Changes in maximal isometric strength (MVC), range of motion (ROM), upper arm circumference (CIR), serum creatine kinase activity, myoglobin, and nitric oxide concentrations and muscle soreness for 10 days following ECC1 were compared among groups by two-way repeated measures ANOVA. Changes in MVC, ROM, and CIR following ECC1 were significantly (P<0.05) smaller for the groups that performed 30 eccentric actions compared with other groups. No significant differences between 30 and 30-30, 50 and 50-50, and 70 and 70-70 were evident for the changes in the measures for 10 days following ECC1 except for the acute decreases in MVC and ROM immediately after ECC2 for the repeated bout groups. The 30-30 and 30-70 groups showed similar changes in all criterion measures. It is concluded that recovery from eccentric exercise is not retarded by the second bout of eccentric exercise regardless of the number of eccentric actions.  相似文献   

11.
The aim of this study was to investigate whether a subsequent bout of eccentric exercise inducing larger decreases in force than the initial bout would exacerbate muscle damage and retard recovery. Changes in indirect markers of muscle damage were measured over 14 days when 24 maximal eccentric actions of the elbow flexors were performed on days 1 (ECC1) and 7 (ECC2], with electrical stimulation superimposed percutaneously to the elbow flexors during maximal eccentric actions in ECC2. Maximal isometric force (MIF), range of motion (ROM), upper arm circumference, muscle soreness, B-mode ultrasound, and several muscle proteins in the blood were assessed before, immediately after and for 5 days after both bouts. Magnetic resonance Imaging (MRI) was assessed 4 days after both bouts. MIF decreased to 45% of the pre-exercise value immediately after ECC 1 and recovered to 59% by day 7 post-exercise. MIF decreased to 22% of pre-ECC1 value immediately after ECC2, but recovered to 105% of pre-ECC2 value 5 days following ECC2. Recovery of MIF and ROM was slightly retarded for 1-2 days after ECC2. However circumference, muscle soreness, and biochemical parameters did not increase following ECC2. There were no signs of additional damage in ultrasound and MRI after ECC2. It was concluded that a second bout of maximal eccentric exercise with electrical stimulation slightly retarded recovery of muscle function with minimal muscle damage.  相似文献   

12.
The aim of this study was to measure if passive stretching would influence delayed onset muscle soreness (DOMS), dynamic muscle strength, plasma creatine kinase concentration (CK) and the ratio of phosphocreatine to inorganic phosphate (PCr/Pi) following eccentric exercise. Seven healthy untrained women, 28–46 years old, performed eccentric exercise with the right m. quadriceps in an isokinetic dynamometer (Biodex, angle velocity: 60°. s−1) until exhaustion, in two different experiments, with an interval of 13-23 months. In both experiments the PCr/Pi ratio, dynamic muscle strength, CK and muscle pain were measured before the eccentric exercise (day 0) and the following 7 d. In the second experiment daily passive stretching (3 times of 30 s duration, with a pause of 30 s in between) of m. quadriceps was included in the protocol. The stretching was performed before and immediately after the eccentric exercise at day 0, and before measurements of the dependent variables daily for the following 7 d. The eccentric exercise alone led to significant decreases in PCr/Pi ratio ( P <0.001) and muscle strength ( P <0.001), and an increase in CK concentration ( P <0.01). All subjects reported pain in the right m. quadriceps with a peak 48 h after exercise. There was no difference in the reported variables between experiments one and two. It is concluded that passive stretching did not have any significant influence on increased plasma- CK, muscle pain, muscle strength and the PCr/Pi ratio, indicating that passive stretching after eccentric exercise cannot prevent secondary pathological alterations.  相似文献   

13.
14.
During and after two similar incremental treadmill tests, one with increasing, the other with initially decreasing blood acidosis, plasma potassium was measured in 11 volunteers. Independent of increasing or decreasing hydrogen ion, lactate, or bicarbonate concentrations, plasma potassium rose in relation to muscular stress with nearly equal concentrations for comparable exercise intensities in both tests. During the first 3 min of recovery, plasma potassium fell rapidly in spite of nearly unchanged blood acidosis and significantly decreasing bicarbonate concentration. After the 5th min of recovery, plasma potassium concentration was even slightly below pre-exercise values despite severe metabolic acidosis. It was concluded that there was little or no effect of plasma hydrogen ion, lactate, or bicarbonate on plasma potassium concentration during and after exercise. We propose that plasma potassium is primarily regulated by intracellular effects of inorganic phosphate, pH, and temperature on (Na+-K+)-ATPase. We suggest that these results reflect a model of grand mal seizure-induced lactic acidosis. The noted low blood potassium concentrations despite the presence of severe metabolic acidosis secondary to epileptic seizure is thus suggested to reflect the "normal" post-exercise state of potassium concentration.  相似文献   

15.
PURPOSE: The purposes of the this study were to determine whether stretch-induced strength loss was muscle length dependent (study 1) and whether passive stretching prior to eccentric exercise affected strength loss and pain on subsequent days (study 2). METHODS: For study 1, knee flexion strength was measured isometrically (six angles) and isokinetically (eccentric and concentric) in 10 men (33 +/- 9 yr). The subjects then performed six 90-s static hamstring stretches, after which isometric and isokinetic strength were retested. For study 2, the dominant and nondominant legs of eight men (34 +/- 9 yr) were assigned to a stretch (six 60-s stretches) or control condition prior to eccentric hamstring exercise. Isometric strength and pain were assessed prior to, immediately after, and on the 3 d after exercise. RESULTS: After stretching, strength was decreased by 17% at 80 degrees , 11% at 65 degrees , 5% at 50 degrees , 7% at 35 degrees , and 8% at 20 degrees , and it was increased by 6% at 5 degrees (angle effect P < 0.01). Strength loss following eccentric exercise was less on the stretched versus the unstretched control limb at 37 degrees (P < 0.05), but not at other angles (stretch by time by angle P < 0.01). Pain was not different between the stretched and the unstretched control limb (P = 0.94). CONCLUSION: Stretch-induced strength loss was dependent on muscle length, such that strength was decreased with the muscle group in a shortened position, but not with the muscle group in a lengthened position. Strength loss and pain after eccentric exercise were generally unaffected by prior stretching, with the exception that stretching prevented strength loss when assessed with the muscle in a lengthened position.  相似文献   

16.
There is evidence that protein hydrolysates can speed tissue repair following damage and may therefore be useful for accelerating recovery from exercise induced muscle damage. The potential for a hydrolysate (WPIHD) of whey protein isolate (WPI) to speed recovery following eccentric exercise was evaluated by assessing effects on recovery of peak isometric torque (PIT). In a double-blind randomised parallel trial, 28 sedentary males had muscle soreness (MS), serum creatine kinase (CK) activity, plasma TNFα, and PIT assessed at baseline and after 100 maximal eccentric contractions (ECC) of their knee extensors. Participants then consumed 250 ml of flavoured water (FW; n = 11), or FW containing 25 g WPI (n = 11) or 25 g WPIHD (n = 6) and the assessments were repeated 1, 2, 6 and 24 h later. PIT decreased ~23% following ECC, remained suppressed in FW and WPI, but recovered fully in WPIHD by 6 h (P = 0.006, treatment × time interaction). MS increased following ECC (P < 0.001 for time), and remained elevated with no difference between groups (P = 0.61). TNFα and CK did not change (P > 0.45). WPIHD may be a useful supplement for assisting athletes to recover from fatiguing eccentric exercise.  相似文献   

17.
The purpose of this study was to determine whether a low-volume high-intensity resistance training session influenced running economy during a subsequent aerobic treadmill run. Nine well trained distance runners (mean +/- SD; VO2max, 66.6 +/- 10.2 ml x kg(-1) x min(-1); weight, 65.8 +/- 10.2 kg; height, 173.4 +/- 7.8 cm; age 20 +/- 1.1 years) with resistance training experience performed treadmill running at two different speeds (0.56 m x sec(-1) and 0.20 m x sec(-1) below speed corresponding to lactate equilibrium) either rested or 1, 8 or 24 hours after a 50-minute whole body resistance training session. Running economy was assessed using open circuit spirometry while heart rate was recorded telemetrically. The contractile properties of the quadriceps femoris were also determined following each resistance training session and prior to each treadmill run using percutaneous electrical stimulation. Submaximal oxygen consumption was significantly increased one hour (2.6 +/- 2.3%, p= 0.007), and eight hours (1.6 +/- 2.5%, p= 0.032), but not 24 hours after resistance training. No significant differences were found in exercising heart rate, ventilation, respiratory exchange ratio, ratings of perceived exertion, or running mechanics. Peak twitch torque, time to peak torque, and half relaxation time of the quadriceps femoris were significantly reduced immediately following resistance training while peak twitch torque was also lower one hour following resistance training. Running economy following a resistance training session is impaired for up to 8 hours. This change was not paralleled by a concomitant change in exercising heart rate. The mechanism responsible for increased oxygen consumption following resistance training may be related to impairment of the force generating capacity of skeletal muscle, as there was a significant decrement in the contractile properties of the quadriceps femoris following resistance training.  相似文献   

18.
This study investigated the hypothesis that a light eccentric exercise (ECC) that does not induce a loss of muscle function and delayed onset muscle soreness would confer a protective effect against a more strenuous ECC. Eighteen young men were randomly placed into two groups: 10–40% (n = 9) and 40% (n = 9). Subjects in the 10–40% group performed ECC of the elbow flexors (six sets of five reps) using a dumbbell set at 10% of maximal isometric strength (MVC) at an elbow joint angle of 90°, followed 2 days later by ECC using a dumbbell weight of 40% MVC. Subjects in the 40% group performed the 40% ECC only. Changes in MVC, range of motion (ROM), upper arm circumference (CIR), plasma creatine kinase (CK) activity and muscle soreness before, immediately after, 1–5 and 7 days following the 40% ECC were compared between groups by a two-way repeated measures ANOVA. No significant changes in any of the criterion measures were found immediately and 1–2 days after the 10% ECC. Following the 40% ECC, the 10–40% group showed significantly (P < 0.05) smaller decreases in MVC and ROM, and smaller increases in muscle soreness compared with the 40% group, but no significant differences between groups were evident for CIR and plasma CK activity. These results suggest that the 10% ECC induced some protection against a subsequent bout of 40% ECC performed 2 days later. It appears that the light eccentric exercise preconditioned the muscles for exposure to the subsequent damaging eccentric exercise bout.  相似文献   

19.
To examine the effects of knee extensors muscle damage on walking and running biomechanics in healthy males. Muscle damage was caused by 60 (6x10) maximal eccentric knee flexions of both legs, selected in a random order, at an angular velocity of 1.05rad/s in 10 volunteers (mean age 20+/-1.0 years). Muscle damage indicators (creatine kinase (CK), lactate dehydrogenase (LDH), delayed onset muscle soreness (DOMS), eccentric and isometric (110 degrees knee flexion) peak torque), pelvic three dimensional (3D) orientation, as well as hip, knee and ankle-joint flexion/extension angles during gait (walking at 1.2m/s and running at 2.8m/s) were assessed pre- and 48h post-eccentric exercise. All muscle damage indicators revealed significant changes post- compared to pre-exercise data (P<0.05) confirming that muscle damage did occur. Kinematic analysis revealed that muscle damage significantly decreased the knee-joint angle range of movement at the stance and swing phases during walking (P<0.05) and running (P<0.05), respectively. These changes were accompanied by corresponding increases of pelvic rotation (P<0.05) and decrease of pelvic tilt (P<0.05). The present data demonstrate that damage of knee extensors result in changes of treadmill walking and running kinematics at both knee joint and pelvis. The fact that these alterations occur at different gait phases could be attributed to the speed of movement and to a self-protection mechanism to prevent further damage.  相似文献   

20.
The purpose of this study was to compare the effect of elastic tape (Kinesio tape) to placebo tape or static stretching on delayed onset muscle soreness. Fifty-one untrained female healthy volunteers were randomly assigned into three groups (n = 17/group), elastic tape, placebo tape and stretching group. Muscle soreness was induced by 4 sets of 25 maximal isokinetic (60°.s?1) eccentric contractions of dominant quadriceps on an isokinetic dynamometer. Compared with placebo tape, the elastic tape participants had less muscle soreness at 72 h post-exercise (p = 0.01). The elastic tape also increased isometric strength at 72 h post-exercise compared with the placebo (p = 0.03) and stretching group (p = 0.02). However, there was little effect between groups for changes in thigh circumference, jumping, pressure pain threshold, rate of perceived exertion, creatine kinase activity and joint motion. Elastic taping increased muscle strength recovery and reduced muscle soreness after intensive exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号