首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 961 毫秒
1.
We previously demonstrated that direct intramuscular injection of rAAV2 or rAAV6 in wild-type dogs resulted in robust T-cell responses to viral capsid proteins, and others have shown that cellular immunity to adeno-associated virus (AAV) capsid proteins coincided with liver toxicity and elimination of transgene expression in a human trial of hemophilia B. Here, we show that the heparin-binding ability of a given AAV serotype does not determine the induction of T-cell responses following intramuscular injection in dogs, and identify multiple epitopes in the AAV capsid protein that are recognized by T cells elicited by AAV injection. We also demonstrate that noninvasive magnetic resonance imaging (MRI) can accurately detect local inflammatory responses following intramuscular rAAV injection in dogs. These studies suggest that pseudotyping rAAV vectors to remove heparin-binding activity will not be sufficient to abrogate immunogenicity, and validate the utility of enzyme-linked immunosorbent spot (ELISpot) assay and MRI for monitoring immune and inflammatory responses following intramuscular injection of rAAV vectors in preclinical studies in dogs. These assays should be incorporated into future human clinical trials of AAV gene therapy to monitor immune responses.  相似文献   

2.
Recombinant adeno-associated virus (rAAV)-mediated gene transfer has shown promise for treating diseases in various animal models including the mdx mouse model of Duchenne muscular dystrophy (DMD). In many cases, however, preclinical studies in inbred mice have not successfully predicted human clinical responses. To assess the potential clinical utility of treating human DMD patients by AAV-mediated gene delivery, we performed a series of direct intramuscular injections in random-bred wild-type dogs. AAV serotypes 2 and 6 carrying different promoter-transgene cassettes were produced as previously described for murine studies and administered intramuscularly. The injection sites were biopsied at various time points and analyzed for transgene expression and immunohistochemical analysis. In contrast to the generally nonimmunogenic nature of these vectors in murine studies, both AAV2 and AAV6 vectors elicited robust cellular immune responses regardless of the transgene expressed, the cellular specificity of the promoter, and the muscle type injected. Viral purification by various methods did not diminish T cell-mediated infiltration. Our data indicate that AAV2 and AAV6 capsid proteins can elicit primary cellular immune responses when injected into the skeletal muscle of random-bred dogs, and suggest the possibility of cellular immunity to AAV vectors in humans.  相似文献   

3.
In this study, we tested the hypothesis that DNA vaccination in the skin using microneedles improves protective immunity compared to conventional intramuscular (IM) injection of a plasmid DNA vaccine encoding the influenza hemagglutinin (HA). In vivo fluorescence imaging demonstrated the expression of a reporter gene delivered to the skin using a solid microneedle patch coated with plasmid DNA. Vaccination at a low dose (3 µg HA DNA) using microneedles generated significantly stronger humoral immune responses and better protective responses post-challenge compared to IM vaccination at either low or high (10 µg HA DNA) dose. Vaccination using microneedles at a high (10 µg) dose further generated improved post-challenge protection, as measured by survival, recall antibody-secreting cell responses in spleen and bone marrow, and interferon (IFN)-γ cytokine T-cell responses. This study demonstrates that DNA vaccination in the skin using microneedles induces higher humoral and cellular immune responses as well as improves protective immunity compared to conventional IM injection of HA DNA vaccine.  相似文献   

4.
Due to their efficient transduction potential, adeno-associated virus (AAV) vectors are leading candidates for gene therapy in skeletal muscle diseases. However, immune responses toward the vector or transgene product have been observed in preclinical and clinical studies. TLR9 has been implicated in promoting AAV-directed immune responses, but vectors have not been developed to circumvent this barrier. To assess the requirement of TLR9 in promoting immunity toward AAV-associated antigens following skeletal muscle gene transfer in mice, we compared immunological responses in WT and Tlr9-deficient mice that received an AAV vector with an immunogenic capsid, AAVrh32.33. In Tlr9-deficient mice, IFN-γ T cell responses toward capsid and transgene antigen were suppressed, resulting in minimal cellular infiltrate and stable transgene expression in target muscles. These findings suggest that AAV-directed immune responses may be circumvented by depleting the ligand for TLR9 (CpG sequences) from the vector genome. Indeed, we found that CpG-depleted AAVrh32.33 vectors could establish persistent transgene expression, evade immunity, and minimize infiltration of effector cells. Thus, CpG-depleted AAV vectors could improve outcome of clinical trials of gene therapy for skeletal muscle disease.  相似文献   

5.
Recombinant adeno-associated virus 2 (rAAV) vectors have been successfully used for sustained expression of therapeutic genes. The potential of using rAAV as a cancer vaccine vector and the impact of a bacterial plasmid adjuvant on this activity were investigated. C57BL/6 mice received a single intramuscular injection of rAAV expressing the human tumor-associated antigen, carcinoembryonic antigen (CEA). Three weeks later, when CEA expression was optimal, a bacterial plasmid containing methylated DNA motifs was injected into the same muscle. Mice were challenged 1 week later with syngeneic MC38 tumor cells stably expressing CEA. Immunization with rAAV-CEA alone resulted in sustained transgene expression and the elicitation of a humoral immune response to CEA. Cellular immune response, however, was weak, and tumor protection was not significant. In contrast, immunization with rAAV-CEA and the plasmid adjuvant resulted in stronger cellular immune response to CEA and tumor protection. The addition of plasmid adjuvant increased both myeloid dendritic cell recruitment in situ and CEA-specific T-helper-1-associated immune response. These data indicate that robust rAAV transgene expression of a tumor antigen followed by transient plasmid delivery to recruit and activate dendritic cells is an effective method of eliciting antitumor cellular immune responses.  相似文献   

6.
《Molecular therapy》2000,1(3):225-235
Defining immune responses against the secreted transgene product in a gene therapy setting is critical for treatment of genetic diseases such as hemophilia B (coagulation factor IX deficiency). We have previously shown that intramuscular administration of an adeno-associated viral (AAV) vector results in stable expression of therapeutic levels of factor IX (F.IX) and may be associated with humoral immune responses against F.IX. This study demonstrates that intramuscular injection of an AAV vector expressing F.IX fails to activate F.IX-specific cytotoxic T lymphocytes (CTLs) in hemostatically normal or in hemophilia B mice, so that there is an absence of cellular immune responses against F.IX. However, transgene-derived F.IX can cause B cell responses characterized by production of T helper cell-dependent antibodies (predominantly IgG1, but also IgG2 subclasses) resulting from activation of CD4+ T helper cells primarily of the Th2 subset. In contrast, administration of an adenoviral vector efficiently activated F.IX-specific CTLs and T helper cells of both Th1 and Th2 subsets, leading to inflammation and destruction of transduced muscle tissue and activation of B cells as well. Therefore, vector sequences fundamentally influence T cell responses against transgene-encoded F.IX. In conclusion, activation of the immune system in AAV-mediated gene transfer is restricted to pathways mediated by F.IX antigen presentation through MHC class II determinants resulting in T and B cell responses that are more comparable to responses in the setting of protein infusion rather than of viral infection/gene transfer.  相似文献   

7.
Salutary responses to adeno-associated viral (AAV) gene therapy have been reported in the mouse model of Sandhoff disease (SD), a neurodegenerative lysosomal storage disease caused by deficiency of β-N-acetylhexosaminidase (Hex). While untreated mice reach the humane endpoint by 4.1 months of age, mice treated by a single intracranial injection of vectors expressing human hexosaminidase may live a normal life span of 2 years. When treated with the same therapeutic vectors used in mice, two cats with SD lived to 7.0 and 8.2 months of age, compared with an untreated life span of 4.5 ± 0.5 months (n = 11). Because a pronounced humoral immune response to both the AAV1 vectors and human hexosaminidase was documented, feline cDNAs for the hexosaminidase α- and β-subunits were cloned into AAVrh8 vectors. Cats treated with vectors expressing feline hexosaminidase produced enzymatic activity >75-fold normal at the brain injection site with little evidence of an immune infiltrate. Affected cats treated with feline-specific vectors by bilateral injection of the thalamus lived to 10.4 ± 3.7 months of age (n = 3), or 2.3 times as long as untreated cats. These studies support the therapeutic potential of AAV vectors for SD and underscore the importance of species-specific cDNAs for translational research.  相似文献   

8.
Recombinant adeno-associated virus (rAAV) vectors allow efficient gene transfer and expression in the muscle; therefore, rAAVs represent a potential gene therapy vector for muscular dystrophies. For further investigations, we used a mouse muscular dystrophy model (gsg(-/-) mice) gamma-sarcoglycan, a subunit of the dystrophin-glycoprotein complex, is missing. gsg(-/-) mice develop progressive dystrophy representative of a severe human phenotype disease. We previously showed high levels and stable expression of gamma-sarcoglycan in myofibers after direct muscle injection into gsg(-/-) mice of a recombinant AAV vector (AAV.dMCK.gSG) carrying the gamma-sarcoglycan cDNA driven by a muscle-specific promoter (truncated version of muscle creatine kinase). Here, we show that when gamma-sarcoglycan expression is driven by the ubiquitous cytomegalovirus (CMV) promoter (AAV.CMV.gSG), lower levels of transgene expression are observed and are associated with a humoral response to gamma-sarcoglycan. When using an rAAV vector, expressing the highly immunogenic product gamma-galactosidase under the CMV promoter (AAV.CMV.LacZ), we measured a strong cellular and humoral immune response to the transgene after intramuscular injection into gsg(-/-) mice. This study suggests that restriction of transgene expression to the muscle is an important criterion for the treatment of muscular dystrophies and will aid in the design of protocols for gene therapy.  相似文献   

9.
10.
Duchenne muscular dystrophy (DMD) is a fatal, X-linked muscle disease caused by mutations in the dystrophin gene. Adeno-associated viral (AAV) vector-mediated gene replacement strategies hold promise as a treatment. Studies in animal models and human trials suggested that immune responses to AAV capsid proteins and transgene products prevented efficient gene therapy. In this study, we used widespread intramuscular (i.m.) injection to deliver AAV6-canine micro-dystrophin (c-µdys) throughout a group of skeletal muscles in dystrophic dogs given a brief course of commonly used immunosuppressants. Robust c-µdys expression was obtained for at least two years and was associated with molecular reconstitution of the dystrophin-glycoprotein complex (DGC) at the muscle membrane. Importantly, c-µdys expression was maintained for at least 18 months after discontinuing immunosuppression. The results obtained in a relevant preclinical model of DMD demonstrate feasibility of widespread AAV-mediated muscle transduction and transgene expression in the presence of transient immunosuppression to achieve molecular reconstitution that can be directly translated to human trials.  相似文献   

11.
Weaver EA  Barry MA 《Human gene therapy》2008,19(12):1369-1382
Many individuals have been previously exposed to human adenovirus serotype 5 (Ad5). This prior immunity has long been known to hinder its use for gene therapy and as a gene-based vaccine. Given these immunogenicity problems, we have tested whether polyethylene glycol (PEG) can blunt immune effects against Ad5 during systemic and mucosal vaccination. Ad5 vectors were covalently modified with 5-, 20-, and 35-kDa linear PEG polymers and evaluated for their ability to produce immune responses against transgene antigen products and the vector itself. We show that shielding Ad5 with different-sized PEGs generally reduces transduction and primary antibody responses by the intramuscular or intranasal route. In contrast, PEGylated vectors generally appear better at boosting antibody responses in Ad-immune animals. Displaying either glucose or galactose on PEG mediated increased transduction and antibody responses by the intranasal, but not the intramuscular, route. In naive animals, PEGylated vectors generated T cell responses that were equal to or better than those by unmodified Ad. Priming by PEGylated vectors generally enabled better subsequent T cell responses after boost. Priming and boosting by PEGylated vectors produced T cell responses after boost that were equal to or higher than those produced by unmodified vectors. These data indicate that PEGylation can enable more effective application of Ad5 and perhaps other Ad serotype vaccines during prime-boost vaccination.  相似文献   

12.
Hepatic gene transfer using adeno-associated viral (AAV) vectors has been shown to efficiently induce immunological tolerance to a variety of proteins. Regulatory T-cells (Treg) induced by this route suppress humoral and cellular immune responses against the transgene product. In this study, we examined the roles of immune suppressive cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) in the development of tolerance to human coagulation factor IX (hF.IX). Interestingly, IL-10 deficient C57BL/6 mice receiving gene transfer remained tolerant to hF.IX and generated Treg that suppressed anti-hF.IX formation. Effects of TGF-β blockade were also minor in this strain. In contrast, in C3H/HeJ mice, a strain known to have stronger T-cell responses against hF.IX, IL-10 was specifically required for the suppression of CD8+ T-cell infiltration of the liver. Furthermore, TGF-β was critical for tipping the balance toward an regulatory immune response. TGF-β was required for CD4+CD25+FoxP3+ Treg induction, which was necessary for suppression of effector CD4+ and CD8+ T-cell responses as well as antibody formation. These results demonstrate the crucial, nonredundant roles of IL-10 and TGF-β in prevention of immune responses against AAV-F.IX-transduced hepatocytes.  相似文献   

13.
Zaiss AK  Muruve DA 《Gene therapy》2008,15(11):808-816
Recombinant vectors based on adeno-associated virus (AAV) have been shown to stably express many genes in vivo without mounting immune responses to vectors or transgenes. Thus, AAV vectors have rapidly become the reagents of choice for therapeutic gene transfer. Yet one of the first translations of AAV gene therapy into humans unexpectedly resulted in only short-term expression of the therapeutic gene accompanied by transient but significant toxicity. Immune responses to the vector capsid were held accountable for these results, confirming that a detailed understanding of the interaction of AAV vectors with the immune system is of great importance for the safety and success of gene therapy applications. Most humans display naturally acquired immunity to AAV; circumventing neutralizing antibodies and memory T-cell responses is challenging, but not impossible. This review will evaluate the strategies that have been proposed to overcome such responses and summarize recent findings about the mechanisms and circumstances that lead to the activation of innate and adaptive immune responses to AAV vector components.  相似文献   

14.
We have documented previously that a multiple chaperone protein vaccine termed chaperone-rich cell lysate (CRCL) promotes tumor-specific T-cell responses leading to cancer regression in several mouse tumor models. We report here that CRCL vaccine generated from a mouse breast cancer (TUBO, HER2/neu positive) is also capable of eliciting humoral immunity. Administration of TUBO CRCL triggered anti-HER2/neu antibody production and delayed the progression of established tumors. This antitumor activity can be transferred through the serum isolated from TUBO CRCL-immunized animals and involved both B cells and CD4(+) T lymphocytes. Further evaluation of the mechanisms underlying TUBO CRCL-mediated humoral immunity highlighted the role of antibody-dependent cell-mediated cytotoxicity. These results suggest that tumor-derived CRCL vaccine has a wider applicability as a cancer vaccine because it can target both T-cell- and B-cell-specific responses and may represent a promising approach for the immunotherapy of cancer.  相似文献   

15.
Bojak A  Wild J  Deml L  Wagner R 《Intervirology》2002,45(4-6):275-286
In this study, we analyzed the in vitro expression, potency and longevity of immune responses induced in a Balb/c mouse model by a synthetic HIV-1 GAG gene exhibiting a codon usage that was adapted to that of highly expressed mammalian genes (syngag). In contrast to a vector containing the wild-type (wt) GAG gene, the syngag construct enabled highly efficient Gag expression in both human and rodent cell lines in complete absence of Rev and Rev-responsive element. Immunization of Balb/c mice with the wt gag plasmid DNA induced only weak and inconsistent humoral immune responses. Mice vaccinated by syngag but not wt gag developed substantial and highly consistent Gag-specific antibody titers showing a clear T helper 1 polarization even with low doses of DNA. Moreover, vaccinated mice developed a strong Gag-specific cellular immune response, including cytotoxic T cells, which was not observed in wt gag-immunized animals. Both humoral and cellular immunity were efficient and lasted for more than 20 weeks. Furthermore, the induction of the humoral as well as the cellular immune response was independent of the immunization route (intramuscular or subcutaneous). These results clearly show the advantages of codon-optimized genes with respect to the expression and immunogenicity of plasmid DNA constructs, making them promising vaccine candidates for further studies.  相似文献   

16.
Adeno‐associated virus serotype 8 (AAV8) gene therapy has shown efficacy in several clinical trials and is considered a highly promising technology to treat monogenic diseases such as hemophilia A and B. However, a major drawback of AAV8 gene therapy is that it can be applied only once because anti‐AAV8 immunity develops after the first treatment. Readministration may be required in patients who are expected to need redosing, eg, due to organ growth, or to boost suboptimal expression levels, but no redosing protocol has been established. We have developed a preventive immune‐suppressive protocol for a human factor IX (FIX) vector with an intended dose of ~5 × 1011 vg/kg that inhibits the development of anti‐AAV8 neutralizing‐antibody (NAb) responses and anti‐AAV8 T‐cell responses using CTLA4‐IgG (abatacept). In a preclinical model, transient treatment with abatacept during initial human FIX gene therapy efficiently inhibited the generation of AAV8‐specific cellular and humoral responses, and thus permitted redosing of FIX. Furthermore, our data suggest that by suppression of anti‐AAV8 NAb responses after the second higher dose (4 × 1012 vg/kg) this protocol can be used to enable redosing up to such high doses. An additional advantage of CTLA4‐IgG blocking CD28‐mediated signals is its potential suppression of AAV8‐specific cytotoxic CD8 T‐cell responses, which are believed to kill transduced hepatocytes and might interfere with a successful readministration. Redosing protocols using approved drugs would be beneficial for patients because they could effortlessly be applied in clinical trials and enable safe and efficient treatment options for patients undergoing AAV8 gene therapy.  相似文献   

17.
Original reports of adeno-associated virus (AAV) vector-mediated gene transfer to the muscle resulted in high-level β-galactosidase (β-gal) expression and the promise of a viral vector that was largely nonimmunogenic. Subsequent attempts to utilize these vectors for genetic vaccination, however, demonstrated that it was possible to activate cellular and humoral immunity to AAV-encoded antigens. These findings fueled years of investigation into factors impacting the immunogenicity of recombinant AAV-mediated gene delivery, including route of administration, dose, host species, capsid serotype, and transgene product. In cases where AAV vectors could avoid transgene-directed immunity, it became clear that mechanisms of tolerance were at work, varying between ignorance, anergy/deletion, or active suppression. Here, we follow the field of AAV gene therapy from inception, as investigators have worked to understand the delicate balance between AAV-mediated tolerance and the activation of immunity. This review discusses our current appreciation of AAV vector immunology, with a specific focus on the transgene-specific T cell response.  相似文献   

18.
Introduction: Recent success in gene therapy of certain monogenic diseases in the clinic has infused enthusiasm into the continued development of recombinant adeno-associated viral (AAV) vectors as next-generation biologics. However, progress in clinical trials has also highlighted the challenges posed by the host humoral immune response to AAV vectors. Specifically, while pre-existing neutralizing antibodies (NAbs) limit the cohort of eligible patients, NAb generation following treatment prevents vector re-dosing.

Areas covered: In this review, we discuss a spectrum of complementary strategies that can help circumvent the host humoral immune response to AAV.

Expert opinion: Specifically, we present a dual perspective, that is, vector versus host, and highlight the clinical attributes, potential caveats and limitations as well as complementarity associated with the various approaches.  相似文献   

19.
Using murine models, we have previously demonstrated that recombinant adeno-associated virus (rAAV)-mediated microdystrophin gene transfer is a promising approach to treatment of Duchenne muscular dystrophy (DMD). To examine further therapeutic effects and the safety issue of rAAV-mediated microdystrophin gene transfer using larger animal models, such as dystrophic dog models, we first investigated transduction efficiency of rAAV in wild-type canine muscle cells, and found that rAAV2 encoding beta-galactosidase effectively transduces canine primary myotubes in vitro. Subsequent rAAV2 transfer into skeletal muscles of normal dogs, however, resulted in low and transient expression of beta-galactosidase together with intense cellular infiltrations in vivo, where cellular and humoral immune responses were remarkably activated. In contrast, rAAV2 expressing no transgene elicited no cellular infiltrations. Co-administration of immunosuppressants, cyclosporine and mycophenolate mofetil could partially improve rAAV2 transduction. Collectively, these results suggest that immune responses against the transgene product caused cellular infiltration and eliminated transduced myofibers in dogs. Furthermore, in vitro interferon-gamma release assay showed that canine splenocytes respond to immunogens or mitogens more susceptibly than murine ones. Our results emphasize the importance to scrutinize the immune responses to AAV vectors in larger animal models before applying rAAV-mediated gene therapy to DMD patients.  相似文献   

20.
Hepatic adeno-associated virus (AAV)-serotype 2–mediated gene transfer results in sustained transgene expression in experimental animals but not in human subjects. We hypothesized that loss of transgene expression in humans might be caused by immune memory mechanisms that become reactivated upon AAV vector transfer. Here, we tested the effect of immunological memory to AAV capsid on AAV-mediated gene transfer in a mouse model. Upon hepatic transfer of an AAV2 vector expressing human factor IX (hF.IX), mice immunized with adenovirus (Ad) vectors expressing AAV8 capsid before AAV2 transfer developed less circulating hF.IX and showed a gradual loss of hF.IX gene copies in liver cells as compared to control animals. This was not observed in mice immunized with an Ad vectors expressing AAV2 capsid before transfer of rAAV8-hF.IX vectors. The lower hF.IX expression was primarily linked to AAV-binding antibodies that lacked AAV-neutralizing activity in vitro rather than to AAV capsid–specific CD8+ T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号